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Overview 

 Partial Differential Equation (PDE) 
 Heat equation 
 Boundary condition 
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Partial Differential Equation (PDE) 

 Partial differential equation is often used to describe a 
physical system or process 
 

 Example: heat equation is an PDE for thermal analysis 
 We will derive heat equation step by step in this lecture 
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Heat Equation 

 Heat equation can be derived from several fundamental 
physics laws 
 Fourier's law 
 Conservation of heat 
 Etc. 

 
 We will use a 1-D example to illustrate heat equation 

 Help to get many insights about heat transfer process 
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1-D Heat Model 

 We consider a 1-D rod of length L 
 
 
 
 

 Three major assumptions 
 Rod is made of a single homogenous conducting material 
 Rod is laterally insulated (heat flows only in the x-direction) 
 Rod is thin (constant temperature at all points of a cross 

section) 

0 L 

x 

∆x 
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Conservation of Heat 

 Apply conservation of heat to the segment [x, x+∆x] 

0 L 

x 

∆x 

Net change of heat 
inside [x, x+∆x] 

Net flux of heat 
across boundaries 

Total heat generated 
inside [x, x+∆x] 

We will look at each of these three components in detail 
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Conservation of Heat 

 
 
 

 Total heat inside [x, x+∆x] is equal to: 

( )∫
∆+

⋅⋅⋅⋅
xx

x
p dstsTAC ,ρ

ρ: density 
Cp: thermal capacity (measure the ability to store heat) 
A: cross-section area 
T: temperature 
t: time 
s: x-coordinate 

x+∆x x 

Net change of heat 
inside [x, x+∆x] 

Net flux of heat 
across boundaries 

Total heat generated 
inside [x, x+∆x] 
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Conservation of Heat 

 
 
 

 Net change of heat is equal to: 

( ) ( )
t

txTxACdstsTAC
dt
d

p

xx

x
p ∂

∂
⋅∆⋅⋅⋅=








⋅⋅⋅⋅∫

∆+ ,, ρρ

(Assume ∆x → 0) 

x+∆x x 

Net change of heat 
inside [x, x+∆x] 

Net flux of heat 
across boundaries 

Total heat generated 
inside [x, x+∆x] 
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Conservation of Heat 

 
 
 

 Fourier's law: heat flux across a boundary is proportional to 
the temperature gradient across the boundary: 

κ: thermal conductivity (measure the ability to conduct heat) 
A: cross-section area 
T: temperature 
t: time 
x: x-coordinate 

( )
x

txTA
∂

∂
⋅⋅

,κ

Heat flux at x 

( )
x

txxTA
∂
∆+∂

⋅⋅
,κ

Heat flux at x+∆x x+∆x x 

x+∆x x 

Net change of heat 
inside [x, x+∆x] 

Net flux of heat 
across boundaries 

Total heat generated 
inside [x, x+∆x] 
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Conservation of Heat 

 
 
 

 Net flux of heat across boundaries is equal to: 
( )
x

txTA
∂

∂
⋅⋅

,κ

Heat flux at x 

( )
x

txxTA
∂
∆+∂

⋅⋅
,κ

Heat flux at x+∆x x+∆x x 

( ) ( )






∂
∂

−
∂
∆+∂

⋅⋅
x

txT
x

txxTA ,,κ

x+∆x x 

Net change of heat 
inside [x, x+∆x] 

Net flux of heat 
across boundaries 

Total heat generated 
inside [x, x+∆x] 
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Conservation of Heat 

 
 
 

 Total heat generated inside [x, x+∆x] is equal to: 

( )∫
∆+

⋅⋅
xx

x

dstsfA ,

A: cross-section area 
f: heat source 
t: time 
s: x-coordinate 

x+∆x x 

Net change of heat 
inside [x, x+∆x] 

Net flux of heat 
across boundaries 

Total heat generated 
inside [x, x+∆x] 
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1-D Heat Equation 

 
 
 

 Overall, we have: 

( ) ( ) ( ) ( )∫
∆+

⋅⋅+





∂
∂

−
∂
∆+∂

⋅⋅=
∂

∂
⋅∆⋅⋅⋅

xx

x
p dstsfA

x
txT

x
txxTA

t
txTxAC ,,,, κρ

( ) ( ) ( ) ( )∫
∆+

⋅⋅
∆

+





∂
∂

−
∂
∆+∂

∆
⋅=

∂
∂
⋅⋅

xx

x
p dstsf

xx
txT

x
txxT

xt
txTC ,1,,1, κρ

x+∆x x 

Net change of heat 
inside [x, x+∆x] 

Net flux of heat 
across boundaries 

Total heat generated 
inside [x, x+∆x] 
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1-D Heat Equation 

( ) ( ) ( ) ( )∫
∆+

⋅⋅
∆

+





∂
∂

−
∂
∆+∂

∆
⋅=

∂
∂
⋅⋅

xx

x
p dstsf

xx
txT

x
txxT

xt
txTC ,1,,1, κρ

∆x → 0 

( ) ( ) ( )txf
x

txT
t

txTCp ,,,
2

2

+
∂

∂
⋅=

∂
∂
⋅⋅ κρ

( ) ( ) ( )txftxTtxTC xxtp ,,, +⋅=⋅⋅ κρ

Partial differential equation (PDE) 
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Partial Differential Equation (PDE) 

 
 

 T (which we differentiate) is called the dependent variable 
 

 t and x (which we differentiate with respect to) are called 
independent variables 
 

 In addition to this PDE, we further need to know the boundary 
and initial conditions to uniquely determine T(x,t) 

( ) ( ) ( )txftxTtxTC xxtp ,,, +⋅=⋅⋅ κρ
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Boundary Conditions 

 Boundary conditions describe the physical nature of our 
problem on the boundaries 
 

 A simple example 
 Rod temperature is fixed at the two ends 

0 L 

x 
( )
( ) 2

1

,
,0

TtLxT
TtxT

==
==



Slide 16   

Initial Conditions 

 Initial conditions describe the physical phenomenon at the 
beginning of the thermal transfer process 
 

 A simple example 
 Rod is initially at an equilibrium point – constant temperature 

0 L 

x 
( ) 00, TtxT ==
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1-D Heat Equation 

 The complete PDE with boundary and initial conditions 

( ) ( ) ( ) ( )∞≤≤≤≤+⋅=⋅⋅ tLxtxftxTtxTC xxtp 00,,, κρ

( )
( ) ( )∞≤<





==
==

t
TtLxT
TtxT

0
,
,0

2

1

( ) ( )LxTtxT ≤≤== 00, 0

0 L 

x 

PDE 

BCs 

IC 
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1-D Heat Equation 

 The solution of this PDE can be analytically calculated 

x 

T 

0 L 

T0 

T1 

T2 

t3 (steady state) 

t2 
t1 

t1 < t2 < t3 

0 L 
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 Boundary Conditions 

 There are many ways to specify boundary conditions 
 

 Option 1: temperature is specified on boundaries 
 
 

0 L 

( ) ( )
( ) ( )tgtLxT

tgtxT

2

1

,
,0

==
==
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 Boundary Conditions 

 The BCs used for our 1-D rod belongs to this category 
 
 
 
 
 

 Practically useful to force the temperature to behave in a 
suitable manner 
 E.g., boundary control in steel industry 

 

( )
( ) 2

1

,
,0

TtLxT
TtxT

==
==

0 L 
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 Boundary Conditions 

 Option 2: temperature of the surrounding medium is specified 
 
 
 
 
 
 

 Newton's law: heat flux across the boundary is proportional to 
the temperature difference 

Liquid kept at 
temperature g1(t) 

Liquid kept at 
temperature g2(t) 

Liquid kept at 
temperature g1(t) 

( ) ( )[ ]tgtxTAh 1,0 −=⋅⋅

Heat flux at x = 0 

h: heat-exchange coefficient (measure how 
fast heat flows across boundary) 
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 Boundary Conditions 

 Consider Newton's and Fourier's laws at x = 0 

Liquid kept at 
temperature g1(t) 

Δx 

Liquid kept at 
temperature g2(t) 

( ) ( )[ ]tgtxTAh 1,0 −=⋅⋅

Heat flux at x = 0 
(Newton's law) 

( )
0

,

=∂
∂
⋅⋅

xx
txTAκ

Heat flux at x = 0 
(Fourier's law) x = 0 
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 Boundary Conditions 

 
 
 
 

 Apply conservation of heat flux to the boundary x = 0 
 ( ) ( ) ( )[ ]tgtxTAh

x
txTA

x
1

0

,0,
−=⋅⋅=

∂
∂
⋅⋅

=

κ

( ) ( )[ ]tgtxTAh 1,0 −=⋅⋅

Heat flux at x = 0 
(Newton's law) 

( )
0

,

=∂
∂
⋅⋅

xx
txTAκ

Heat flux at x = 0 
(Fourier's law) x = 0 

( ) ( ) ( )[ ]tgtxTh
x

txT

x
1

0

,0,
−=⋅=

∂
∂
⋅

=

κ
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 Boundary Conditions 

 Similarly, we can derive the boundary condition at x = L 
 

Liquid kept at 
temperature g1(t) 

Δx 

Liquid kept at 
temperature g2(t) 

x = L 

( )
Lxx

txTA
=∂

∂
⋅⋅

,κ

Heat flux at x = L 
(Fourier's law) 

( ) ( )[ ]tgtLxTAh 2, −=⋅⋅

Heat flux at x = L 
(Newton's law) 
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 Boundary Conditions 

 
 
 
 

 Apply conservation of heat flux to the boundary x = L 
 ( ) ( ) ( )[ ]tgtLxTAh

x
txTA

Lx
2,,

−=⋅⋅−=
∂

∂
⋅⋅

=

κ

( ) ( ) ( )[ ]tgtLxTh
x

txT

Lx
2,,

−=⋅−=
∂

∂
⋅

=

κ

x = L 

( )
Lxx

txTA
=∂

∂
⋅⋅

,κ

Heat flux at x = L 
(Fourier's law) 

( ) ( )[ ]tgtLxTAh 2, −=⋅⋅
Heat flux at x = L 
(Newton's law) 
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 Boundary Conditions 

 Option 2: temperature of the surrounding medium is specified 

Liquid kept at 
temperature g1(t) 

Liquid kept at 
temperature g2(t) 

( ) ( ) ( )[ ]tgtLxTh
x

txT

Lx
2,,

−=⋅−=
∂

∂
⋅

=

κ

( ) ( ) ( )[ ]tgtxTh
x

txT

x
1

0

,0,
−=⋅=

∂
∂
⋅

=

κ
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 Boundary Conditions 

 Option 3: heat flow across the boundaries is specified 

0 L 

( ) ( )

( ) ( )tg
x

txT

tg
x

txT

Lx

x

2

1
0

,

,

=
∂

∂

=
∂

∂

=

=
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 Boundary Conditions 

 Insulated boundaries (also referred to as reflective boundaries) 
 No heat passes through boundaries 

0 L 
( )

( ) 0,

0,

0

=
∂

∂

=
∂

∂

=

=

Lx

x

x
txT

x
txT
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Summary 

 Partial differential equation (PDE) 
 Heat equation 
 Boundary condition 
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