

18-660: Numerical Methods for Engineering Design and Optimization

Xin Li Department of ECE Carnegie Mellon University Pittsburgh, PA 15213

Overview

Partial Differential Equation (PDE)

- Heat equation
- Boundary condition

Partial Differential Equation (PDE)

- Partial differential equation is often used to describe a physical system or process
- Example: heat equation is an PDE for thermal analysis
 We will derive heat equation step by step in this lecture

Heat Equation

- Heat equation can be derived from several fundamental physics laws
 - Fourier's law
 - Conservation of heat
 - Etc.

We will use a 1-D example to illustrate heat equation
 Help to get many insights about heat transfer process

1-D Heat Model

We consider a 1-D rod of length L

Three major assumptions

- Rod is made of a single homogenous conducting material
- Rod is laterally insulated (heat flows only in the x-direction)
- Rod is thin (constant temperature at all points of a cross section)

• Apply conservation of heat to the segment $[x, x+\Delta x]$

We will look at each of these three components in detail

Net change of heat _____ Net flux of heat _____ Total heat generated inside $[x, x+\Delta x]$ _____ across boundaries + Total heat generated inside $[x, x+\Delta x]$

Total heat inside $[x, x+\Delta x]$ is equal to:

 $x + \Lambda x$ $\int \rho \cdot C_p \cdot A \cdot T(s,t) \cdot ds$

density ρ:

C_p: thermal capacity (measure the ability to store heat)

A: cross-section area

- T: temperature
- t: time
- x-coordinate **S**:

Net change of heat = Net flux of heat + Total heat generated inside [x, x+ Δx] \wedge

Net change of heat is equal to:

$$\frac{d}{dt} \left[\int_{x}^{x + \Delta x} \rho \cdot C_p \cdot A \cdot T(s, t) \cdot ds \right] = \rho \cdot C_p \cdot A \cdot \Delta x \cdot \frac{\partial T(x, t)}{\partial t}$$

(Assume $\Delta x \rightarrow 0$)

 $X + \Delta X$

Х

Net change of heat = Net flux of heat + Total heat generated inside [x, x+ Δx] \uparrow \uparrow \uparrow x x+ Δx

Fourier's law: heat flux across a boundary is proportional to the temperature gradient across the boundary:

- **κ**: thermal conductivity (measure the ability to conduct heat)
- A: cross-section area
- T: temperature
- t: time
- x: x-coordinate

Net change of heat $_$ Net flux of heat + Total heat generated inside [x, x+ Δx] - across boundaries + inside [x, x+ Δx]

Net flux of heat across boundaries is equal to:

$$\kappa \cdot A \cdot \left[\frac{\partial T(x + \Delta x, t)}{\partial x} - \frac{\partial T(x, t)}{\partial x} \right]$$

 $X + \Delta X$

Х

Net change of heat _____ Net flux of heat _____ Total heat generated inside $[x, x+\Delta x]$ _____ across boundaries + Total heat generated inside $[x, x+\Delta x]$

Total heat generated inside $[x, x+\Delta x]$ is equal to:

$$\int_{x}^{x+\Delta x} A \cdot f(s,t) \cdot ds$$

- **A**: cross-section area
- f: heat source
- t: time
- x-coordinate **S**:

1-D Heat Equation

Net change of heat = Net flux of heat + Total heat generated inside [x, x+ Δx] \uparrow \uparrow \uparrow x x+ Δx

Overall, we have:

$$\rho \cdot C_{p} \cdot A \cdot \Delta x \cdot \frac{\partial T(x,t)}{\partial t} = \kappa \cdot A \cdot \left[\frac{\partial T(x + \Delta x,t)}{\partial x} - \frac{\partial T(x,t)}{\partial x} \right] + \int_{x}^{x + \Delta x} A \cdot f(s,t) \cdot ds$$

$$\rho \cdot C_{p} \cdot \frac{\partial T(x,t)}{\partial t} = \kappa \cdot \frac{1}{\Delta x} \left[\frac{\partial T(x + \Delta x,t)}{\partial x} - \frac{\partial T(x,t)}{\partial x} \right] + \frac{1}{\Delta x} \cdot \int_{x}^{x + \Delta x} f(s,t) \cdot ds$$

1-D Heat Equation

Partial Differential Equation (PDE)

$$\rho \cdot C_p \cdot T_t(x,t) = \kappa \cdot T_{xx}(x,t) + f(x,t)$$

T (which we differentiate) is called the dependent variable

t and x (which we differentiate with respect to) are called independent variables

In addition to this PDE, we further need to know the boundary and initial conditions to uniquely determine T(x,t)

Boundary conditions describe the physical nature of our problem on the boundaries

A simple example

Rod temperature is fixed at the two ends

Initial Conditions

Initial conditions describe the physical phenomenon at the beginning of the thermal transfer process

A simple example

Rod is initially at an equilibrium point – constant temperature

1-D Heat Equation

The complete PDE with boundary and initial conditions

PDE
$$\rho \cdot C_p \cdot T_t(x,t) = \kappa \cdot T_{xx}(x,t) + f(x,t) \quad (0 \le x \le L \quad 0 \le t \le \infty)$$

BCs

$$\begin{cases} T(x=0,t) = T_1 \\ T(x=L,t) = T_2 \end{cases} \quad (0 < t \le \infty)$$

IC $T(x,t=0) = T_0 \quad (0 \le x \le L)$

1-D Heat Equation

The solution of this PDE can be analytically calculated

There are many ways to specify boundary conditions

Option 1: temperature is specified on boundaries

$$T(x=0,t) = g_1(t)$$
$$T(x=L,t) = g_2(t)$$

The BCs used for our 1-D rod belongs to this category

- Practically useful to force the temperature to behave in a suitable manner
 - E.g., boundary control in steel industry

Option 2: temperature of the surrounding medium is specified

Liquid kept at temperature g₁(t)

Liquid kept at temperature g₂(t)

Newton's law: heat flux across the boundary is proportional to the temperature difference

$$h \cdot A \cdot [T(x=0,t) - g_1(t)] \blacktriangleleft$$

Heat flux at x = 0

Liquid kept at temperature g₁(t)

h: heat-exchange coefficient (measure how fast heat flows across boundary)

Consider Newton's and Fourier's laws at x = 0

Apply conservation of heat flux to the boundary x = 0

$$\kappa \cdot A \cdot \frac{\partial T(x,t)}{\partial x} \bigg|_{x=0} = h \cdot A \cdot [T(x=0,t) - g_1(t)]$$
$$\kappa \cdot \frac{\partial T(x,t)}{\partial x} \bigg|_{x=0} = h \cdot [T(x=0,t) - g_1(t)]$$

Similarly, we can derive the boundary condition at x = L

Apply conservation of heat flux to the boundary x = L

$$\kappa \cdot A \cdot \frac{\partial T(x,t)}{\partial x} \Big|_{x=L} = -h \cdot A \cdot [T(x=L,t) - g_2(t)]$$
$$\kappa \cdot \frac{\partial T(x,t)}{\partial x} \Big|_{x=L} = -h \cdot [T(x=L,t) - g_2(t)]$$

Option 2: temperature of the surrounding medium is specified

Liquid kept at temperature g₁(t)

Liquid kept at temperature g₂(t)

$$\kappa \cdot \frac{\partial T(x,t)}{\partial x} \bigg|_{x=0} = h \cdot \left[T(x=0,t) - g_1(t) \right]$$

$$\kappa \cdot \frac{\partial T(x,t)}{\partial x} \bigg|_{x=L} = -h \cdot \left[T(x=L,t) - g_2(t) \right]$$

Option 3: heat flow across the boundaries is specified

- Insulated boundaries (also referred to as reflective boundaries)
 - No heat passes through boundaries

Summary

- Partial differential equation (PDE)
 - Heat equation
 - Boundary condition