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m Partial Differential Equation (PDE)
N Heat equation
N Boundary condition
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Partial Differential Equation (PDE)

m Partial differential equation is often used to describe a
physical system or process

m Example: heat equation is an PDE for thermal analysis
~ We will derive heat equation step by step in this lecture
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Heat Equation

m Heat equation can be derived from several fundamental
physics laws
N Fourier's law
N Conservation of heat
~ Etc.

m We will use a 1-D example to illustrate heat equation
N Help to get many insights about heat transfer process
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1-D Heat Model

m We consider a 1-D rod of length L

O

0 AX

le—v

m Three major assumptions
Y Rod is made of a single homogenous conducting material
< Rod is laterally insulated (heat flows only in the x-direction)

“ Rod is thin (constant temperature at all points of a cross
section)
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Conservation of Heat

m Apply conservation of heat to the segment [x, Xx+AXx]

Q__ 8 )
0 AX L
>
X
Net change of heat __ Net flux of heat 1 Total heat generated
inside [x, x+AX] ~~ across boundaries inside [, Xx+AX]

We will look at each of these three components in detail
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Conservation of Heat

Net change of heat __  Net flux of heat 1 Total heat generated
inside [x, x+AX] ~ across boundaries inside [x, Xx+AX] A A
X  Xt+tAX

m Total heat inside [X, x+AX] is equal to:

X+AX

jp-Cp-A-T(s,t)-ds

p: density

C,: thermal capacity (measure the ability to store heat)
A: Cross-section area

T temperature

t: time

S:

X-coordinate

Slide 7



Conservation of Heat

Net change of heat __  Net flux of heat _|_Total heat generated
inside [x, x+Ax] — across boundaries inside [X, Xx+Ax] A A

X X+AX

m Net change of heat is equal to:

d| X - OT (x,1)
- ip.cp-A-T(s,t).ds =pCpr A A

(Assume Ax — 0)
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Conservation of Heat

Net change of heat __  Net flux of heat 1 Total heat generated
inside [x, x+AX] ~ across boundaries inside [x, Xx+AX] A A
X  Xt+tAX

m Fourier's law: heat flux across a boundary is proportional to
the temperature gradient across the boundary:

oT (x,t) OT (X + Ax,t)
ALY A
A ) oA

Heat flux at x i x+TAx Heat flux at Xx+Ax
K: thermal conductivity (measure the ability to conduct heat)
A: Cross-section area
T. temperature
t: time
X:

X-coordinate
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Conservation of Heat

Net change of heat __  Net flux of heat _|_Total heat generated
inside [x, x+AX] ~ across boundaries inside [x, Xx+AX] A A

X  Xt+AX
m Net flux of heat across boundaries is equal to:

OT (x,1) OT (X + Ax, t)

Heat flux at x X X+AX Heat flux at x+Ax

N A.{aT(x;(Ax,t)_ 6Té§)>:,t)}
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Conservation of Heat

Net change of heat __  Net flux of heat _|_Total heat generated
inside [x, x+Ax] ~ across boundaries inside [X, x+Ax] A A

X X+AX

m Total heat generated inside [x, Xx+AX] is equal to:

X+AX

jA- f(s,t)-ds

A: Cross-section area
f: heat source

t: time

S:

X-coordinate
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1-D Heat Equation

Net change of heat __  Net flux of heat 1 Total heat generated
inside [x, x+Ax] ~ across boundaries inside [X, Xx+Ax] A A
X  X+AX

m Overall, we have:

p-C,-A-AX-

X+AX
8T(x,t):K.A.[GT(XJrAx,t)_8T(x,t)}L IA' f(s.1)-ds
ot OX OX ‘

1L

X+AX
aT(xt) 1 [c’?T(XJrAx,t)_aT(x,t)}r 1 jf(s,t)-ds
OX OX AX

X
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1-D Heat Equation

oT (x,1) 1 [8T(x+Ax,t) aT(x,t)} 1 o
p-C,- _ :

=K-
OX OX

ot AX
AX—0

OT (x,t) 82T(x,t)+ f(x.t)

=K-

ot Ox?

1l

p-C, T (xt)=r T (xt)+ f(xt)

p-C,-

Partial differential equation (PDE)
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Partial Differential Equation (PDE)

p-C, T (xt)=r T (xt)+ f(xt)

m T (which we differentiate) is called the dependent variable

m t and x (which we differentiate with respect to) are called
Independent variables

m In addition to this PDE, we further need to know the boundary
and initial conditions to uniquely determine T(x,t)
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Boundary Conditions

m Boundary conditions describe the physical nature of our
problem on the boundaries

m A simple example
“ Rod temperature is fixed at the two ends

U )

0 L
T(x=0,t)=T, '
T(x=L,t)=T,
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Initial Conditions

m Initial conditions describe the physical phenomenon at the
beginning of the thermal transfer process

m A simple example
Y Rod is initially at an equilibrium point — constant temperature

)
N
—
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1-D Heat Equation

m The complete PDE with boundary and initial conditions
U )
0 L
>
X

PDE p-C, T(x,t)=x T, (x,t)+ f(x,t) (0<x<L 0<t<w)
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1-D Heat Equation

m The solution of this PDE can be analytically calculated

U )
0

L

t, (Steady state)

TO
T, |
0 )x

L <<t

Slide 18



Boundary Conditions

m There are many ways to specify boundary conditions

m Option 1: temperature is specified on boundaries

U )

0 L
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Boundary Conditions

m The BCs used for our 1-D rod belongs to this category

m Practically useful to force the temperature to behave in a
suitable manner
< E.g., boundary control in steel industry
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Boundary Conditions

m Option 2: temperature of the surrounding medium is specified

)
e
% %
Liquid kept at Liquid kept at
temperature g,(t) temperature g,(t)

~ Newton's law: heat flux across the boundary is proportional to
the temperature difference 7

h-A-[T(x=0,t)-g,(t)] <
Heat flux atx =0

Liquid kept at

h: heat-exchange coefficient (measure how
temperature g,(t)

fast heat flows across boundary)
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Boundary Conditions

m Consider Newton's and Fourier's laws at x = 0

4 22

NN\

AX
e
% Z
Liquid kept at Liquid kept at

temperature g,(t) temperature g,(t)

AT -00-00] (e xn T
Heat flux at x =0 A . _X:O
(Newton's law) X =0 Heat flux at x = 0

(Fourier's law)
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Boundary Conditions

h-A-[T(x=0,t)-g,(t)] <—O<7 K'A@Tg’t)xo

Heat flux at x =0

Heat flux at x =0 A
- (Fourier's law)

(Newton's law) X

m Apply conservation of heat flux to the boundary x =0

KA. aTg:’t) —h-A-[T(x=0,t)-g,(t)]
T8 fr(x=0.0)-g,0]
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Boundary Conditions

m Similarly, we can derive the boundary conditionat x = L

) Ax §
e’

% 2%
Liquid kept at Liquid kept at
temperature g, (t) temperature g,(t)

AT (x,t)

OX |,_
: Heat flux at x = L

X=L (Newton's law)

« Q > h-A[T(x=L1t)-g,(t)]

Heat flux at x = L
(Fourier's law)
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Boundary Conditions

oT (X,
xt)
5X x=L U
Heat fluxat x = L TL
(Fourier's law) X=

K-A-

h-A:[T(x=L1)-g,(t)]
Heat fluxat x = L
(Newton's law)

m Apply conservation of heat flux to the boundary x = L

K”A-aTg((’t) =—h-A-[T(x=L,t)-g,(t)]
T frix=L9-0,0)
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Boundary Conditions

m Option 2: temperature of the surrounding medium is specified

% %/
Liquid kept at Liquid kept at
temperature g,(t) temperature g,(t)
T8 b frx=0.)-0,0)
T fr(x=L0)-g,(0)
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Boundary Conditions

m Option 3: heat flow across the boundaries is specified

U )
0 L
oT(x,t)]
x| 0,(t)
oT(x,t)]
x| g, (t)
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Boundary Conditions

m Insulated boundaries (also referred to as reflective boundaries)
~ No heat passes through boundaries

U )
0 L
oT(x,t) 0

OX | o
oT(x,t) 0
OX |,
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m Partial differential equation (PDE)
N Heat equation
N Boundary condition
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