18-660: Numerical Methods for Engineering Design and Optimization

Xin Li
Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

- Ordinary Differential Equation (ODE)
 - Numerical integration
 - Stability

Ordinary Differential Equation (ODE)

■ Transient analysis for electrical circuit

$$\dot{x}(t) = u(t) - x(t)$$
 \longrightarrow Ordinary differential equation $x(0) = 0$ \longrightarrow Initial condition $u(t) = 1$ $(t \ge 0)$

Ordinary Differential Equation (ODE)

General mathematical form

$$F[\dot{x}(t), x(t), u(t)] = 0 \quad x(0) = X$$

x(t): N-dimensional vector of unknown variables

u(t): Vector of input sources

F : Nonlinear operator

X: Initial condition

Numerical Integration

- In general, closed-form solution does not exist
 - Even if ODE is linear, we cannot find analytical solutions in many practical cases
- Numerical methods must be applied to approximate the solution – numerical solution
 - Numerical integration for differential operator

$$\dot{x}(t) \approx ???$$

Algebraic equation

Numerical Integration

- Several different formulas exist for numerical integration
 - One-step numerical integration approximates differential operator from two successive time points

Trapezoidal Approximation

Trapezoidal is often more accurate but also more expensive than BE and FE

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} \approx \frac{f[x(t_n)] + f[x(t_{n+1})]}{2}$$

$$x(t_{n+1}) - x(t_n) = \int_{t_n}^{t_{n+1}} f[x(t)] \cdot dt$$

Backward Euler Approximation

- Similar to TR but is less accurate and expensive
- Widely used for practical applications

$$\dot{x} = f(x)$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} \approx f[x(t_{n+1})]$$

$$x(t_{n+1}) - x(t_n) = \int_{t_n}^{t_{n+1}} f[x(t)] \cdot dt$$
$$\approx \Delta t \cdot f[x(t_{n+1})]$$

Backward Euler Example

$$\dot{x}(t) = u(t) - x(t)$$

$$x(0) = 0$$

$$u(t) = 1 \quad (t \ge 0)$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} = 1 - x(t_{n+1})$$
$$x(t_0) = 0$$

$$\frac{\dot{x} = f(x)}{\frac{x(t_{n+1}) - x(t_n)}{\Delta t}} \approx f(t_{n+1})$$

Backward Euler Example

$$\frac{x(t_1) - x(t_0)}{\Delta t} = 1 - x(t_1)$$
$$x(t_0) = 0$$

$$x(t_1) - x(t_0) = \Delta t - \Delta t \cdot x(t_1)$$

$$x(t_1) = \frac{\Delta t + x(t_0)}{1 + \Delta t} = \frac{\Delta t}{1 + \Delta t}$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} = 1 - x(t_{n+1})$$
$$x(t_0) = 0$$

Backward Euler Example

■ First-order system example

$$\frac{x(t_2) - x(t_1)}{\Delta t} = 1 - x(t_2)$$

$$x(t_2) - x(t_1) = \Delta t - \Delta t \cdot x(t_2)$$

$$x(t_2) = \frac{\Delta t + x(t_1)}{1 + \Delta t}$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} = 1 - x(t_{n+1})$$
$$x(t_0) = 0$$

Continue iteration to determine x(t)

Forward Euler Approximation

- Least accurate compared to TR and BE
- Difficult to guarantee stability

$$f(t)$$

$$t_n$$

$$t_{n+1}$$

$$\dot{x} = f(x)$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} \approx f[x(t_n)]$$

$$x(t_{n+1}) - x(t_n) = \int_{t_n}^{t_{n+1}} f[x(t)] \cdot dt$$
$$\approx \Delta t \cdot f[x(t_n)]$$

$$\dot{x}(t) = u(t) - x(t)$$
$$x(0) = 1 \quad u(t) = 0$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} = -x(t_n)$$
$$x(t_0) = 1$$

$$\frac{\dot{x} = f(x)}{\frac{x(t_{n+1}) - x(t_n)}{\Delta t}} \approx f(t_n)$$

$$\frac{x(t_1) - x(t_0)}{\Delta t} = -x(t_0)$$
$$x(t_0) = 1$$

$$x(t_1) = -\Delta t + 1$$

$$x(t_1) = 1 - \Delta t$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} = -x(t_n)$$
$$x(t_0) = 1$$

$$\frac{x(t_2) - x(t_1)}{\Delta t} = -x(t_1)$$

$$x(t_1) = 1 - \Delta t$$

$$x(t_2) = -\Delta t \cdot x(t_1) + x(t_1)$$

$$x(t_2) = (1 - \Delta t) \cdot x(t_1)$$

$$= (1 - \Delta t)^2$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} = -x(t_n)$$
$$x(t_0) = 1$$

$$x(t_3) = (1 - \Delta t)^3$$

$$x(t_4) = (1 - \Delta t)^4$$

$$x(t_n) = (1 - \Delta t)^n$$

■ First-order system example

$$x(t_n) = (1 - \Delta t)^n$$

Forward Euler fails to converge if ∆t is too large

Numerical Integration Stability

- ∆t must be sufficiently small for FE to guarantee stability
 - \blacksquare In practice, it is not easy to determine the appropriate Δt
- BE and TR do not suffer from stability issue
 - **¬** Stability is guaranteed for any $\Delta t > 0$
- **■** First-order system example

$$\dot{x}(t) = u(t) - x(t)$$
$$x(0) = 1 \quad u(t) = 0$$

$$x(t_n) = \frac{1}{(1 + \Delta t)^n}$$

Always stable for $\Delta t > 0$

Nth-Order Linear ODE

Our simple example solves a first-order linear ODE

$$\dot{x}(t) = u(t) - x(t)$$

■ In general, an Nth-order linear time-invariant dynamic system is described by the following ODE:

$$\dot{x}(t) = A \cdot x(t) + B \cdot u(t)$$
 \longrightarrow Ordinary differential equation $x(0) = 0$ \longrightarrow Initial condition

x(t): N-dimensional vector of unknown variables

u(t): Vector of input sources

A,B: Matrices

Nth-Order Linear ODE

■ Backward Euler example

$$\dot{x}(t) = A \cdot x(t) + B \cdot u(t) \quad x(0) = 0$$

$$\frac{x(t_{n+1}) - x(t_n)}{\Delta t} = A \cdot x(t_{n+1}) + B \cdot u(t_{n+1}) \quad x(t_0) = 0$$

$$x(t_{n+1}) - x(t_n) = \Delta t \cdot A \cdot x(t_{n+1}) + \Delta t \cdot B \cdot u(t_{n+1}) \quad x(t_0) = 0$$

$$x(t_{n+1}) = (I - \Delta t \cdot A)^{-1} \cdot [x(t_n) + \Delta t \cdot B \cdot u(t_{n+1})] \quad x(t_0) = 0$$

Solve linear algebraic equation to find $x(t_{n+1})$

Nth-Order Nonlinear ODE

Many physical systems are both high-order and nonlinear

$$F[\dot{x}(t), x(t), u(t)] = 0$$
 $x(0) = 0$

x(t): N-dimensional vector of unknown variables

u(t): Vector of input sources

F : Nonlinear operator

Nth-Order Nonlinear ODE

Backward Euler example

$$F[\dot{x}(t), x(t), u(t)] = 0$$
 $x(0) = 0$

$$F\left[\frac{x(t_{n+1})-x(t_n)}{\Delta t}, x(t_{n+1}), u(t_{n+1})\right] = 0 \quad x(t_0) = 0$$

Solve nonlinear algebraic equation to find $x(t_{n+1})$

- Solving nonlinear algebraic equation requires iterative algorithm
 - More details in future lectures...

Advanced Topics for ODE Solver

- Local truncation error estimation
 - Estimate approximation error for numerical integration
- Adaptive time step control
 - Dynamically determine ∆t
- High-order integration formula
 - Apply multi-step numerical integration
- Some of these advanced topics are covered by 18-762 that particularly focuses on ODE solver for circuit simulation

Summary

- Ordinary differential equation (ODE)
 - Numerical integration
 - Stability