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m Ordinary Differential Equation (ODE)
~ Numerical integration
~ Stability
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Ordinary Differential Equation (ODE)

m Transient analysis for electrical circuit

u(t) X(t)

l— 10 __f
0— =1

x(t) = Ordinary differential equation

x(0)=0  —> Initial condition
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Ordinary Differential Equation (ODE)

m General mathematical form

Fx@), xu)]=0 x(0)= X

X(t):  N-dimensional vector of unknown variables
u(t):  Vector of input sources

F :  Nonlinear operator

X Initial condition
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Numerical Integration

m In general, closed-form solution does not exist

< Even if ODE is linear, we cannot find analytical solutions in
many practical cases

m Numerical methods must be applied to approximate the
solution — numerical solution
~ Numerical integration for differential operator

x(t)~ 727

T

Algebraic equation
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Numerical Integration

m Several different formulas exist for numerical integration

N One-step numerical integration approximates differential
operator from two successive time points

" — f(x) Forward X(tn+1)_ X(tn) ~ f[x(tn )]: f(tn)

(" Euler (FE) At

X(tn+1) B X(tn) -~ Backward X(tn+1)_ X(tn) ~
s =T < B (BE) )

\_ Trapezoidal X(ty.i)—x(t,) _ f(t,)+ f(t,..)

~
~y

(TR) At 2
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Trapezoidal Approximation

m Trapezoidal is often more accurate but also more expensive
than BE and FE

() 4 () =) _ 1Dt )]+ 1Dt )]
/éf At 2
S iyl

o b U () x() = [ ()]t

/
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Backward Euler Approximation

m Similar to TR but is less accurate and expensive
m Widely used for practical applications

F(t) o

LU ) )= [Tt
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Backward Euler Example

m First-order system example x = f(x)
X(t) — u(t)_ X(t) X(tn+1)_ X(tn) ~ f (tn+1)
x(0)=0 Al
ut)=1 (t=0) X(O)a
T T T T
| | | | | | |
@ | | | | | | |
| | | | | | |
) )y ) BEREEE
=1-xl(t, ., I I I I I I I >
At t, t t t ot t ottt
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Backward Euler Example

m First-order system example X(ty,a)— X(t,) —1-x(t. )
At n+1
X(tl)_x(to):]__x(t ) X(tO):O
At 1
X(tO ) =0 X(t) A

X(t,)- x(t,)= At — At-x(t,) /
L "

X(t)_At+x(to)_ At
Y14 At 1+At
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Backward Euler Example

m First-order system example X(ty.y) = x(t,) _ 1-x(t )
_ n+1

.
.
.
.®
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Forward Euler Approximation

m Difficult to guarantee stability

F(t) o

m Least accurate compared to TR and BE
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Forward Euler Example

m First-order system example x = f(x)

(t) = u(t)- x(t) Ka)=X(t) _ ¢

x(0)=1 u(t)=0
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x(t,)=1- At
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X(t,)=(1-At)-x(t,)

= (1-At)

Slide 15



Q
o
&
S
>
LLI
S
Q@
S
LLI
o
S
S
=
o
L

m First-order system example

X(ts)=1-at)
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Forward Euler Example

m First-order system example

X(t. )= (1—At)"

1500

1000y

500

X(t)

6 0 10 20 30
Time (Sec.) Time (Sec.)

At = 0.1 (correct answer) At = 3 (fail to converge)

Forward Euler fails to converge if At is too large

Slide 17



Numerical Integration Stability

m At must be sufficiently small for FE to guarantee stability
~ In practice, it is not easy to determine the appropriate At

m BE and TR do not suffer from stability issue
~ Stability is guaranteed for any At >0

m First-order system example

x(t)=u(t)- x(t) 1
%(0)=1 u(t)=0 E> )= ary

Always stable for At >0
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Nth-Order Linear ODE

m Our simple example solves a first-order linear ODE

x(t)=u(t)- x(t)

m In general, an Nth-order linear time-invariant dynamic system
IS described by the following ODE:

x(t)=A-x(t)+B-u(t) — Ordinary differential equation
x(0)=0 —> Initial condition

x(t): N-dimensional vector of unknown variables
u(t): Vector of input sources

A/B: Matrices
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Nth-Order Linear ODE

m Backward Euler example

x(t)=A-x(t)+B-u(t) x(0)

Il
o

X(tn+1) ( —At- A) [X( )+At'B'u(tn+1)] X(’[O):O

Solve linear algebraic equation to find x(t, ,,)
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Nth-Order Nonlinear ODE

m Many physical systems are both high-order and nonlinear

F[x(t) x(t),u(t)]=0 x(0)=0

X(t):  N-dimensional vector of unknown variables
u(t):  Vector of input sources

F :  Nonlinear operator
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Nth-Order Nonlinear ODE

m Backward Euler example

F[x(t), x(t),u(t)]=0 x(0)=0
L

F[ X(ty.q )= X(t,) Xt )hult,, )} =0 x(t,)=0

At

Solve nonlinear algebraic equation to find x(t,,,,)

m Solving nonlinear algebraic equation requires iterative algorithm
N More details in future lectures...
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Advanced Topics for ODE Solver

m Local truncation error estimation
N Estimate approximation error for numerical integration

m Adaptive time step control
N Dynamically determine At

m High-order integration formula
~ Apply multi-step numerical integration

m Some of these advanced topics are covered by 18-762 that
particularly focuses on ODE solver for circuit simulation
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m Ordinary differential equation (ODE)
~ Numerical integration
~ Stability
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