18-660: Numerical Methods for Engineering Design and Optimization

Xin Li
Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Overview

- Introduction
 - Numerical computation
 - ▼ Examples and applications

Numerical Computation

- Numerical computation: approximation techniques and algorithms to *numerically* solve mathematical problems
 - Not all mathematical problems have closed-form solutions
- Mathematical examples
 - Solve nonlinear algebraic equations
 - ▼ Find minimum of a nonlinear function
 - Determine eigenvalues of a matrix
- This course will encompass various aspects of numerical methods and their applications
 - Linear & nonlinear solver, nonlinear optimization, randomized algorithm, etc.

Numerical Computation

 Numerical computation is an important tool to solve many practical engineering problems

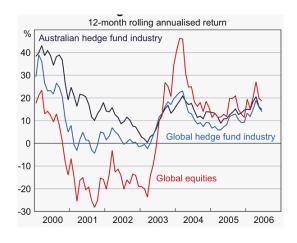
PageRank finds the eigenvector of a 10¹⁰-by-10¹⁰ matrix – the largest matrix computation in the world

Airlines use optimization algorithms to decide ticket prices, airplane assignments and fuel needs

Numerical Computation

Several additional real-world examples:

Car companies run computer simulations of car crashes to identify safety issues



Wall street runs statistical simulation tools to predict stock prices

Brief History of Numerical Computation

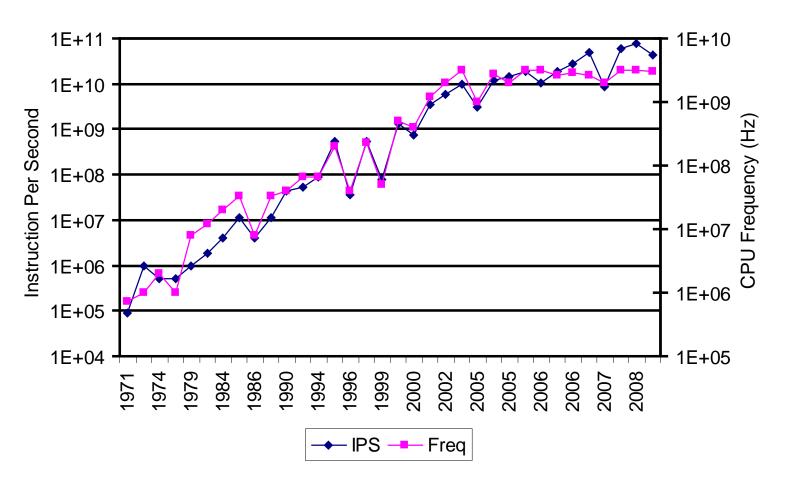
- **■** Before 1950s
- Algorithms
 - Linear interpolation
 - Newton's method
 - Gaussian elimination
- Tools
 - Hand calculation
 - ▼ Formula handbook
 - Data table

Carl Friedrich Gauss (1777-1855)
German Mathematician

Brief History of Numerical Computation

■ After 1950s

■ The invention of modern computers motivates the development of a great number of new numerical algorithms



Numerical Computation Problems

- Ordinary and partial differential equations
- Regression
- Classification

Ordinary Differential Equation (ODE)

■ Transient analysis for electrical circuit u(t)

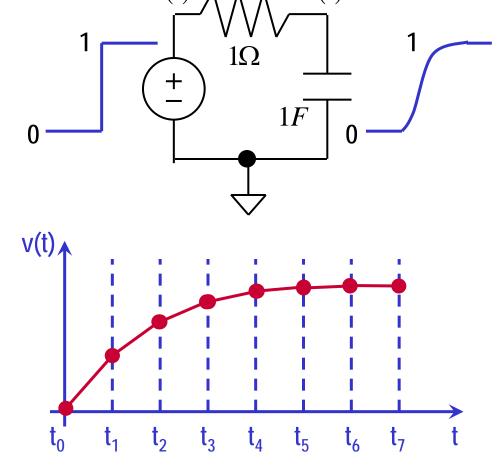
$$\frac{dv(t)}{dt} = u(t) - v(t)$$

$$\frac{dv(t)}{dt} \approx \frac{v(t) - v(t - \Delta t)}{\Delta t}$$

$$\frac{v(t_1) - v(t_0)}{\Delta t} = u(t_1) - v(t_1)$$

$$\frac{v(t_2) - v(t_1)}{\Delta t} = u(t_2) - v(t_2)$$

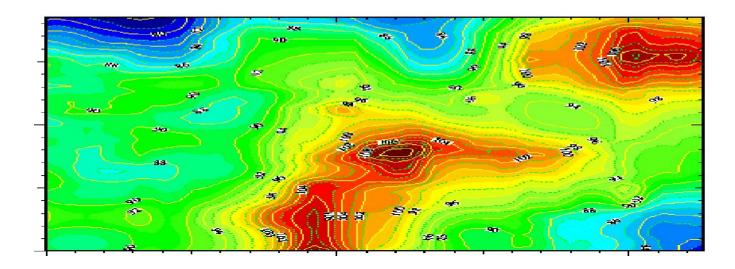
Algebraic equations



Partial Differential Equation (PDE)

■ Thermal analysis: heat conduction is governed by partial differential equation (PDE):

$$\rho \cdot C_p \cdot \frac{\partial T(x,y,z,t)}{\partial t} = \nabla \cdot \left[\kappa \cdot \nabla T(x,y,z,t)\right] + p(x,y,z,t)$$
 Material Specific Thermal Power density of density heat capacity conductivity heat sources (kg/m³) (Joules/K-kg) (Watts/K-m) (Watts/m³)



Linear Regression

Linear regression (response surface modeling)

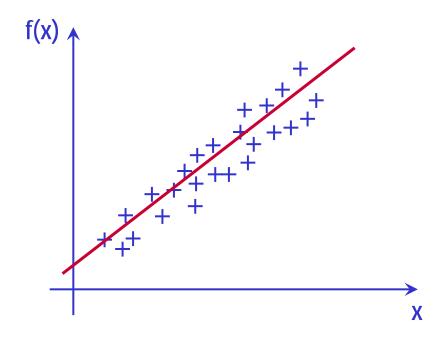
$$f(x) = ax + b$$

$$f(x_1) = ax_1 + b$$

$$f(x_2) = ax_2 + b$$

$$f(x_3) = ax_3 + b$$

$$\vdots$$

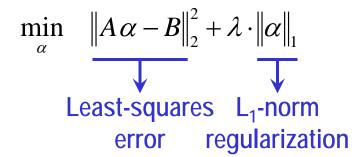


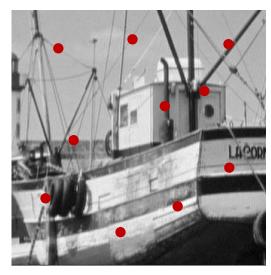
Solve over-determined linear equation to find a and b (more equations than unknowns)

Linear Regression

■ Linear regression with regularization

$$A\alpha = B$$





Original image

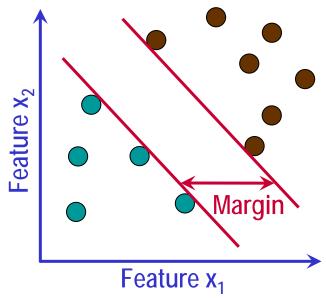
Recovered image

Classification

Support vector machine (SVM)

Support vector machine (SVM)
$$f(X) = W^{T}X + C \begin{cases} \geq 0 & (Class A) \\ < 0 & (Class B) \end{cases}$$
'M Coefficients Features

SVM Coefficients Features



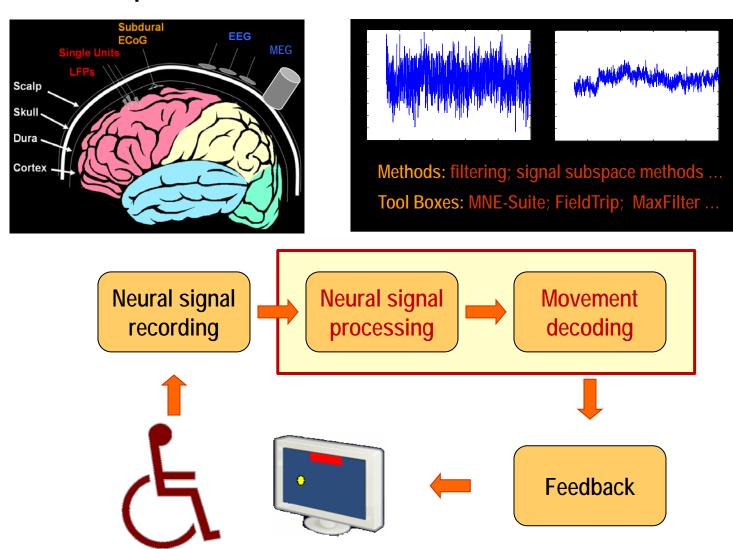
min
$$||W||_2^2 \longrightarrow L_2$$
-norm (maximize margin)

S.T.
$$W^T X + C \ge 0$$
 $(X \in Class A)$
 $W^T X + C < 0$ $(X \in Class B)$

Solve convex quadratic programming to find W and C

Classification

Brain computer interface based on classification



Summary

- Numerical computation
- **■** Examples and applications