
Propagation modelling of complex HVAC networks
using transfer matrix method

Pavel V. Nikitin1, Daniel D. Stancil2, Ahmet G. Cepni2,
Ariton E. Xhafa2, Ozan K. Tonguz2, and Dagfin Brodtkorb3

1University of Washington, Department of Electrical Engineering,
Seattle, WA 98195-2500, USA, nikitin@ee.washington.edu

2Carnegie Mellon University, Department of Electrical and Computer Engineering,
Pittsburgh, PA 15213-3890, USA,{stancil, acepni, axhafa, tonguz}@andrew.cmu.edu

3ABB Corporate Research, Bergerveien 12, P.O.Box 90, N-1735
Billingstad, Norway, dagfin.brodtkorb@no.abb.com

Abstract

Use of heating, ventilation, and air conditioning (HVAC) ducts for indoor com-
munications is a topic of recent interest. Real HVAC networks are complex systems,
which contain multiple bends, tapers, etc. In this paper, we present a propagation
model for such cascaded networks, based on the transfer matrix method. As an exam-
ple, we theoretically analyze and experimentally characterize a system composed of
straight sections, bend and taper. Measured data are in agreement with our theoretical
predictions.

1 Introduction

The HVAC duct system in a building is a three-dimensional multimode waveguide structure.
Efficient modelling of propagation in such complicated network is a challenging task. From
the point of view of radio propagation, this system consists of multiple cascaded elements,
where each element can be considered as a two-port microwave device and can be character-
ized with its transfer matrix. A transfer matrix method provides a good frequency-domain
description of wave propagation in a cascaded system. This method has been widely used
in optics [1]. It works well if reflections from the element junctions due to mismatch are
small. In this paper, we apply this method to model propagation in HVAC duct system.

The remainder of this paper is organized as follows. Propagation model is explained in
Section 2. Section 3 gives a system example. Comparison with experiment is presented in
Section 4. Section 5 contains conclusions.

2 Propagation model

Consider an arbitrary HVAC duct system shown in Figure 1 with two antennas coupled
into it. An s-th element contained between transmitter and receiver is characterized by its
transfer matrixQ̂s. The compound transfer matrix of the system portion between transmit-
ter and receiver can be written aŝQ = Q̂S Q̂S−1 ... Q̂1. Note that the order of multiplying
transfer matrices is important, and non-diagonal elements of each matrix represent coupling
between different modes. System portions to the left of the transmitter and to the right of
the receiver are described by matricesP̂ andR̂. Reflections from the ends are characterized
by reflection matriceŝF andĜ.
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Figure 1: Transmitting and receiving antennas in an arbitrary duct system.

A transmitting antenna excites waveguide modes, described by a vector of mode amplitudes
~CT . The modes observed at the receiver are related to the modes at the transmitter as
~CR = T̂ ~CT , whereT̂ is the compound transfer matrix of HVAC duct system. This matrix
includes the effects of reflections from system ends (reflections from element junctions are
neglected to keep problem tractable). MatrixT̂ can be found from an infinite series arising
from multiple reflections from the ends:

T̂ =
(
Q̂ + R̂ Ĝ R̂ Q̂ + Q̂ P̂ F̂ P̂ + R̂ Ĝ R̂ Q̂ P̂ F̂ P̂

) (
Î + Υ̂ + Υ̂2 + ...

)
, (1)

whereÎ is the identity matrix and̂Υ = R̂ Ĝ R̂ Q̂ P̂ F̂ P̂ Q̂. If the loads are matched, there
are no reflections from the terminated ends:F̂ = Ĝ = 0 and T̂ = Q̂. The frequency
response between the ports of two antennas coupled into this system can be written as:
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where indicesT andR denote cross-sections of transmitting and receiving antenna respec-
tively, Zo is the impedance of the transmitter and the receiver,Za is the impedance of the
antenna in waveguide,N andM is the number of modes at the transmitter and the receiver
respectively,pn is the normalized power density of moden, Tnm are the elements of the
transfer matrixT̂ , ~en is the normalized electric field of moden, ~J is the current density on
the antenna, and the integration is performed over the antenna surface (or length, in case of
wire antennas). Details of the above derivation can be found in [2].

3 System example

Consider a configuration shown in Figure 2, which consists of cascaded straight sections,
bend, and taper (all cylindrical). This configuration is typical to HVAC duct systems. To
find the transfer matrix of this system, we need transfer matrices for straight sections (P̂ ,
Q̂1, Q̂3, Q̂5, R̂), bend (̂Q2), and taper (̂Q4), as well as reflection matrices (F̂ andĜ). We
give those below, using a notationQnm to denote the elements of each transfer matrix.

Straight sectionsdo not cause coupling between propagating modes. The transfer matrix
that describes a straight section is

Qnm = e−γnLsδnm , (3)

whereγn is the complex propagation constant of moden, Ls is the length of the straight
section, andδnm is the Kronecker delta.
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Figure 2: Example HVAC system.

Bendsare well known in microwave and optical engineering and can be modelled rigor-
ously [3], but the solution is usually rather complicated. A simplified transfer matrix for
bend can be found by treating bend as a section of toroid. The complex propagation con-
stant in a bendγB

n can be expressed via cutoff wavenumbers of toroid eigenmodes, which
are well known [4]. Neglecting mode conversion effects in a gentle bend (a/R < 1) allows
bend transfer matrix can be written as:

Qnm = e−γB
n Rφδnm , (4)

whereφ is the angle of the bend andR is its center radius.

Taperscan be treated as cylindrical waveguides with a changing radius [5], if the change in
radius is gentle:|a− b|/L < 1. Enforcing a power conservation (to relate mode amplitudes
on input and output) and averaging the waveguide propagation constant over the taper radius
(to obtain an equivalent propagation constant in taperγT

n ) allows a taper transfer matrix to
be written as

Qnm = a2b−2
√

βa
n/βb

n e−γT
n Ltδnm , (5)

whereβa
n, βb

n are propagation constants in waveguides with diametera andb, andLt is the
taper length.

Reflectionsfrom open ends are small in multimode waveguides. Reflection matrices can
be written asFnm = Fδnm andGnm = Gδnm, where reflection coefficients are assumed
to be the same for all modes.

4 Comparison with experiment

To verify the model for system shown in Figure 2, we used network analyzer to experi-
mentally measure frequency responses in the 2.4-2.5 GHz band between 3.1 cm monopole
probes coupled into this system. Other system parameters were:a = 15.25 cm, b = 7.63
cm, L1 = 0.45 m, L2 = 2.6 m, R = 45.75 cm, φ = 90o, L3 = 3.05 m, Lt = 0.16
m, L4 = 2.6 m, L5 = 0.45 m, F = G = 0. Figure 3 shows theoretical and experi-
mental frequency responses. It can be seen that the curves are in reasonable agreement.
The theoretical curve reproduces major minima observed in the experiment. Variations are
caused by reflections from open ends, back-scattering from bend and taper junctions, and
imperfections of ducts, which are not precision waveguides.
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Figure 3: Theoretical and experimental frequency responses between antennas coupled into
the system shown in Figure 2 with parameters given in Section 4.

5 Conclusions

In this paper, we applied the transfer matrix method to modelling propagation in complex
cascaded multimode waveguide networks (HVAC duct systems) and demonstrated that ex-
perimental results confirm theoretical predictions. This method is an attractive approach
to efficient modelling of propagation in duct systems, where back-scattering from element
junctions can be neglected. The accuracy of this method depends on the accuracy of transfer
matrices used to model individual network elements.
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