
1

Middleware, Fault-Tolerance and the Magical 1%
A Study of Unpredictability

Tudor Dumitraş, Student Member, IEEE, and Priya Narasimhan, Member, IEEE

�

Abstract—We present an extensive empirical study of unpredictability
in 16 distributed systems, ranging from simple transport protocols to
fault-tolerant, middleware-based enterprise applications, and we show
that the inherent unpredictability in these systems arises from a magical
1% of the remote invocations. In the normal, fault-free operating mode
most remote invocations have a predictable end-to-end latency, but the
maximum latency follows unpredictable trends and is comparable with
the time needed to recover from a fault. The maximum latency is not
influenced by the system’s workload, cannot be regulated through con-
figuration parameters and is not correlated with the system’s resource
consumption. The high-latency outliers (up to three orders of magnitude
higher than the average latency) have multiple causes and may originate
in any component of the system. However, after selectively filtering
1% of the invocations with the highest recorded response-times, the
latency becomes bounded with high statistical confidence (p < 0.01).
We have verified this result on different operating systems (Linux 2.4,
Linux 2.6, Linux-rt, TimeSys), middleware platforms (CORBA and EJB),
programming languages (C, C++ and Java), replication styles (active
and warm passive) and applications (e-commerce and online gaming).
Moreover, this phenomenon occurs at all the layers of middleware-based
systems, from the communication protocols to the business logic. The
magical 1% suggests that, while the emergent behavior of middleware
systems is not strictly predictable, enterprise applications could cope
with the inherent unpredictability by focusing on statistical performance-
indicators, such as the 99th percentile of the end-to-end latency.

1 INTRODUCTION

MODERN distributed systems are perhaps some of
the most complex structures ever engineered. To-

gether with their undisputed benefits for human society,
their complexity has also introduced a few side-effects,
most notably the inherent unpredictability of these sys-
tems and the increasing tuning and configuration burden
that they impose on their users. These two problems
are related because an effective tuning is rendered more
difficult if the outcomes of configuration actions are hard
to predict. How to design dependable systems in spite of such
inherent unpredictability remains an open question.

Conventional wisdom about enterprise applications
using commercial-off-the-shelf (COTS) components is
that well-designed middleware systems provide suffi-
cient predictability when running on top of certain real-
time operating systems. Fault-tolerant (FT) middleware,

∙ T. Dumitraş and P. Narasimhan are with the Department of Electrical
& Computer Engineering, Carnegie Mellon University, Pittsburgh, PA,
15213.
E-mail: tudor@cmu.edu and priya@cs.cmu.edu

used in the most critical enterprise and embedded ap-
plications, encounters even higher predictability expec-
tations. Faced with a multitude of specialized config-
uration options—some of which demand an in-depth
understanding of FT semantics1—practitioners often sus-
pect that unpredictable behavior is caused by misconfig-
uration, rather than fundamental reasons. We naturally
expect that faults, which are inherently unpredictable,
will have a disruptive effect on the performance of the
system. Moreover, we show that even in the fault-free case
it is hard, and usually impossible, to enforce any hard bounds
on the end-to-end latency of CORBA or EJB applications with
replicated servers.

Existing approaches for the autonomic management
of computer systems [2–7], including both commercial
products and research prototypes, focus on predicting
and tuning the average system behavior and do not
address the residual unpredictability of well-configured,
replicated servers in the normal, fault-free operating
mode. In this paper, we test the hypothesis that the
worst-case behavior of FT middleware is not truly ran-
dom and that the fault-free unpredictability has natu-
ral limitations that can be leveraged when designing
complex distributed systems. We conduct three separate
studies. To assess the predictability of real-world mid-
dleware, we analyze black-box measurements of 5 mid-
dleware systems and 4 communication protocols, col-
lected at Lockheed Martin’s Advanced Technology Labs
(henceforth called the ATL trace). To study unpredictabil-
ity in depth, we present a controlled experiment trying
to achieve a predictable configuration of the MEAD mid-
dleware [8]—which we had built, previously—where we
dissect the sources of unpredictability through white-
box monitoring of the system’s components (henceforth
called the MEAD trace). To analyze the impact of design
and implementation on the unpredictability of the re-
sulting system, we present a programming experiment
where we perform gray-box comparisons of 7 CORBA
and EJB applications—developed independently, under

1. For instance, the FT CORBA standard [1] specifies ten low-
level parameters for tuning the replication mechanisms: replication
style, membership style, consistency style, fault-monitoring style, fault-
monitoring granularity, location of factories, initial number of replicas,
minimum number of replicas, fault-monitoring interval and timeout,
and checkpoint interval.

2

Table 1
Summary of findings.

Finding Implications

Unpredictability of Real-World Middleware: The ATL Trace (Section 4)
I. The maximum latency of middleware systems does not follow a visible trend,

and can be three orders of magnitude higher than the mean latency.
We cannot establish hard bounds for the end-to-end
latency of middleware systems.

II. The relative size of the highest response times and the number of high-
latency requests are negatively correlated.

The fault-free unpredictability is due to a few large
outliers.

III. The 99th percentile of the end-to-end latency is at most one order of
magnitude higher than the mean and is correlated with the workload and
the environmental conditions.

The fault-free unpredictability of real-world middle-
ware is limited to 1% of the remote invocations. The
99th latency percentile is predictable.

Sources of Fault-Free Unpredictability: The MEAD Trace (Section 5)
IV. The maximum latency cannot be regulated by adjusting the workload or the

FT configuration, and it is not correlated with system-level metrics such as
the time spent in kernel mode, the page faults or the size of the resident set.

Unpredictability cannot be eliminated by carefully
tuning the system.

V. The latency outliers may originate in any layer of the middleware stack. The maximum latency is inherently unpredictable.

Impact of Design and Implementation on Unpredictability: The FTDS Trace (Section 6)
VI. The latency of middleware-based applications exhibits considerable variabil-

ity, and infrastructure-level design choices, such as the middleware platform
or the replication style, do not account for the fault-free unpredictability.

It is unlikely that the fault-free unpredictability can
be eliminated by focusing only on the middleware
infrastructure.

VII. For enterprise applications with stateless middle tiers, the maximum fault-
free latency is often comparable with the recovery time after crash faults.

The recovery time is not critical, as comparable out-
ages are expected to occur during normal operation.

our supervision, during the “Fault-Tolerant Distributed
Systems” course at Carnegie Mellon University-–and we
correlate their fault-free and fault-induced unpredictabil-
ity with programming practices (henceforth called the
FTDS trace).

For all 2402 system configurations examined, we find
a statistically-significant (p < 0.01) result that the 99th

percentile of the end-to-end latency is at most one order
of magnitude larger than the mean latency. We call
this phenomenon the “magical 1%”: the unpredictability
of COTS-based FT middleware is limited to at most 1% of
the remote invocations. This result suggests that, while
strict predictability is hard to achieve in FT-middleware
using COTS components, developers of fault-tolerant
applications could focus instead on providing quality-
of-service (QoS) guarantees for statistical measures such
as the 99th latency percentile.

Contributions. To the best of our knowledge, while
related work has focused on evaluating the performance
of fault-tolerant systems, this is the first broad empirical
study (covering 16 different systems) to study the pre-
dictability of fault-tolerant middleware under fault-free
and fault-induced conditions. In our study, we follow
the old paradigm of empirical science stating that an
experimentally-derived scientific law must necessarily
be simpler than the data it tries to describe [9]. Con-
sequently, our goal is to establish pragmatic rules for
handling and reasoning about unpredictability, rather
than to develop detailed regression models for the la-
tency of the systems under examination. We find exten-
sive evidence that middleware systems have unbounded
latencies, owing to a few large outliers that have various
causes and that may originate in any component of the
system. This is not the result of an anomaly and is

the normal, expected behavior of such complex systems,
in the absence of faults and despite using the best
components available. Furthermore, we show that, for all
the applications and configurations examined, removing
a “magical 1%” of the highest recorded latencies yields
predictable latency profiles. Our detailed findings are
summarized in Table 1.

Section 3 explains the design of our experiments and
introduces the statistical tools that we use to analyze
the collected data. We present our empirical study in
Sections 4–6, and we summarize the results in Section 7.
In Section 8 we discuss the implications of the magical
1% effect for designing fault-tolerant distributed sys-
tems, and in Section 9 we review the related work. The
Appendix contains supplemental material.

2 PROBLEM STATEMENT AND GOALS
Middleware [10] is a layer of software (e.g., CORBA,
EJB, .NET) residing between an application program and
the underlying operating system, network or database.
Its goals are to help in transparently enforcing the sep-
aration of concerns between the functional and non-
functional aspects of the application, to facilitate the
portability across different platforms and to provide
useful horizontal services (e.g., directory look-up, se-
curity, transactions). Middleware allows distributed ap-
plications to make remote procedure calls (RPC), ab-
stracting away the platform and protocol specific details
for network programming. Additionally, fault-tolerant
(FT) middleware [11] aims to provide transparency with
respect to component failures, through mechanisms for
recovery and replication. For example, FT middleware
tolerates hardware failures by replicating the application
on multiple physical hosts, using techniques such as
active or passive replication [12, 13].

3

Client Replicated Server

Application

execute
invoke return

Network

Operating System

Agreement
send recvsend recv

deliverbroadcast deliverunicast

FT Middleware

Communication

Figure 1. Anatomy of a remote procedure call. Some layers might be
absent or might be collapsed into a single layer in particular implementa-
tions. Conversely, FT middleware systems might include additional com-
ponents (e.g., naming services, fault detectors, recovery managers),
which are not invoked frequently during fault-free executions. There may
also be additional tiers, e.g., caching proxies between the clients and the
business logic or databases in the back-end.

Figure 1 shows an idealized model of FT middleware.
An RPC call traverses several layers of software, devel-
oped independently and optimized for the common case
among a wide variety of workloads. The middleware
layer marshals the invocation parameters, broadcasts
them to the replicated servers, collects the replies and
provides the return value to the client application. The
communication among physical hosts is implemented
using the Internet’s transport protocols (e.g., TCP [14]) or
using group-communication protocols (e.g., Spread [15],
which enables reliable broadcasts and ordered deliver-
ies of messages among a group of processes). Because
middleware-based systems are assembled from multiple
COTS components, the unpredictability can originate
in any layer of the system. Moreover, the operations
performed by one layer might dominate the end-to-end
latency, hiding the unpredictability of the other layers.

Reportedly, the maximum end-to-end latency of
CORBA and FT-CORBA middleware can be several
orders of magnitude larger than the mean values and
might not follow a visible trend [16, 17]. However, most
of these findings have yet to be validated with exten-
sive experimental or field data; for instance, it remains
unclear if this unpredictability can be eliminated by fine-
tuning the system. Our first goal in this paper is to
reexamine the conventional wisdom that well-designed
middleware systems behave in a sufficiently predictable
manner by assessing the predictability of real-world
middleware. We evaluate just how much predictability
we can obtain by carefully choosing a good configura-
tion of FT middleware components (operating system,
middleware, group communication protocols and repli-
cation mechanisms). We conduct these experiments in
a local-area network (LAN) setting to emphasize that
unpredictability in FT middleware occurs even without
the (expected) asynchrony of wide-area networks.

Our second goal in this paper is to assess the feasibility

of autonomic management for enterprise applications by
investigating the root causes of unpredictability and by
formulating a practical rule for identifying the inherent
unpredictability in the absence of faults. Aside from
its statistical significance, we impose two additional
requirements for this rule to be useful in practice:

∙ The rule must be broadly applicable to different sys-
tems, configurations, workloads and environments;

∙ The rule must be simple and easy to apply.
The second point is important because middleware sys-
tems incorporate complex mechanisms for adapting to a
wide range of workloads and environmental conditions.
We must therefore separate the inherent unpredictability
from the effects of these mechanisms.

These empirical findings teach us important lessons
about the behavior of complex, COTS-based distributed
systems. Therefore, a meta-goal of this paper is to discuss
the implications of inherent unpredictability and its lim-
itations for the design and management of dependable
enterprise systems.

In this paper, we also have some non-goals:
∙ We do not create complete behavioral profiles for

each of the systems examined;
∙ We do not characterize the fault-induced unpre-

dictability;
∙ We do not test the validity of our rule for systems

co-located on the same physical host or systems
communicating across wide-area networks.

Hypothesis. We test the following hypothesis:

The inherent unpredictability of FT middleware has
natural limitations, which can be exploited when
designing dependable enterprise systems.

We consider that a system is unpredictable when it
behaves according to one of the following three criteria
(formalized in Appendix A.1):

C1 The maximum latency is too large, compared with
most of the other requests. Specifically, we an-
alyze latencies that are more than one order of
magnitude larger than the mean latency.

C2 The latency profile includes too many requests
with a high response time. Specifically, we es-
timate the number of requests that exceed the
mean latency by more than 3 standard deviations
(the 3σ test [18]).

C3 The latency is not influenced by configuration
parameters or by the environment. Specifically,
we perform an analysis of variance (ANOVA [18])
to determine the correlation between these pa-
rameters and the end-to-end latency.

3 EXPERIMENTAL METHODS

We compare the end-to-end (client-side) latency of 12
middleware and FT middleware systems—Java RMI,

4

JacORB, TAO, MEAD, JBoss and seven middleware-
based applications—and of their underlying communi-
cation protocols—UDP, TCP, SCTP and Spread. These
systems and protocols are described in more detail in
Sections 4–6. We measure their mean, 99th percentile and
maximum latency.

We combine three experimental traces, ATL, MEAD
and FTDS, which have been collected independently.2

The ATL Trace (Section 4) contains black-box measure-
ments of 9 systems, allowing us to assess the predictabil-
ity of real-world middleware. In the MEAD trace (Sec-
tion 5), we instrument a state-of-the-art FT middleware,
MEAD, and we collect white-box observations in order
to investigate the root causes of unpredictability. The
FTDS trace (Section 6) was collected during a program-
ming experiment, where the students of a graduate-level
university course have designed and evaluated 7 fault-
tolerant, middleware-based applications. While these ap-
plications range from e-commerce to online gaming,
their design started from a common system architecture,
which allows us to make gray-box comparisons and to
assess the impact of design and implementation practices
on unpredictability.

The systems covered by these three traces are closely
related: the MEAD middleware (ATL and MEAD traces)
uses the TAO object-request broker and the Spread
group-communication protocol (ATL trace), while most
of the middleware-based applications (FTDS trace)
rely on the JBoss application server (ATL trace). This
analysis—encompassing all the layers of the middle-
ware stack (see Figure 1), evaluated both in isolation
and when combined into a coherent system—provides
deeper insights into the sources and limitations of un-
predictability. Furthermore, as each of the three traces
is likely to emphasize different system behaviors, com-
bining these datasets allows us to provide a better
coverage of unpredictability than previous studies. For
example, the ATL and MEAD experiments use micro-
benchmarks, designed to provide full testing coverage of
the middleware features, while the FTDS experiments
use macro-benchmarks, with realistic workloads exercising
the business logic of their corresponding applications.
The MEAD and ATL systems are two-tier, client-server
applications. The FTDS applications use three tiers: the
clients, which issue requests, the middle-tier servers,
which implement the application’s business logic, and
the back-end database, which stores the persistent data.

3.1 Design of Experiments
We conduct controlled experiments by changing a single
configuration parameter at a time, while making a rea-
sonable effort to keep the remaining settings identical.
There are no additional loads on the processors and no

2. The ATL trace is available at http://www.atl.lmco.com/
projects/QoS, while the MEAD and FTDS traces can be downloaded
from http://www.ece.cmu.edu/~tdumitra/FT_traces. Prelim-
inary, non-comparative analyses of the MEAD and FTDS traces have
been published as [19] and [20], respectively.

extra traffic on the network, in order to avoid interfer-
ence with the experiments. Except for Section 6.2, all our
results were recorded in the absence of faults.

The data from the ATL trace corresponds to client-side
measurements, which do not affect the observed latency.
In the MEAD trace, most data represents client-side mea-
surements; we conduct a separate set of experiments for
assessing the contribution of each server-side component
to the overall unpredictability (Section 5.2). In the FTDS
trace, we use only two server-side probes. Because of
these precautions, it is unlikely that our instrumentation
biases the results presented in this paper. Some systems
(e.g. MEAD) are examined in two different experimental
traces and produce similar outcomes, which confirms the
repeatability of our results.

Impact of environmental conditions. We assess the en-
vironmental impact on the system unpredictability by
conducting experiments in a wide variety of testbeds.
The ATL experiments employ several operating systems:
Linux 2.4 (minor versions 2–20), Linux 2.6 (minor ver-
sions 8–23), Linux-rt3 (patches rt1–rt17) and TimeSys
3.1.4 In the MEAD trace we also use TimeSys 3.1, and in
the FTDS trace we use SUSE Linux (kernel 2.6). These
experiments use a variety of hardware configurations,
with CPUs ranging from Pentium III running at 850 MHz
to 64-bit dual-core Xeon running at 3.0 GHz, and with
100 Mbps or 1 Gbps LANs (see Appendix A.1 for details).

Impact of FT configurations. We assess the effect of
two configuration options for the FT mechanisms: the
replication style (MEAD and FTDS traces) and the repli-
cation degree (MEAD trace). In the MEAD trace, we
test each system configuration using both the active
and the warm-passive replication styles;5 for each FTDS
application, the replication style is a static design choice.
We use up to 3 server replicas in the MEAD trace and 2
server replicas in the FTDS trace.

Impact of workloads. We assess the impact of the
workload by varying the message payload (ATL, MEAD
and FTDS traces), the number of clients (MEAD and FTDS
trace) and the request rate (MEAD and FTDS traces). We
use payloads between 3 bytes – 4 MB. We use up to 22
clients in the MEAD trace and up to 10 clients in the
FTDS trace. We induce different request rates by varying
the “think time” between invocations.

Impact of faults. Finally, we compare the fault-free
unpredictability with the recovery time needed after a
crash fault (MEAD and FTDS traces). We inject faults by
periodically crashing and restarting a server replica.

3. Linux kernel patched to enable preemptibility (http://www.
kernel.org/pub/linux/kernel/projects/rt/).

4. Linux-based commercial operating system, with a fully-
preemptible kernel, protection against priority inversion, O(1)
task-scheduling complexity, and millisecond timer granularity.

5. In warm-passive (primary-backup) replication [13], one replica is
actively processing requests while several backups are waiting to take
over after a fault. In active (state-machine) replication [12], all the replicas
accept and process the same requests, and the system tolerates faults
as long as at least one replica remains functional.

5

Table 2
Systems evaluated in the ATL, MEAD and FTDS traces.

Experimental Programming Latency range
configurations System type language Faults tolerated Mean latency Full range

ATL Trace (Section 4)
UDP [14] 89 Message-oriented transport protocol C — 47–832 µs 37 µs–11.6 ms
TCP [14] 423 Message-oriented transport protocol C, Java message loss 54 µs–35.9 ms 42 µs–209.9 ms
SCTP [21] 9 Message-oriented transport protocol C message loss, single link-failure 260–469 µs 251–879 µs

Spread [15] 60 Message-oriented group communication C message loss, node or link fail-
ure, network partition 0.3–8.3 ms 0.3–2014.5 ms

Java RMI [22] 30 Distributed-object middleware Java message loss 0.4–9.3 ms 0.4–118 ms
JacORB [23] 60 Distributed-object middleware (CORBA) Java message loss 0.2–8.4 ms 0.1–372.9 ms
TAO/TCP [24] 103 Distributed-object middleware (CORBA) C++ message loss 87 µs–9.5 ms 75 µs–16.4 ms
TAO/SCTP [24] 9 Distributed-object middleware (CORBA) C++ message loss, single link-failure 607–894 µs 595–1571 µs

MEAD [8] 68 Distributed-object middleware (CORBA) C++ message loss, node or link fail-
ure, network partition 1–12.5 ms 0.8–2014.1 ms

JBoss [25] 15 Component middleware (EJB) Java message loss 0.7–2.4 ms 0.6–328.2 ms

MEAD Trace (Section 5)

MEAD [8] 1200 Distributed-object middleware (CORBA) C++ message loss, node or link fail-
ure, network partition 2–675 ms 1.7–5800 ms

FTDS Trace (Section 6)
1: Su-Duel-Ku 48 Enterprise application (EJB based) Java message loss, single node-failure 10–77 ms 4–1890 ms
2: Blackjack 48 Enterprise application (EJB based) Java message loss, single node-failure 7–54 ms 4–3322 ms
3: FTEX 48 Enterprise application (EJB based) Java message loss, single node-failure 48–697 ms 32 ms–13.5 s
4: eJBay 48 Enterprise application (EJB based) Java message loss, single node-failure 15–125 ms 3 ms–189 s
5: Mafia 48 Enterprise application (EJB based) Java message loss, single node-failure 23–157 ms 8–1259 ms
6: Park’n Park 48 Enterprise application (CORBA based) Java message loss, single node-failure 3–7 ms 1.5–236 ms
7: Ticket Center 48 Enterprise application (CORBA based) Java message loss, single node-failure 61–1018 ms 10 ms–125.6 s

3.2 Data Summary

Table 2 summarizes our experiments. The systems from
the ATL, MEAD and FTDS traces cover a broad spectrum
of latency profiles.

4 REAL-WORLD UNPREDICTABILITY:
THE ATL TRACE

The ATL trace contains observations from 866 config-
urations of 4 communication protocols and 5 middle-
ware systems. Most experiments focus on the Inter-
net’s transport protocols [14]—the User Datagram Protocol
(UDP) and the Transmission Control Protocol (TCP)—
which are widely used for sending data between two
physical hosts. The Stream Control Transmission Pro-
tocol (SCTP) [21] is a newer transport protocol, which
can be configured to use two parallel connections be-
tween endpoints and to fail-over transparently if one
of the redundant connections is lost. Spread [15] is a
package of group-communication protocols, which enforce
extended virtual synchrony (EVS) [26] among two or
more physical hosts. This model mandates that the same
events (application messages or membership changes)
are delivered in the same order at all of the nodes of
the distributed system, despite lost messages or node
and link crashes. These communication protocols are
message-oriented and do not have RPC semantics.

Middleware systems rely on one or several of these
protocols for initiating remote invocations (see Figure 1).
Java RMI [22], JacORB [23], TAO [24] and MEAD [8]
are distributed-object middleware systems, which facilitate

the development of distributed, object-oriented applica-
tions by providing location transparency (the methods
of remote and co-located objects are invoked in similar
ways). Java RMI allows communicating with remote
Java objects, while JacORB, TAO and MEAD imple-
ment the Common Object Request Broker Architecture
(CORBA), which can connect software components writ-
ten in different programming languages; for instance,
JacORB uses Java, while TAO uses C++. MEAD, de-
scribed in more detail in Section 5, enhances TAO by
transparently providing fault-tolerance to legacy CORBA
applications. JBoss [25] implements the Enterprise Java
Beans (EJB) architecture for component middleware. In this
architecture, components implement the business logic
of the application, while an application container (e.g.
JBoss) assembles and configures the final application
by deploying its components and by configuring the
connections among them. All these systems rely on the
TCP protocol, with the exception of TAO—which can be
configured to use either TCP or SCTP—and MEAD—
which uses Spread.

4.1 Fault-Free Unpredictability
Figure 2a shows the high discrepancy between the
mean6 and maximum latency recorded in the ATL trace.
It is hard to find a correlation between these two met-
rics, especially because the maximum values seem to
be randomly high. For most systems from the ATL
trace, the maximum latency is 2–3 orders of magnitude

6. The highest mean latency from the ATL trace was recorded for
TCP, in the only experiment that used message payloads up to 4 MB.

6

200 400 600 800

Experiment

La
te

nc
y

[µµ
s]

102

103

104

105

106
Maximum latency
Mean latency

(a) Before.

200 400 600 800

Experiment

La
te

nc
y

[µµ
s]

102

103

104

105

106
99% latency
Mean latency

UDP (C)UDP (C)UDP (C)UDP (C)UDP (C)UDP (C)

TCP (C & Java)TCP (C & Java)TCP (C & Java)TCP (C & Java)TCP (C & Java)TCP (C & Java)

SCTPSCTPSCTPSCTPSCTPSCTP

Spread, v. 3.17.3–4.0Spread, v. 3.17.3–4.0Spread, v. 3.17.3–4.0Spread, v. 3.17.3–4.0Spread, v. 3.17.3–4.0Spread, v. 3.17.3–4.0

Java RMI, v. 1.3.1–1.5Java RMI, v. 1.3.1–1.5Java RMI, v. 1.3.1–1.5Java RMI, v. 1.3.1–1.5Java RMI, v. 1.3.1–1.5Java RMI, v. 1.3.1–1.5

JacORB, v. 1.4–2.2JacORB, v. 1.4–2.2JacORB, v. 1.4–2.2JacORB, v. 1.4–2.2JacORB, v. 1.4–2.2JacORB, v. 1.4–2.2

TAO, v. 1.2.3–1.5.1TAO, v. 1.2.3–1.5.1TAO, v. 1.2.3–1.5.1TAO, v. 1.2.3–1.5.1TAO, v. 1.2.3–1.5.1TAO, v. 1.2.3–1.5.1

MEADMEADMEADMEADMEADMEAD

JBoss 4.0.5JBoss 4.0.5JBoss 4.0.5JBoss 4.0.5JBoss 4.0.5JBoss 4.0.5

(b) After.

Figure 2. The “haircut” effect of removing 1% of the end-to-end latency outliers in the ATL trace. The experiments are
sorted by the mean latencies recorded, and (b) indicates the range of experiments covering each system.

higher than the mean latency (note the logarithmic scale
on the Y-axis of Figure 2a). The maximum latency is
unpredictable, according to Criterion C1. After removing
1% of the highest recorded latencies in each experiment,
we get the “haircut” effect displayed in Figure 2b: the
randomness seems to disappear, and the 99th percentiles
do not deviate significantly from the mean values.

Finding I: The maximum latency of communication
protocols and middleware systems does not follow a
visible trend, and can be three orders of magnitude
higher than the mean latency.
Implications: We cannot establish hard bounds for the
end-to-end latency of middleware systems, even in
the absence of faults.

The difference between the maximum latency and
the 99th percentile suggests that the unpredictability is
due to a few large outliers. We now investigate how
many such outliers are recorded in each experiment
(Criterion C2). Figure 3 shows that, in most of the 866

Number of outliers

P
ro

ba
bi

lit
y

de
ns

ity

0% 5% 10% 15%

0.0

0.2

0.4

0.6

0.8

Figure 3. Distribution of outlier counts.

experiments from the ATL trace, fewer than 1% of the
recorded latencies are considered outliers, according to
the 3σ test. Even fewer requests incur the pathologically-
high latencies illustrated in Figure 2. Figure 4 shows that,
among all experiments, the relative size of the largest
outliers (C1) is negatively correlated with the outlier
count (C2).

Finding II: The size and the number of outliers are
negatively correlated.
Implications: The fault-free unpredictability is caused
by a few large-latency outliers.

In order to interpret these findings in the context of the
entire ATL trace, we evaluate the impact of the workload
and of the environmental conditions on each system’s
unpredictability (C3). The analysis of variance confirms
that the mean latency recorded depends on the system:
for UDP, TCP and SCTP, it is on the order of hundreds
of microseconds, while for Spread and the 5 middleware
systems it is on the order of milliseconds. Moreover, the
mean latency depends on the experimental testbed and
it increases linearly with the message payload (result
significant with p = 0.001).

The results are subtly different for the maximum la-
tency, which depends on the system and on the testbed,
but not on the message payload. This suggests that,
while the systems from the ATL trace do have different
latency profiles, their maximum latencies are unpre-
dictable (C3). Similarly, the experimental testbed and the
system, but not the payload, have a significant impact on
the number of 3σ outliers.

4.2 The Magical 1%

While the maximum latency is unpredictable, we explore
the effect of removing just 1% of the highest measured
latencies in each configuration. This is equivalent to
assessing the predictability of the 99th percentile.

7

Number of outliers

0% 5% 10% 15%

0

1000

2000

3000

4000

R
el

at
iv

e
si

ze
 o

f o
ut

lie
rs

 (
m

ax
/m

ea
n)

Figure 4. Counts and sizes of outliers.

In the ATL trace, the 99th latency percentile is at most
15× larger than the maximum latency. This indicates
that the 99th percentile is predictable according to C1.
Moreover, the 99th percentile closely follows the trend of
the mean latency, with a correlation coefficient r = 0.82.
Like the mean latency, the 99th percentile depends on the
system and the experimental testbed, and it increases
linearly with the message payload. ANOVA identifies
these parameters as the main sources of variability,
which indicates that the 99th percentile is predictable
according to C3. By eliminating a “magical 1%” of the
highest recorded latencies, we have removed the fault-
free unpredictability from the ATL trace.

Finding III: The 99th percentile of the end-to-end
latency is at most one order of magnitude higher than
the mean and is correlated with the workload and the
environmental conditions.
Implications: The fault-free unpredictability of real-
world middleware is limited to 1% of the remote in-
vocations. The 99th latency percentile is predictable.

Additional results are included in Appendix A.2.

5 SOURCES OF UNPREDICTABILITY:
THE MEAD TRACE
The ATL trace shows that the maximum latency of real-
world middleware is unpredictable, for a wide range
of systems and environmental conditions, but it does
not elucidate the mechanisms that produce this unpre-
dictability. We would like to know, for instance, if all
the high-latency outliers have a common cause and if
we can eliminate the unpredictability by carefully tuning
the system. We therefore focus on a single system, and
we investigate whether we can achieve a predictable
configuration by employing some of the best open-
source components available and by exhaustively ex-
ploring the configuration-parameter space. We analyze
the unpredictability of the Middleware for Embedded
Adaptive Dependability (MEAD), one of the most com-
plex systems evaluated in the ATL trace. Our intimate

Client

CORBA
Client

Interface to application / CORBA
(modified system calls)

Client

CORBA

MEAD

MEAD
Client

CORBA

MEADServerClient

Tunable mechanisms

Replication

style

replicas

Group Communication

CORBA

MEAD

CORBA

MEAD
Replicated

state

Interface to Group

Communication

Group Communication

Host OS Host OS
Network

Figure 5. The architecture of MEAD.

knowledge of this system, which we have designed
and implemented, also allows us to study in-depth
the sources of the fault-free unpredictability and of the
magical 1%.

The MEAD system [8], illustrated in Figure 5, is an
extension of the FT CORBA standard [1]. MEAD pro-
vides transparent, tunable fault-tolerance to distributed
middleware applications. The system uses library inter-
position [27] for transparently intercepting and redirect-
ing system calls, and includes a fault-tolerance advisor,
whose task is to identify the most appropriate config-
urations (including the replication style and number
of replicas) for the current state of the system. MEAD
supports CORBA applications that use the TAO real-time
ORB (v. 1.4) [24], which provides excellent mean latency,
compared with other middleware systems (see Table 2).
MEAD implements both active and passive replication,
relying on the Spread (v. 3.17.3) group communication
toolkit [15] to enforce the EVS guarantees. We carefully
tune Spread’s timeouts for our networking environment,
to provide fast, reliable fault detection and consistent
performance. We configure the Spread daemon with
a real-time scheduling policy in order to avoid any
unnecessary delays in message delivery.

In the MEAD trace, we collect observations for 1200
configurations, in the absence of faults. We conduct
controlled experiments, varying the workload (the pay-
load size, the number of clients, the request rate) and
the FT configuration (the replication style and degree).
Our micro-benchmark achieves between 20 and 4177
requests/s.

5.1 Configuration Predictability

Figure 6 shows the impact of the configuration param-
eters on the latency distributions. F or an increasing
number of clients (Figure 6a), the minimum latencies
are similar, while the average latency, as well as the
latency of most of the samples, increases sub-linearly
with the number of clients (note the logarithmic Y-axis
of the figure). The maximum latency increases as well,
but without revealing a clear trend, and it can be two
orders of magnitude higher than the medians and means
of the corresponding experiments (C1). By varying the
replication parameters and the reply size (Figure 6c), we

8

1 4 7 10 13 16 19 22
10

3

10
4

10
5

10
6

10
7

La
te

nc
y

[µ
s]

clients

(a) Number of clients.

A(1) A(2) A(3) P(1) P(2) P(3)
10

3

10
4

10
5

10
6

10
7

La
te

nc
y

[µ
s]

Replication size (degree)

(b) Replication style and degree.

16 256 4096 16384 65536
10

3

10
4

10
5

10
6

10
7

La
te

nc
y

[µ
s]

Request size [bytes]

(c) Message payload.

Figure 6. The effect of varying one parameter at a time on the end-to-end latency.

also observe that the maximum latency increases and
decreases in an uncorrelated way with respect to the
parameter varied. The mean latency, however, increases
linearly with the message payload.

The very large latencies are seen for only a few
requests. Furthermore, the high-latency outliers seem
to come in bursts, which breaks the defenses of many
fault-tolerant systems that assume only single or dou-
ble consecutive timing-faults. This emphasizes that it is
impossible to isolate and control the unpredictability by
adjusting the parameters of the system configuration.

The experiments with 64 KB payloads produce half of
the outliers recorded in the MEAD trace (C2), but the
size of these outliers is relatively small when compared
to the other cases. As in the ATL trace (Finding II), the
occurrence of very large outliers is negatively correlated
with a high number of outliers.

These results indicate that the replication style, the
replication degree, the number of clients, the request
rates and, up to 16KB, the message payload, do not
influence the number of outliers produced in the MEAD
trace. Increasing the message size to 64 KB intro-
duces large numbers of outliers, perhaps due to the
higher amount of work performed inside the operating-
system kernel for segmenting and re-assembling these
large messages. In general, however, we cannot obtain
bounded maximum latencies by calibrating these con-
figuration parameters.

We try to determine if the unpredictability recorded in
our experiments can be correlated with the behavior of
an operating-system mechanism by comparing number
and size of outliers with various server-side resource-
usage statistics. The server processes are never swapped
out of physical memory and that they generate between
1675 and 1680 major page-faults (requiring a memory
page to be reloaded from disk), because the experiments
are conducted in isolation and the benchmark is very
repetitive in nature.

In the experiments with 16 KB and 64 KB message
payloads, both the client and the server spend around
25% of the time in kernel mode, compared to 10% for
the other cases. However, these execution times do not

indicate the occurrence of unpredictability, as unusually
large numbers of outliers occur only for the 64 KB case.
The minor page-fault rate increases with the number of
clients, and the resident set grows with the payload size,
because of the need to allocate larger memory buffers.
This predictable behavior contrasts the unpredictability
of the end-to-end response times, suggesting that the
virtual memory system is not the source of the overall
recorded unpredictability.

The size and number of outliers seems to be inversely
proportional to the average number of context switches
on the server hosts. Moreover, the clients exhibit the
same trend. The occurrence of context switches can be
explained by the regular OS daemons running on each
host (e.g., sshd), as well as a few network daemons
specific to the Emulab testbed and the daemon of the
Spread group communication system.7 A potential ex-
planation of the negative correlation between context
switches and outliers is that the normal operation mode
of our system is characterized by a large number of
context switches between the program and the Spread
daemon, and that fewer context switches indicate that
one of these processes is blocked (i.e., waiting), which
generates the outliers.

Finding IV: The maximum latency cannot be regu-
lated by adjusting the number of clients, the request
rates or the replication style and degree, and it is
not correlated with system-level metrics such as the
amount of time spent in kernel mode, the number of
page faults or the size of the resident set.
Implications: Unpredictability cannot be eliminated
by carefully tuning the system.

5.2 Sources of Fault-Free Unpredictability

We also examine whether a single module of our system
might be responsible for producing all these outliers.

7. The Spread daemon performs many computationally-intensive
operations in order to enforce the extended virtual synchrony of the
distributed system, using a significant amount of CPU time.

9

Replication
Communication

2.5
× 104

Application
Middleware

p

1.5

2

]

1

La
te

nc
y

[µ
s]

Outlier 1 Outlier 2 Outlier 3 Average
0

0.5

L

Figure 7. The outliers might originate in any layer.

The experimental harness in the MEAD trace is com-
posed of a simple CORBA application (under 100 source
lines-of-code), an object request broker (middleware), a
replication module and a group communication pro-
tocol (Figure 1). Figure 7 presents the breakdown of
the end-to-end latency by components for some of the
outliers observed, as well as for the average latency. We
can see that Outlier 1 originated in the ORB, while the
source of Outlier 3 is the group communication module
(which may be due to either the delay in physical
network medium or to the synchronization overhead for
enforcing the extended virtual synchrony guarantees).
For Outlier 2, the application took 10 times longer than
on average to process the request; although this latency
is small, this is another example of a rare event that
may result in an outlier. These effects are unlikely to
be caused by the operating system’s scheduler, as the
experiments were conducted in isolation, where each
client and server replica had a dedicated host and there
were no other processes competing for the operating
system’s resources.

Finding V: The latency outliers have multiple root
causes.
Implications: The maximum latency is inherently un-
predictable.

Additional results are included in Appendix A.3.

6 IMPACT OF DESIGN AND IMPLEMENTATION:
THE FTDS TRACE

The ATL and MEAD traces illustrate the unpredictability
of middleware and FT middleware systems, but these
experiments were conducted using micro-benchmarks
with response times on the order of milliseconds. In
a complete enterprise application, the latency due to
business-logic operations and to storing the persistent
data in a back-end database might dominate the end-to-
end latency and might mask the unpredictability of the
middleware. Moreover, the systems from the ATL and
MEAD traces are fully operational and do not allow us
to evaluate the impact of the design choices ex post facto.

HOST 1 HOST 2 HOST 3

Fault Detector Fault Detector Fault Detector

Factory Factory Factory

Replication
Manager

Fault
Notifier

Middleware Middleware Middleware

Operating System Operating System Operating System

Server
Replica

Clients
Server Database
Replica Back-end

Server
Replica

Figure 8. Architecture of the FTDS applications.

The FTDS trace contains observations from 336 config-
urations of 7 realistic enterprise applications, developed
during the Spring 2006 (January-May 2006) semester by
the students enrolled in the “Fault-Tolerant Distributed
Systems” (FTDS) graduate class at Carnegie Mellon Uni-
versity. These applications are similar in scope and com-
plexity to other benchmarks widely used for evaluating
middleware systems, such as Pet Store [28], TPC-W [29]
or RUBiS [30], but they cover a wider range of behaviors.

The common architecture of the applications is mod-
eled after the FT CORBA standard [1]. The 7 applica-
tions are described in Table 3. Each application relies
on a middleware platform, either EJB (projects 1–5) or
CORBA (projects 6 and 7). As shown in Figure 8, the
clients connect to a server (middle tier), which performs
all the business-logic processing and uses a MySQL
database in the back-end to store all of the critical state.
Effectively, the middle-tier servers are stateless, which
simplifies their checkpointing and recovery. The middle
tier is replicated for fault-tolerance, using warm-passive
replication (projects 1–6) or active replication (project 7).
A Replication Manager controls the mechanisms used for
replicating the middle-tier servers: it creates the servers,
registers them with either the CORBA Naming Service
or the Java Naming and Directory Interface (JNDI),
maintains a list of available replicas, provides a reference
to a functioning replica for fail-over after a fault and re-
launches the crashed replicas. A Fault Detector monitors
the heartbeats of all the server replicas and notifies the
Replication Manager when a fault occurs. The clients
use the Replication Manager and the Naming Service
to obtain references to the server objects during initial-
ization or during crash-fault recovery. The application
designs assume that the Replication Manager, the Nam-
ing Service and the database never fail. The maximum
request rates for the 7 applications are between 24–1250
requests/s.

6.1 Application Level Unpredictability
This design and implementation processes produced 7
applications that exhibit significant variability among the
latency measurements, with ranges up to 200 ms. The
FTDS applications have widely different latency profiles:
Park’n Park achieves the highest request rates and the

10

Table 3
Characteristics of the 7 applications from the FTDS Trace.

Project Replication Message payloads
(developers) style Description requests / replies

1: Su-Duel-Ku (5) Passive
Allows up to five players to work concurrently on the same board, while the
server ranks the players and determines the winner of each confrontation. Owing
to its original idea, the project was mentioned in a local newspaper [31].

4 b / ≈200 b

2: Blackjack (5) Passive Gaming application, where users play Blackjack online. Users can create online
profiles (stored in the database), place bets and play against the house. ≈30 b / ≈56 b

3: FTEX (5) Passive

Electronic stock exchange (e.g. NASDAQ). Users create online profiles, list the
current orders for a stock and place buy and sell orders (either market-price or
limit); the application matches buy and sell orders automatically. The user profiles
and the details of all the transactions are stored in the database.

≈30 b / ≈50 b

4: eJBay (6) Passive
Distributed auctioning system, similar to eBay. Allows posting items for sale and
bidding for them; the user profiles and the information related to auctions are
stored in the database.

116 b / 98 b

5: Mafia (4) Passive
Online version of the popular “Mafia” game, where users create character
profiles and communicate through instant messaging. The application stores the
persistent state of the game in the database.

≈41 b / 4 b

6: Park’n Park (5) Passive Application for managing parking lots. Keeps track of how many spaces are
available in the lots and recommends alternative locations when a lot is full. 3 b / 4 b

7: Ticket Center (5) Active Online ticketing application for express buses, allowing users to search schedules
and available seats, buy and cancel tickets and check reservation status. ≈16 b / 4 b

lowest average latencies, Su-Duel-Ku has the highest
number of outliers, and eJBay, has both the lowest
number of outliers (0.33%) and longest-running request
(190 s). Four applications, Blackjack, FTEX, eJBay and
Ticket Center, exhibit maximum latencies two orders of
magnitude higher than the average, and one application
(eJBay) produces outliers three orders of magnitude
higher that the average. Project 4 is the only one that
exhibits a significant correlation (r = 0.8) between the
incoming request rates and the number of outliers. The
message payload and the number of clients do not have
an impact on the outliers; maximum sizes of outliers are
comparable for all the values of these parameters.

Figure 9 compares the outlier distributions (C2) for
the seven FTDS applications. It is interesting to note that
applications eJBay and Ticket Center, which have nearly
identical outlier distributions, are based on radically

1
Ticket Center

eJBay

MEAD

0 6

0.8

e
n
s
it
y

MEAD

Park’n Park

0.4

0.6

b
a

b
ili

ty
 D Blackjack

FTEX

Mafia

0.2

P
ro

SuDuelKu

0% 1% 2% 3% 4% 5% 6%
0

Outliers per ExperimentOutliers per Experiment

Figure 9. Distributions of outlier counts.

different technologies: one is an EJB application using
warm-passive replication, and the other is a CORBA
application using active replication. Su-Duel-Ku is the
only application from the FTDS trace that has predictable
(C1) response times, as the maximum latency follows the
same trend as the mean latency.

Finding VI: The latency of middleware-based
applications exhibits considerable variability, and
infrastructure-level design choices, such as the mid-
dleware platform or the replication style, do not ac-
count for the fault-free unpredictability.
Implications: It is unlikely that the fault-free unpre-
dictability can be eliminated by focusing only on the
middleware infrastructure.

With one exception (Park’n Park), all the applications
produce outliers due to either the latency of contacting
the database or to the processing performed withing the
FT middleware. The component responsible for most
of the outliers varies among the seven applications:
for Su-Duel-Ku and Blackjack most outliers originate
in the interactions with the database, while for FTEX
the majority of outliers originate in the middleware.
For Park’n Park, all the outliers recorded originate in
the middleware. This suggests that the application-level
unpredictability confirms Finding V.

Additional results are included in Appendix A.4.

6.2 Comparison with Fault-Induced Unpredictability
We have shown that FT middleware systems have un-
predictable response times even in the absence of faults.
We now compare these random high latencies occurring
during the normal operation mode with time needed to
recover from a crash fault.

11

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

Team

R
ec

ov
er

y
T

im
e

[s
]

Fault Detection & Failover
Fault Detection
Failover
Request Processing
Largest Outlier

13.6 s

(a) Recovery time for FTDS trace.

1 4 7 10 13 16 19 22
0

0.5

1

1.5

2

R
ec

ov
er

y
T

im
e

[s
]

Number of Clients

Average Recovery Time
Largest Fault−Free Outlier

(b) Recovery time for MEAD trace.

Figure 10. Comparison between recovery-time after a crash fault and fault-free outliers.

The developers of the FTDS applications conducted
fault-injection experiments, by provoking 10–20 crash
faults in the middle tier while 1 client was connected.
Based on preliminary observations, the 7 teams opti-
mized their recovery time by maintaining object refer-
ences to all the server replicas and keeping open TCP
connections to these replicas in order to avoid time-
consuming name lookups and the overhead of con-
nection establishment during the fail-over process. In
Figure 10a, we plot the recovery times of the FTDS appli-
cations after this optimization stage; each bar represents
the average round-trip time of the requests issued when
faults are injected. We break down the recovery time
into components corresponding to fault-detection, fail-
over and normal request processing.8

The largest contributor to the recovery time in these
applications is the delay introduced by fault detection.
The fault-induced outliers are significantly higher for
project 4 (eJBay), and they are comparable with the
fault-free outliers for projects 2 (Blackjack), 5 (Mafia)
and 6 (Park’n Park). Project 3, however, has recorded
453 outliers larger than its recovery time; the largest
such outlier (13.6 s) is one order of magnitude higher
than the recovery time. This indicates that, under certain
circumstances, high latencies occurring randomly during
normal operation may have a higher impact on availabil-
ity than the equally-infrequent hardware faults.

We also compare these results with the recovery times
for MEAD, running in active replication mode with
three-way replication and 4 KB reply messages (Fig-
ure 10b). Every 10 seconds, we induce a crash-fault,
and we subsequently restart the crashed server replica,
injecting up to 35 faults during an experiment. The
recovery time seems to increase with the number of
clients, but, for more than 16 clients, we observe a higher
variability and some large recovery-time outliers. We

8. Because this phase of the project was designed as an opportunity
to obtain bonus points, these results are incomplete: teams 1 (Su-Duel-
Ku) and 7 (Ticket Center) did perform fault injection, while team 6
(Park’n Park) lumped together the fault-detection and fail-over times.

can also see that the outliers recorded during the fault-
free experiments with corresponding configurations are
comparable with the recovery times.

Finding VII: For enterprise applications with stateless
middle tiers, the maximum fault-free latency is often
comparable with the time needed to recover from
crash faults.
Implications: It is worth reexamining the cost/benefit
trade-off of optimizing the fail-over process for low
recovery times, as comparable outages are expected
to occur during normal operation.

The low recovery times achieved by these applications
are due to the stateless nature of the replicated servers,
which enables optimizations of the fail-over process.
Enterprise three-tier systems usually store volatile state,
such as sessions or cached content, in the middle tiers,
while keeping their persistent objects in a database.
Because volatile state can be recreated after a fault and
does not need to be synchronized, the low recovery times
reported here are realistic.

7 SUMMARY OF RESULTS

The latency of middleware systems is influenced by
many factors, such as the environmental conditions, the
workload, the functional characteristics of the applica-
tion (i.e., the business logic), the middleware infrastruc-
ture, the fault-tolerance mechanisms, the configuration
parameters, etc. With two exceptions—SCTP, from the
ATL trace, and Su-Duel-Ku, from the FTDS trace—the
maximum latency is unpredictable in all the config-
urations analyzed in our 16-system study. Figure 11
compares these maximum latencies with the confidence
intervals of the 99th percentile latency, for all the sys-
tems evaluated in this paper. The results are strikingly
similar across the ATL, MEAD and FTDS traces:9 with a

9. We exclude Project 5 (Mafia) because we could not compute the
confidence intervals due to the small sample-sizes (100 invocations)
reported.

12

Latency range 99th percentiles Confidence interval

Park'n Park

Ticket Center
ce

144

69

FTEX

eJBay

Mafia

Park n Park

F
T

D
S

 T
ra

c

131

3566

69

MEAD (Passive)

Su-Duel-Ku

Blackjack

ra
ce

190

660

MEAD

JBoss

MEAD (Active)

()

M
E

A
D

 T
r

489

505

1717

Java RMI

JacORB

TAO

MEAD

Tr
ac

e

1717

134

404

234

TCP

SCTP

Spread

Java RMI

A
T

L

1283

3051

Got Predictability? Experiences with Fault-Tolerant Middleware

UDP

Normalized Latency (Latency / Mean latency)

10 20 30 40

244

Figure 11. Bounds for the 99th percentile latency.

statistical confidence level of 99% (i.e. p < 0.01), the 99th

percentile of the latency is at most 25× larger than then mean
latency. This shows that only 1% of the requests issued in
each configuration are responsible for the unpredictable
behavior. By removing this magical 1% we eliminate
the pathologically large end-to-end response times that
render the maximum latency unpredictable.

8 DISCUSSION

Computer systems are not naturally occurring objects.
They are designed and built by human engineers, and
it is difficult to accept that their behavior cannot be
explained by misuse, defects or designer intent. How-
ever, academic and industry experts forecast that the
future ultra-large-scale systems will be characterized
by emergent behaviors, which are not localized to any
component and are difficult to predict using our current
techniques [32]. Such emergent behaviors are best stud-
ied empirically, much in the way we study the natural
sciences. The magical 1% is an example of emergent be-
havior in middleware systems, and our broad empirical
study allows us to answer a number of open questions.

Can we reconcile fault-tolerance and real-time require-
ments? Nearly a decade ago, we postulated the ex-
istence of a fundamental trade-off between the goals
of fault-tolerance (which aims for predictable recovery
from faults) and of real-time (which aims for end-to-
end temporal predictability) [33]. For instance, these
separate goals require different orders of operations, and
the consistency semantics of the data might need to
be traded against timeliness during the composition of

fault-tolerance and real-time. This insight motivated the
initial design of the MEAD system, which enables fine-
grained tuning of these system-level properties.

Comparing the ATL, MEAD and FTDS traces sheds
new light on this trade-off. While fault-tolerant systems
have a higher mean latency, needed to ensure agree-
ment among multiple hosts, the maximum latency is
not necessarily more unpredictable than for the other
systems. However, the agreement phase, which typically
dominates the end-to-end latency, can hide the unpre-
dictability of the other layers. For example, the group
communication protocol accounts for most of the outliers
observed in the MEAD trace. This only happens for high
replication degrees; for instance, for some applications
from the FTDS trace (which use two-way replication) the
main source of unpredictability is the communication
with the back-end database. This suggests that fault-
tolerance mechanisms do not always diminish temporal
predictability, but they might shift the leading source of
latency outliers to a different system component.

Are enterprise applications more predictable than their
building blocks? The communication protocols and
middleware systems from the ATL and MEAD traces
tend to produce larger outliers than the applications
from the FTDS trace (except for project 4, eJBay). This
suggests that, in a complete enterprise application, the
computationally-intensive business logic and the back-
end database can partially mask the unpredictability of
the communication protocols and of the middleware.
Even so, the maximum latency of these applications
might be 2–3 orders of magnitude higher than the
average. This unpredictability cannot be eliminated by
carefully configuring the system, and the only effective
technique for obtaining a predictable latency profile is to
remove 1% of the highest latencies.

Can we achieve strict predictability? Our results might
seem surprising given the fact that many embedded
systems, designed from the ground up, can successfully
enforce hard real-time properties. Therefore, our empir-
ical study encompasses all the layers of the middleware
stack—examined both in isolation and as parts of a
complex system—and tries to pinpoint the sources of
unpredictability in middleware systems. In both MEAD
and FTDS traces we have observed that the typical
source of outliers is system-dependent and that out-
liers might originate in any middleware layer. While
the group communication protocol produces most of
MEAD’s outliers, the middleware and the replication
mechanisms occasionally induce abnormally high laten-
cies as well. Furthermore, the unpredictability is not
confined to a single tier of a distributed application. In
the FTDS trace, the typical source of outliers is either
the database, for projects 1 and 2, or the middle tier, for
projects 3 and 6; the other projects produce outliers that
equally originate in both tiers.

Most likely, this behavior is the result of combining
COTS components which: (i) were not built and tested

13

together, and (ii) were designed to optimize the common
case among a wide variety of workloads, rather than
to enforce tight bounds for the worst-case behavior.
Our broad empirical study shows that unpredictable
maximum latencies are part of the normal behavior for
a diverse group of middleware systems. More research
is needed to eliminate this inherent unpredictability, but
it seems that, presently, fault-tolerant middleware must
cope with such unbounded behavior, which comes in
addition to the unpredictability related to the potential
occurrence of faults.

How can we design systems that cope with the inherent
unpredictability? Existing approaches for the auto-
nomic management of computer systems [2–7] focus on
predicting the average system behavior. Furthermore,
the existence of the magical 1% suggests that statis-
tical predictability is easily achievable in middleware-
based systems. When establishing service-level agree-
ments (SLAs), providers must make informed business
decisions, such as how many new clients they can admit
(before compromising the existing quality of the service),
or what class of service they can reliably deliver (based
on the observed load on the system). We have shown
that latency percentiles can be predicted with high con-
fidence, which enables service-class guarantees based
on such statistical measures. For instance, Amazon.com
provides service-level agreements that focus on the 99.9th

latency percentile [34]. Our research provides a solid
scientific foundation for the engineering choices made
in such Internet-scale infrastructures, which guarantee
percentile-based performance metrics.

This is the magic of the unruly 1%.

What are the limitations of statistical predictability? The
magical 1% hypothesis holds true for different operat-
ing systems (Linux 2.4, Linux 2.6, Linux-rt, TimeSys),
middleware platforms (CORBA and EJB), programming
languages (C, C++ and Java), replication styles (active
and warm passive) and applications. We have tested
this hypothesis in clusters connected with a local-area
network, which is the typical setting for fault-tolerant
middleware systems. Our rule of thumb may not be
effective in environments with high propagation delays,
such as wide-area networks, or with intermittent con-
nectivity, such as wireless networks. Moreover, certain
applications (e.g., embedded real-time systems) will not
be able to rely on percentiles; in such cases, nothing short
of predictable worst-case behavior will be sufficient.

9 RELATED WORK

Anecdotal evidence and recent studies [16, 17] suggest
that the maximum end-to-end latencies of CORBA and
FT-CORBA middleware are usually several orders of
magnitude larger than the average latency and do not
follow a visible trend. However, most of these find-
ings have not been validated with extensive experi-
mental or field data, covering multiple systems and

middleware platforms. Fault-tolerant middleware, such
as MEAD, are often based on the extended virtual
synchrony model [26]. This model mandates that the
same events are eventually delivered in the same order
at all of the nodes of the distributed system, but without
enforcing any timeliness guarantees. Thomopoulos et
al. [35] introduce a stochastic model for latency under
extended virtual synchrony, which predicts long-tailed
probability distributions for the latency of “safe” mes-
sages needed for implementing replication. Gutierrez-
Nolasco et al. [36] present a formal model of the Spread
protocols that MEAD uses for preserving the EVS guar-
antees; however, the model is focused on correctness,
rather than performance predictions. Szentivanyi [37]
presents a performance evaluation of FT middleware
and suggests techniques for improving this performance.

Because of the inherent unpredictability, existing ap-
proaches for the autonomic management of computer
systems [2–7], including both commercial products and
research prototypes, focus on predicting and tuning the
average system behavior. Aguilera et al. focus on debug-
ging the average performance of large-scale distributed
systems by identifying the node-activity patterns that
have a high impact on the mean latency [2]. Narayanan
et al. describe a Resource Advisor for SQL Server 2005,
which can predict the effect of changes in available
buffer-memory or transaction rates on the throughput
and on the average latency [3]. We proposed an approach
called versatile dependability, which provides knobs for
tuning system-level properties rather than internal fault-
tolerance mechanisms. For instance, we demonstrated
a knob that tunes MEAD’s scalability, while enforcing
predefined bounds on the mean latency [4]. Because of
the heterogeneity of COTS-based distributed systems,
Mansour et al. [5] suggest eliminating the performance
dependencies between sub-components by introducing
isolation points that limit and contain the effects of
ill-behaving requests, in order to improve the overall
system predictability. Thereska et al. present a framework
for managing cluster-based storage systems with facil-
ities for predicting the impact of data placement and
encoding choices on throughput and mean response-
time [6]. Dageville et al. present the architecture of
Oracle’s self-tuning solutions, aimed at tuning SQL state-
ments and at improving the overall throughput of the
database [7].

10 CONCLUSIONS

In this paper, we examine the predictability of 16 mid-
dleware systems and communication protocols. By ex-
haustively exploring 2402 configurations of fault-tolerant
middleware systems, we show that unpredictability,
manifesting as unbounded maximum latencies, cannot
usually be eliminated by selecting a good system config-
uration. The end-to-end latencies have skewed distribu-
tions, with maximum values several orders of magnitude
larger than the averages. The number of clients, the

14

replication style and degree or the request rates neither
inhibit nor augment the occurrence of latency outliers.
Middleware-based systems produce such outliers even
in the absence of faults, and the magnitude is compara-
ble with the time needed to recover after a crash fault.

We also present strong empirical evidence of a “mag-
ical 1%” effect: after removing 1% of the highest mea-
sured latencies for each configuration, the resulting la-
tency profile becomes predictable. Moreover, the magical
1% is the only effective rule for isolating the inherent un-
predictability of the systems examined. We show that the
99th percentile of the end-to-end latency closely follows
the trend of the mean and that it can be bounded with a
high statistical confidence. While such percentile-based
guarantees are clearly inappropriate for hard real-time
systems, they can be of immense benefit to enterprise
applications and service providers—which do not focus
on the worst-case behavior of the system but require
quantifiable assurances in the normal operation mode.

ACKNOWLEDGMENTS

The authors would like to thank Gautam Thaker for al-
lowing us to analyze the data from the ATL trace. Thanks
are also due to David O’Hallaron, Asit Dan, Daniela
Roşu, Jay Wylie, Arun Iyengar, Jean-Charles Fabre, and
the 35 students from the Spring 2006 installment of the
Fault-Tolerant Distributed Systems course.

REFERENCES

[1] Object Management Group, “Fault Tolerant CORBA,” Sep 2001,
OMG Technical Committee Document formal/2001-09-29.

[2] M. K. Aguilera et al., “Performance debugging for distributed
systems of black boxes,” in Symposium on Operating Systems
Principles, Bolton Landing, NY, Oct 2003, pp. 74–89.

[3] D. Narayanan, E. Thereska, and A. Ailamaki, “Continuous re-
source monitoring for self-predicting DBMS,” in Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, Atlanta, GA, Sep 2005.

[4] T. Dumitraş, D. Srivastava, and P. Narasimhan, “Architecting and
implementing versatile dependability,” in Architecting Dependable
Systems III, R. de Lemos, C. Gacek, and A. Romanovsky, Eds.
Springer-Verlag, LNCS 3549, 2005, pp. 212–231.

[5] M. Mansour and K. Schwan, “I-RMI: Performance isolation in
service oriented architectures,” in ACM/IEEE/IFIP Middleware Con-
ference, Grenoble, France, Nov/Dec 2005.

[6] E. Thereska et al., “Informed data distribution selection in a self-
predicting storage system,” in International Conference on Auto-
nomic Computing, Dublin, Ireland, Jun 2006.

[7] B. Dageville and K. Dias, “Oracle’s self-tuning architecture and
solutions,” IEEE Data Engineering Bulletin, vol. 29, no. 3, pp. 24–32,
Sep 2006.

[8] P. Narasimhan, T. Dumitraş et al., “MEAD: Support for real-time,
fault-tolerant CORBA,” Concurrency and Computation: Practice and
Experience, vol. 17, pp. 1527–1545, 2005.

[9] G. Leibniz, Discourse on Metaphysics, 1686.
[10] S. Vinoski, “An overview of middleware,” Lecture Notes in Com-

puter Science, vol. 3063, pp. 35–51, Jan 2004.
[11] P. Felber and P. Narasimhan, “Experiences, approaches and chal-

lenges in building fault-tolerant CORBA systems,” IEEE Transac-
tions on Computers, vol. 54, no. 5, pp. 497–511, 2004.

[12] F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM Computing Surveys,
vol. 22, no. 4, pp. 299–319, 1990.

[13] N. Budhiraja, F. Schneider, S. Toueg, and K. Marzullo, “The
primary-backup approach,” in Distributed Systems, S. Mullender,
Ed. ACM Press - Addison Wesley, 1993, pp. 199–216.

[14] W. R. Stevens, UNIX Network Programming, 3rd ed. Addison-
Wesley, 2003.

[15] Y. Amir, C. Danilov, and J. Stanton, “A low latency, loss tolerant
architecture and protocol for wide area group communication,” in
International Conference on Dependable Systems and Networks, New
York, NY, Jun 2000, pp. 327–336.

[16] A. S. Krishna et al., “CCMPerf: A benchmarking tool for CORBA
Component Model implementations,” The International Journal of
Time-Critical Computing Systems, vol. 29, no. 2–3, Mar 2005.

[17] W. Zhao, L. E. Moser, and P. M. Melliar-Smith, “End-to-end
latency of a fault-tolerant CORBA infrastructure,” Performance
Evaluation, vol. 63, no. 4, pp. 341–363, 2006.

[18] National Institute of Standards and Technology, “Engineering
statistics handbook,” http://www.itl.nist.gov/div898/
handbook/index.htm.

[19] T. Dumitraş and P. Narasimhan, “Fault-tolerant middleware and
the magical 1%,” in ACM/IEEE/IFIP Middleware Conference, Greno-
ble, France, Nov/Dec 2005, pp. 431–441.

[20] ——, “Got predictability? Experiences with fault-tolerant middle-
ware,” in ACM/IEEE/IFIP Middleware Conference, Newport Beach,
CA, Nov 2007.

[21] R. Stewart and C. Metz, “SCTP: New transport protocol for
TCP/IP,” Internet Computing, IEEE, vol. 5, no. 6, pp. 64–69,
Nov/Dec 2001.

[22] Sun Microsystems, “Java remote method invocation
specification,” 2004. [Online]. Available: http://java.sun.com/
j2se/1.5/pdf/rmi-spec-1.5.0.pdf

[23] G. Brose, “JacORB: Implementation and design of a Java ORB,”
in Distributed Applications and Interoperable Systems, Cottbus, Ger-
many, Sep/Oct 1997, pp. 143–154.

[24] D. C. Schmidt, D. L. Levine, and S. Mungee, “The design of the
TAO real-time Object Request Broker,” Computer Communications,
vol. 21, no. 4, pp. 294–324, Apr 1998.

[25] M. Fleury and F. Reverbel, “The JBoss extensible server,” in
ACM/IEEE/IFIP Middleware Conference, Rio de Janeiro, Brazil, Jun
2003, pp. 344–373.

[26] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal,
“Extended virtual synchrony,” in IEEE International Conference on
Distributed Computing Systems, Tokyo, Japan, 1994, pp. 56–65.

[27] J. R. Levine, Linkers and Loaders. Morgan Kaufmann Publishers,
2000.

[28] I. Singh, B. Stearns, M. Johnson et al., Designing Enterprise Ap-
plications: Java 2 Platform, 2nd ed., 2002, http://java.sun.com/
blueprints/guidelines/.

[29] D. Menascé, “TPC-W: A benchmark for e-commerce,” IEEE Inter-
net Computing, vol. 6, no. 3, pp. 83–87, May/Jun 2002.

[30] C. Amza et al., “Specification and implementation of dynamic web
site benchmarks,” in IEEE Workshop on Workload Characterization,
Austin, TX, Nov 2002, pp. 3–13, http://rubis.objectweb.org/.

[31] R. Hentges, “Puzzling: Sodoku has grabbed the short-attention
span of a nation,” Pittsburgh Tribune Review, Apr 2006,
http://www.pittsburghlive.com/x/pittsburghtrib/search/s_
447266.html.

[32] L. Northrop et al., Ultra-Large-Scale Systems: The Software Challenge
of the Future. SEI Carnegie Mellon University, Jun 2006.

[33] P. Narasimhan, “Trade-offs between real-time and fault tolerance
for middleware applications,” in Workshop on Foundations of Mid-
dleware Technologies, Irvine, CA, Nov 2002.

[34] G. DeCandia et al., “Dynamo: Amazon’s highly available key-
value store,” in Symposium on Operating Systems Principles, Steven-
son, WA, Oct 2007, pp. 205–220.

[35] E. Thomopoulos, L. E. Moser, and P. M. Melliar-Smith, “Latency
analysis of the Totem single-ring protocol,” IEEE/ACM Transac-
tions on Networking, vol. 9, no. 5, pp. 669–680, Oct 2001.

[36] S. Gutierrez-Nolasco et al., “Exploring adaptability of secure
group communication using formal prototyping techniques,” in
Workshop on Reflective and Adaptive Middleware, Toronto, ON, Oct
2004.

[37] D. Szentivanyi, “Performance studies of fault-tolerant middle-
ware,” Ph.D. dissertation, University of Linköping, 2005.

[38] B. White et al., “An integrated experimental environment for
distributed systems and networks,” in USENIX Symposium on
Operating Systems Design and Implementation, Boston, MA, Dec
2002, pp. 255–270.

[39] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” Journal of the ACM,
vol. 20, no. 1, pp. 46–61, 1973.

15

APPENDIX A
SUPPLEMENTAL MATERIAL

A.1 Experimental Methods
The differences between the ATL, MEAD and FTDS
traces are summarized in Table 4. To prevent a sys-
tematic bias, the systems from the three traces were
instrumented independently and data was collected by
different experimenters. We were directly involved in the
data collection only for the MEAD trace. To minimize
the interference from the experimental harness, we pre-
allocate buffers in memory to store the probe data, and
we flush these buffers to the disk only at the end of
each experiment. Moreover, the client-side probes do not
affect the latency observations because timestamps are
recorded before a request is issued and after a reply is
received. Except for Sections 5.2 and 6, all the data pre-
sented in this paper represents client-side measurements.

We analyze 2402 different configurations of middle-
ware systems and communication protocols. In each con-
figuration we make Ncon f measurements of the response
times Rcon f (i), with i ∈ [1, Ncon f]. We compute the
mean latency Rcon f , the standard deviation σcon f and the
following statistical measures:

Probability density
t∫

s
PDF(x)dx = Pr[s ≤ Rcon f ≤ t]

99th percentile R̃con f :
R̃con f∫

0
PDF(x)dx = 0.99

The raw latency measurements for the ATL trace,
collected between 2001–2008, are no longer available.
Instead, we analyze the histograms of these measure-
ments, which split the range of the observed latency into
equally-sized bins and provide the counts of measure-
ments that fall into each bin. max Rcon f , Rcon f and σcon f
have been computed originally, from the raw data, and
the histograms represent an estimation of the probabil-
ity density function. We estimate R̃con f through linear
interpolation in the bin of the 99th percentile. Unfortu-
nately, this estimation is imprecise for some configura-
tions with wide histogram bins; for instance, in some
cases all the measurements fall into a single bin, and
linear interpolation does not provide meaningful results
because the characteristics of the original distribution are
lost. To ensure the precision of estimation for the 99th

percentile, we disregard all the configurations where the
99th percentile falls into the same bin as either the 75th

percentile or the maximum of Rcon f . Furthermore, we ex-
clude from the ATL data the fault-injection experiments,
the configurations with additional processor or network
loads, and the large number of experiments that were
performed on a single physical host. For the MEAD and
FTDS traces, we perform the statistical analysis directly
on the raw measurement data.

Criterion C1. Because the 16 systems have different
latency ranges, we assess whether the latency is too
large by normalizing the latency values: R̂con f (i) =

Rcon f (i)/Rcon f . This metric indicates whether all the
observed latencies are on the same order or magnitude,
which, in practice, would mean that the system config-
uration examined is sufficiently predictable because it
doesn’t produce excessively large latencies. We therefore
consider that a system is unpredictable when we record
latencies that are more than one order of magnitude
larger than the mean latency: ∃Rcon f (i) : R̂con f (i) > 10.
We note that this is a pragmatic test, rather than a
statistically-rigorous one.

Criterion C2. We estimate the number of requests with
an unusually-high latency using the 3σ statistical test:
any observation that deviates from the mean with more
than 3σ is considered an outlier. 3σ is a statistical test
widely used in the engineering disciplines for quality-
control or for identifying measurement errors [18]. The
3σ test helps us detect latency values.

Criterion C3. We evaluate the impact of a configuration
parameter on the latency by performing an analysis of
variance (ANOVA) [18]. ANOVA summarizes how much
of the variance in the data is accounted for by the impact
of the configuration parameter and how much is random
error. Formally, ANOVA tests the null hypothesis that
these two variability components are estimates of the
true variance. If the probability p of this hypothesis
is small (e.g., p < 0.01), there is statistically-significant
evidence that the values of the configuration parameter
influence the latency.

Impact of environmental conditions. We assess the im-
pact of the environment on the system unpredictability
by conducting experiments in a wide variety of testbeds.
Most experiments from the ATL trace use the Emulab
testbed [38], in two hardware configurations:

∙ pc850: Pentium III, running at 850 MHz, with
256 MB of RAM and 100 Mbps LAN.

∙ pc3000: 64-bit, dual-core Xeon, running at 3.0 GHz,
with 2 GB of RAM and 1 Gbps LAN.

The ATL trace uses six additional testbeds. Moreover,
the ATL experiments employ several operating sys-
tems: Linux 2.4.2–2.4.20, Linux 2.6.8–2.6.23, TimeSys 3.1.
TimeSys is a Linux-based, commercial operating system,
with a fully-preemptible kernel, protection against pri-
ority inversion, O(1) task-scheduling complexity, and a
fine timer granularity. In some configurations, the Linux-
rt patches (rt1–rt17) are applied to the Linux kernel, in
order to enable preemptibility.

In the MEAD trace, we also use Emulab pc850 nodes,
with TimeSys 3.1. Our experiments use 25 hosts: up to
22 for the clients and up to 3 for the replicated server.
The experiments from the FTDS trace utilize a university
cluster, where the experimental nodes were connected
by a 100 Mbps LAN. Each machine has a dual-processor
Pentium 4 at 2.8 GHz with 2GB memory, and runs SUSE
Linux (kernel 2.6). Each entity in the system (clients,
servers, database) uses a dedicated physical node.

16

Table 4
Qualitative comparison of the three experimental traces.

ATL MEAD FTDS

Benchmark Micro-benchmark Micro-benchmark Macro-benchmark
Fault tolerance None (most systems), single link-failures

(SCTP, TAO/SCTP), node failures (MEAD)
Link and node failures, with
no single point of failure

Node failures, with single point of
failure (the Replication Manager)

Programming language C, C++, Java C++ Java
Middleware platform Message-oriented protocols, CORBA, EJB CORBA CORBA, EJB
Operating system TimeSys 3.1, Linux 2.4.2–2.4.20,

Linux 2.6.8–2.6.23 (including Linux-rt)
TimeSys 3.1 SUSE Linux 2.6

Data collection Third party Authors Under the authors’ supervision

Impact of FT configurations. We assess the effect of two
configuration options for the FT mechanisms: the repli-
cation style (MEAD and FTDS traces) and the replication
degree (MEAD trace). We vary the replication style as
follows:

∙ MEAD trace: for MEAD, the replication style is a
configurable parameter.10 We test each system con-
figuration using both active and passive replication.

∙ FTDS trace: the replication style is a static design
choice in all 7 applications. 6 applications use pas-
sive replication, and 1 uses active replication.

The replication degree indicates the number of server
replicas, including the primary for warm passive repli-
cation. A system with a replication degree of n will be
able to tolerate n − 1 crash faults without interruption.
We use the following replication degrees:

∙ MEAD trace: 1, 2 or 3 server replicas.
∙ FTDS trace: 2 server replicas (middle tier).

Impact of workloads. We assess the impact of the
workload by varying the message payload (ATL, MEAD
and FTDS traces), the number of clients (MEAD and FTDS
trace) and the request rate (MEAD and FTDS traces). The
three traces cover the following payloads:

∙ ATL trace: 22, 23, . . . 216 bytes (i.e., up to 64 KB), for
most experiments; up to 4 MB for one experiment
(TCP); only up to 1 KB for other experiments (e.g.,
SCTP, TAO/SCTP).

∙ MEAD trace: 16 bytes, 256 bytes, 4 KB, 16 KB, 64 KB.
∙ FTDS trace: the original message sizes used by each

application, and modified payloads of exactly 256,
512 or 1024 bytes.

We use the following client loads:
∙ MEAD trace: 1, 4, 7, 10, 13, 16, 19 or 22 clients.
∙ FTDS trace: 1, 4, 7 or 10 clients.
We induce different request rates by introducing an

artificial “think-time” between requests. The request-
rates recorded are specific to each benchmark, owing
to the differences in latency profiles. We introduce the
following inter-request think times:

∙ MEAD trace: 0 ms, 0.5 ms, 2 ms, 8 ms or 32 ms be-
tween requests;

10. With MEAD, the replication style can be changed dynamically,
at run-time [4], but this functionality was not used in the experiments
presented in this paper.

∙ FTDS trace: 0 ms, 20 ms or 40 ms;

Impact of faults. We compare the fault-free unpre-
dictability with the recovery time needed after a crash
fault (MEAD and FTDS traces). We inject faults by
periodically crashing a server replica. A single crash
does not a induce complete system failure; no requests
are lost and the clients do not have to reconnect, but
they experience a high latency while the fault-tolerant
infrastructure carries out recovery actions. This high-
latency outlier, measured at the client-side, represents the
recovery time of the system. After each crash, we launch
a new server replica to preserve the initial replication
degree and to prepare the application for handling the
next faults.

Challenges and fallacies. Our goal in this paper is to
test the hypothesis of limited unpredictability using ob-
jective metrics of computer-system evaluation. However,
in addition to providing us with empirical data about
enterprise applications, the FTDS programming experi-
ment represents a behavioral study requiring subjective
interpretation. The 7 student teams interpreted the em-
pirical requirements in slightly different ways, dedicated
different amounts of work for this phase of the project
(as is typical of students taking a course), and used
systems with widely different robustness characteristics.
None of this is surprising in hindsight—we served as
independent observers and these discrepancies were an
inherent side-effect of our intentionally electing not to
be too familiar with the internals of the systems or too
deeply involved with the day-to-day implementation of
the projects.

In some cases, the teams made a number of honest
mistakes that rendered their data slightly different. Some
of these problems were easily detected; for instance,
teams 5, 6 and 7 ran the experiments with only 100,
2243 and 1000 invocations, respectively, instead of the
10,000 required. Other variations were more subtle; for
instance, Team 2 used 32-bit integers to store their times-
tamps, which led to an overflow for the long-running
experiments with 1024-byte reply messages. We have
corrected or excluded all the corrupted data that we were
able to detect; in Section 6, we candidly share all the
instances where we believe that some data inconsisten-
cies might have biased the results. We believe that these

17

observations will be useful to others attempting similar
programming experiments.

Most importantly, we were concerned that some stu-
dents might be tempted to adjust their data in order to
establish the limited-unpredictability hypothesis that we
are trying to test. We informed the students repeatedly
that their task was not to confirm or refute this hypoth-
esis, but to formulate an honest and well-documented
opinion on the behavior of their system. We believe that
we have succeeded in eliminating this bias. In fact, one
of the teams concluded in their final report that their
results strongly contradict the hypothesis; upon closer
examination, it became apparent that this statement
was based on a data-representation error, where the
maximum and 99th percentile latencies were plotted on
different graphical scales.

A.2 Real-World Unpredictability: The ATL Trace

The maximum latency is not always unbounded. For
instance, the experiments with the SCTP protocol and
the TAO/SCTP middleware, using two redundant con-
nections between hosts, have produced latency ranges
that are comparable with the mean latency (see Table 2).
These results might not be representative, however,
because the experiments were conducted in a single
testbed, where the hosts were connected using two
crossover cables, and used message payloads only up
to 1 KB. Conversely, the 99th percentile of the latency
is not always close to the mean. Figure 12 shows the
latency distribution for a JBoss experiment. In this case,
the distribution is bimodal: most response times are
either less than 10 ms or between 35–45 ms. The second
mode is two orders of magnitude smaller than the first
one (note the logarithmic Y-scale in the figure), which
means that it corresponds to only about 1% of the latency
measurements. In such a bimodal distribution, the mean
latency occurs in the first mode, while the 99th percentile
occurs in the distant second mode. This observation

10000 20000 30000 40000

Latency [µµs]

P
ro

ba
bi

lit
y

de
ns

ity

10−−6

10−−5

10−−4

10−−3

10−−2

10−−1

Figure 12. Bimodal latency distribution for JBoss 4.0.5,
using EJB 3.0 APIs with a 64 KB payload. max R̂JBoss =
14.5

Payload [bytes]

99
%

 la
te

nc
y

[µµ
s]

102

102.5

103

103.5

104

104.5

4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

● ●●
● ● ●● ●●● ●● ●●● ●●

●
●● ●●● ●

●
● ●● ● ●● ●●●● ●● ●●● ●● ● ●● ●● ●● ●●●● ●● ●● ●●●

● ●●●● ●●● ●● ●● ●

● ●

● ●● ●●
● ●●●

●
● ●●●

●
●●

●
●

●
●●

●
● ●●

●●
●

●
●●●

● ●
● ● ●●● ●

● ●● ●
●

●● ●●● ● ●● ● ● ●●● ● ●

●

●

●●

● ●

●

●

●

●●

●

●● ●● ● ●● ● ●●
● ●

●● ●●● ● ●● ●● ●●

●

●● ●
●

●

●

● ●● ●● ● ●● ●●● ●● ●
●

●
●● ●● ●●● ●●●●● ●●●●● ●●● ●●●● ●●● ●●● ●●●● ●●● ●

●
●

●

●

●●
●●●● ●● ●● ●●●●●●●●●●
●

●●● ●●●●●●●● ●●●●

●● ●● ●● ●●●●● ●●●●●● ●●●
● ●●

●●●●●
●●●●●●●●●

●
●●●●●●●●●

●● ●●● ●● ● ● ● ● ●●
●●●●●●●●●●

●

●●●●●●

TCP
Java RMI

TAO
JBoss

●

Figure 13. Fitted models for the 99th percentile.

cannot be generalized either: in the remaining exper-
iments concerning JBoss the latency has a long-tailed
distribution, and, in all the other configurations from the
ATL trace, the 99th percentile is predictable according to
Criterion C1.

This unpredictability of the maximum latency indi-
cates the lack of real-time capabilities for most systems
from the ATL trace. Under a real-time schedule, these
systems are liable to miss deadlines because their worst-
case latency is unknown in advance. In order to en-
force real-time guarantees in the absence of a statically-
computed schedule that includes all possible tasks, it is
sometimes necessary to preempt a task that is executing
in order to allow a real-time task to complete before
its deadline [39]. Most COTS operating systems are not
fully preemptible, but the ATL trace includes experi-
ments with UDP, TCP, Spread and TAO on preemptible
operating systems (TimeSys and Linux-rt). We com-
pare these configurations against experiments with the
same 4 systems, performed on similar testbeds without
preemptibility. ANOVA does not identify a significant
reduction of unpredictability (in terms of Criterion C1).

For all configurations but one (the experiment illus-
trated in Figure 12), it is up to max Rcon f ≤ 10 × Rcon f .
Excluding JBoss,11 the 99th percentile can be described by
a generic model, which does not depend on the system
(significant with p = 0.001):

R̃con f ≈ 1.04 ⋅ Rcon f + 263 µs

Figure 13 compares the fitted least-squares lines12 with
the observed values of the 99th percentile, for several
systems from the ATL trace. The residuals are small,
and the least-squares lines have different slopes for each
system, which accounts for the different latency ranges
discussed above.

11. The experiments that deviate the most from this model are the
ones with bimodal latency distributions, such as the one illustrated in
Figure 12.

12. Note that these simple regression models do not take into
account the testbed, which is a significant factor.

18

A.3 Sources of Unpredictability: The MEAD Trace

The highest request rates in the MEAD trace were
recorded in active replication mode, with 3 server repli-
cas, 22 clients and 16-byte messages. The largest outlier
(max R̂MEAD = 660 occurs in warm-passive replication,
with 2 server replicas, 4 KB replies, 16 clients connected
and a low request rate (under 1000 req/s, corresponding
to a 32 ms client think-time).

We try to determine if the unpredictability recorded in
our experiments can be correlated with the behavior of
an operating-system mechanism by comparing the rela-
tive numbers (Figure 14) and sizes (Figure 15) of outliers
with various server-side resource-usage statistics. For all
the different message sizes tested, we plot the correlation
between the outliers and:

∙ The time spent executing in user mode;
∙ The time spent executing in kernel mode;
∙ The combined execution time;
∙ The number of minor page-faults (which do not

require disk I/O);
∙ The number of context switches;
∙ The size of the resident set (the number of pages the

process has in physical memory).
For the configurations with a passive replication style
the numbers reported represent the measurements for
the primary server; for active replication we report the
averages across all the server replicas.

In general, we observe that there is very little corre-
lation between these metrics and the reply sizes. While
on the client-side the experiments with large reply sizes
took longer to complete because the program has to do
more work (both in kernel and user mode) to handle
these messages, the same is not true for the server
side. For the configurations with 64 KB reply-messages,
the servers handled between 1 and 22 clients, which
accounts for the large variations in run-time visible in
Figures 14 and 15.13

The minor page-fault rates are grouped in clusters,
which correspond roughly to the number of clients con-
nected. We can observe similar clusters for the resident-
set sizes, which correspond to the size of the reply
messages. Figure 14 shows that, even among experi-
ments with the same size of reply messages, the number
of outliers tends to decrease as the number of context
switches increases; a similar trend can be noticed in
Figure 15 as well.

As in the ATL trace, the maximum end-to-end laten-
cies are unpredictable and do not follow any discernible
trends (Finding I). This is illustrated in Figure 16a.
The establishment of QoS guarantees on the maximum
latency would be virtually impossible. However, the

13. To emphasize this phenomenon, we have removed 6 configura-
tions with run-times larger than 10 min (6 × 108µs) from the figures.
These configurations have produced relatively fewer (less than 17)
and smaller (z-score < 14) outliers, with one exception where we
have recorded 200 outliers. All these configurations correspond to the
experiments with 16 KB reply sizes.

trends for the 99th percentile latency are obvious in Fig-
ure 16b, and the dependence on the message sizes and
request rates is evident. The 99th percentile follows the
trend of the mean, with correlation coefficient r = 0.97
(Finding III).

A.4 Impact of Design and Implementation: The
FTDS Trace

The 35 students from the FTDS course were asked to
design and implement a realistic enterprise system and
to collect data to analyze the system’s behavior. The
goal of this course is to teach students the use of good
practices in middleware, fault-tolerance patterns (such
as replication, transactions, performance optimizations)
and software engineering, with the ultimate aim of
teaching them how to develop reliable distributed sys-
tems.

The students formed 7 project teams. Each team had
between 4 and 6 members and focused on a different
application of their own choice and design. The projects,
summarized in Table 3, varied in size (6-12 KLOC), in
scope and in the application domain (online game, e-
commerce) that each respectively targeted.

Sufficient knowledge and guidelines were provided
to the students to enable them to implement consis-
tent replication. For example, students exercised care in
ensuring that duplicate operations were not processed
by replicas. The replication of a server naturally gives
rise to duplicate messages entering and leaving the
replicas. Duplicate messages by themselves do not affect
consistency, it is the duplicate processing of them at a
client or a server replica that can threaten consistent
replication. Consider a request that increments a value
in the database by a fixed amount. If this request is
processed by two different server replicas – e.g., by both
the new and the old primary replicas after a fail-over in
warm-passive replication or in active replication – the
final result will be incorrect. To address this issue, all
requests were uniquely numbered and, before processing
an invocation, each server replica verified whether the
result of the current request is already stored in the
database. When there are multiple clients, yet another
identifier uniquely representing each client is embedded
into each request to distinguish different clients may
legitimately try to invoke the same server method. The
students were free to implement either an active or a pas-
sive replication mechanism for their applications (most
teams chose the latter). The replication mechanisms are
not transparent, as in the case of MEAD, and the clients
are involved in the recovery process.

The 7 teams defined their projects by specifying the
requirements of their applications, choosing the appro-
priate middleware for their system—CORBA or EJB—
as well as the replication style. Two applications used
CORBA and five used EJB. All the FTDS applications
are implemented in Java. Each project has a three-tier
architecture, with a client issuing all the requests, a

19

0 1 2 3 4 5 6

x 10
8

0

50

100

150

200

250

300

350

400

Time in user mode [µs]

N
um

be
r

of
 o

ut
lie

rs
/c

lie
nt

16 B
256 B
4 KB
16 KB
64 KB

0 1 2 3 4 5 6

x 10
8

0

50

100

150

200

250

300

350

400

Time in kernel mode [µs]

N
um

be
r

of
 o

ut
lie

rs
/c

lie
nt

16 B
256 B
4 KB
16 KB
64 KB

0 1 2 3 4 5 6

x 10
8

0

50

100

150

200

250

300

350

400

Time in user & kernel mode [µs]

N
um

be
r

of
 o

ut
lie

rs
/c

lie
nt

16 B
256 B
4 KB
16 KB
64 KB

0 5 10 15

x 10
7

0

50

100

150

200

250

300

350

400

Context switches

N
um

be
r

of
 o

ut
lie

rs
/c

lie
nt

16 B
256 B
4 KB
16 KB
64 KB

200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

300

350

400

Minor page faults

N
um

be
r

of
 o

ut
lie

rs
/c

lie
nt

16 B
256 B
4 KB
16 KB
64 KB

6300 6400 6500 6600 6700 6800 6900 7000
0

50

100

150

200

250

300

350

400

Resident−set size [KB]

N
um

be
r

of
 o

ut
lie

rs
/c

lie
nt

16 B
256 B
4 KB
16 KB
64 KB

Figure 14. Correlation of system resources with the number of outliers in the MEAD trace.

0 1 2 3 4 5 6

x 10
8

0

100

200

300

400

500

600

700

Time in user mode [µs]

R
el

at
iv

e
si

ze
 o

f o
ut

lie
rs

 (
m

ax
/a

ve
ra

ge
)

16 B
256 B
4 KB
16 KB
64 KB

0 1 2 3 4 5 6

x 10
8

0

100

200

300

400

500

600

700

Time in kernel mode [µs]

R
el

at
iv

e
si

ze
 o

f o
ut

lie
rs

 (
m

ax
/a

ve
ra

ge
)

16 B
256 B
4 KB
16 KB
64 KB

0 1 2 3 4 5 6

x 10
8

0

100

200

300

400

500

600

700

Time in user & kernel mode [µs]

R
el

at
iv

e
si

ze
 o

f o
ut

lie
rs

 (
m

ax
/a

ve
ra

ge
)

16 B
256 B
4 KB
16 KB
64 KB

0 5 10 15

x 10
7

0

100

200

300

400

500

600

700

Context switches

R
el

at
iv

e
si

ze
 o

f o
ut

lie
rs

 (
m

ax
/a

ve
ra

ge
)

16 B
256 B
4 KB
16 KB
64 KB

200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

700

Minor page faults

R
el

at
iv

e
si

ze
 o

f o
ut

lie
rs

 (
m

ax
/a

ve
ra

ge
)

16 B
256 B
4 KB
16 KB
64 KB

6300 6400 6500 6600 6700 6800 6900 7000
0

100

200

300

400

500

600

700

Resident−set size [KB]

R
el

at
iv

e
si

ze
 o

f o
ut

lie
rs

 (
m

ax
/a

ve
ra

ge
)

16 B
256 B
4 KB
16 KB
64 KB

Figure 15. Correlation of system resources with the relative size of the outliers in the MEAD trace.

20

0
1000

2000
3000

4000
5000

16

256

4096
16384

65536
10

3

10
4

10
5

10
6

10
7

Request rate [req/s]Request size [bytes]

M
ax

im
um

 la
te

nc
y

[µ
s]

(a) Maximum latency.

0
1000

2000
3000

4000
5000

16

256

4096
16384

65536
10

3

10
4

10
5

10
6

10
7

Request rate [req/s]Request size [bytes]

99
%

 la
te

nc
y

[µ
s]

(b) 99th percentile latency.

Figure 16. Trends for the maximum and the 99th percentile latency in the MEAD trace.

stateless middle tier implementing the business logic and
a MySQL database that stores the persistent state. The
middle tier is replicated for fault-tolerance, using active
(one project) or warm-passive (six projects) replication.
These design choices are summarized in Figure 17.

Several factors influence the production of outliers in
the FTDS trace:

∙ The response time for certain invocations increases
in time, as objects accumulate in the database, and
this effect is amplified by a growing number of
clients. However, this affects the average latency as
well and does not explain the discrepancy between
the trends of average and maximum latency. More-
over, the students have identified this problem and
tried to compensate for it: team 1 decided to use
a workload that does not add information in the
database and team 3 cleared the database between
experiments.

∙ Team 4 discovered that, by increasing the JVM’s
heap-size, the number of large outliers could be
drastically reduced. This is likely due to the fact that
request processing causes a high memory churn on
the server, which forces the garbage collector to run
more frequently. However, even after increasing the
JVM’s heap size, project 4 has produced an outlier
3556 times larger than the mean latency from the
corresponding experiment.

1. Su-Duel-Ku

Competitive Sudoku

3. FTEX

Electronic stock exchange

5. Mafia

2. Blackjack

Online casino

4. eJBay

Online auctioning
EJB

CORBA

Online game

7. Ticket Center

Online ticketing

6. Park’n Park

Parking-lot management

CORBA

Passive Replication

Active Replication

Figure 17. Infrastructure design choices.

∙ Different applications may produce either many
small outliers or a few large ones. The relative size
of the outliers seems to be negatively correlated
with the number of outliers in each experiment,
confirming Finding II. This is consistent for the
aggregated configurations from the FTDS trace and
across all applications, taken separately.

After removing the magical 1%, we observe four
trends in the FTDS trace:

∙ Latency increases linearly with the number of clients
and it scales well with the reply size (for projects 1,
3 and 5);

∙ Latency increases linearly with both the number of
clients and the reply size (for projects 2 and 7);

∙ Latency is significantly higher for the experiments
with 10 clients and it is otherwise unaffected by the
reply size and client concurrency (for project 4);

∙ Latency is significantly higher for the experiments
with 10 clients and it increases linearly with the
reply size (for project 6).

The message payload tends to affect the predictability
of applications with fast response times, where network
delays have a significant impact on performance. We can
observe this influence in the case of project 6, which
has a very low latency and sustains request rates an
order of magnitude higher than the other applications.
This is probably due to the fact that, for some of the
requests from its workload, the middle-tier server does
not need to contact the database and does not incur this
additional latency. Due to this property and to the fact
that this is a CORBA application, project 6 is closest to
our experimental setup from the MEAD trace.

As for the MEAD trace, our results suggest that we
cannot obtain bounded maximum latencies by changing
the request rates, the maximum numbers of clients or
the message sizes.

