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Introduction

Motivation for mitigation of power fluctuation

« Power fluctuation occurs
intermittently on micro-grid.

« Conventional generation tends to
stabilize and maintain synchronous
operation of the system by the inertia
in the form of spinning rotational
mass.

 As more renewable energy
generation is added to the utility grid,
it could result in instability and poorly
damped oscillations in AC frequency
and power on micro-grid.
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Introduction

Objectives of building a testbed

o Simulate a power fluctuation
— Motor load
— Oescillatory circuitry

Detection of instantaneous fluctuations
— Phasor Measurement Unit (PMU)
— Instantaneous power sensor

Verification of data-based dynamic modeling (system identification) techniques

Damping controller design and implementation
— Embedded devices

Capalbility of real-time control of an inverter
— An inverter with real-time active/reactive power control
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Testbed




Testbed — Overview

System diagram

Controller with implementation of instantaneous
power calculation and damping control

Inverter with
real-time control

Sensors
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Testbed — Key Components

Controller Cabin

“Portable” cabinet

Grid-Tied Inverter
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Testbed — Key Components

Controller

Manufacturer: National Instruments
Model: NI myRIO-1900

* Processor: Xilinx Z-7010 (Duo Core, 667MHZz)

*  Memory: (ROM) 256MB (DDR3) 512MB
e  Wireless: IEEE 802.11 b,g,n

* Analog Input: 12 bits — 500 kS/s

* Analog Output: 12 bits — 345 kS/s

Current Measurement
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Preliminary Tests

Test of simulating power fluctuation

» For safety consideration, a programmable DC
power supply is installed for testing.

Programmable
DC Power Supply

* The power fluctuation generated by the
oscillatory circuitry is measured and modeled as
follows: f, ~ 5Hz
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Preliminary Tests

Four-quadrant grid-tied inverter (GTI)

Manufacturer: One-Cycle Control (OCC)
Model: GTI3100A6208/3652IR-PQ

 Max. Power: 36kW

 AC Voltage Range: 208V +=10%

* Rated DC Voltage: 365VDC

* Max. AC/DC Current: 100Arms / 100A

*  Weight: 65Ib

e Size: 23in X 17.5in X 5.25in

ontinuous current control Step active current reversal control Step reactive current reversal control Step current phase control
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Preliminary Tests

Capability test of real-time active/reactive power control

« Dynamic response of the OCC-GTI is tested with a step control input.

« The OCC-GTI is capable to be controlled in real time.
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Preliminary Tests

Verification of data-based system identification on the GTI output

» Based on the measured data obtained by previous tests, a low-order model built
within Prediction Error (PE) framework is capable to capture the dynamics.
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Preliminary Tests

Verification of data-based system identification on the disturbance

« Dynamic response of the oscillatory circuitry is tested.

» Alow-order model built by Step-Based Realization (SBR) method is capable to
capture the dynamics well.
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Preliminary Tests

Damping control algorithm design and implementation

« A preliminary damping control algorithm is designed based on modeling of the
system described previously.

» The control algorithm is implemented in the controller.

Control Algorithm Design Control Algorithm Implementation
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Preliminary Tests

Conclusions

» The oscillatory circuitry in the testbed is able to simulate a power fluctuation.

* The grid-tied inverter provided by One-Cycle Control is capable to be controlled
in real time.

* The controller is able to process the instantaneous power calculation and real-
time control.

 The designed control algorithm is able to dampen the oscillation generated by
the oscillatory circuitry.
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Future Work




Future Work

Large-scale integration tests

* Integration with Phasor Measurement Unit (PMU)
* Integration with photovoltaic (PV) systems

* Large-scale tests on UCSD micro-grid
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