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 Objective: 
The test bed has been built to explore various possibilities for the future 
smart grid in order to 

 improve system reliability, 

 enhance system capacity to host renewable energy, and 

 allow interactions between energy providers and consumers. 

 

 The smart energy campus  
is a living smart grid test-bed of Georgia Tech, which 

 Covers 200 buildings and 

 Has more than 400 smart meters, 

 3 years of AMI data (15 minutes resolution), 

 State-of-the-art IT system for data collection and management 

Smart Energy Campus 



Outline 
 Data Management 

 AMI data management 

 GIS data integration 

 Robust distribution system state estimation 

 Advanced Load Modeling 
 Roof-top solar systems 

 Electric vehicles 

 Time-variant load modeling 

 Long Term Planning 
 Campus renovation and expansion 

 Shuttle electrification 

 Energy Storage 

 Visualization 

 Demand Response & Real-time Pricing 



AMI Data Management 

 Smart meters 

 Installed in more than 200 
buildings  

 400 main meters and sub-meters 

 Real-time data acquisition 

 Historical database 

 ION database (facility) 

 SQLite database (research) 

 Data Access 

 API request (upon authorization) 

 Web-based dashboard through 
desktop or smart phone 

 Interactive visualization (Java-
based) 

  

ION Webreach Main Menu Building Menu 

Building Meter Measurements Interactive Tools 



Robust Distribution System State Estimation 



Advanced Load Modeling 

 Roof-top Solar Systems 

 Electrical Vehicle Charging Load 

 Time-variant Load Model 



Load Modeling: Solar Photovoltaic 

 Three roof-top PV systems: 

 Campus Recreation Center (CRC) 

 Carbon Neutral Energy Solutions Laboratory (CNES) 

 Clough Undergraduate Learning Commons (Clough) 

 CRC PV array was installed in 1996, which was one 
of the largest roof-mounted PV system. 

 Continuous monitoring cumulate valuable data. 

Clough CNES CRC 

ION Webreach Interface 



Load Modeling: Electric Vehicles 

 Steady growth of EV charging demand: 

 As of Feb. 2014, there were 155 EVs on campus. 

 EV type: Leaf 90%, Tesla, BMW i3… 

 Charging Infrastructure 

 Three Level I charging stations 

 Six Level II charging stations 

 A statistic model for EV charging demand has been 
developed 

student 
32% 

faculty 
42% 

staff 
26% 

  

Level I Charger Level II Charger Parking Map 



Load Modeling: Electric Vehicle 

Objective:  
we seek to model the PHEV charging 
behavior through a 𝑀𝑡/𝐺/∞/𝑁𝑚𝑎𝑥 
queue with finite calling population 

 

• 𝑀𝑡 means the periodic non-
homogeneous arrival rate is a function 
of time 𝑡;  

• 𝐺 stands for the empirical distribution 
of PHEV charging duration;  

• ∞ means the charging system is a self-
serve system with no waiting time;  

• 𝑁𝑚𝑎𝑥 is the total number of PHEVs, 
which is known. 
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Load Modeling: Electric Vehicle 
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According to the central limit theorem, we could construct the confidence 

interval for the long run average mean values, which follows the t distribution. 

Conclusion: The actual charging intensity coefficient is around 0.25. 



Load Modeling: Time-variant Model 

• The vast deployment of smart meters 
producing massive amount of data and 
information yet unexplored 

• Current load modeling methods 
• Component-based approach 

• Measurement-based approach 

• Hence, we propose a time-variant load 
model based on smart meter historical data 

• Load Model Definition 

( ) ( ) P P V Q Q V



Load Modeling: Time-variant Model 

• The Load Condition Assumption 

• Data Mining Technologies 

KL divergenceData Filtering K-subspace Method Cluster Evaluation

It is possible to create a load model 

through data-mining processes. 



Long-term Planning 

 Campus Renovation and Expansion 

 Shuttle Electrification 

 Energy Storage 



Future Campus Renovation & Expansion 

Objective:  
Optimize the distribution system in order to meet the campus future needs. 

 

Solution:  
 Estimate campus future needs  

 Natural load growth 

 New buildings and expansions 

 Location of new loads 

 Simulate the future scenarios through integrated simulation environment 

 Pin the new loads through google earth. 

 Incorporate new system components to the OpenDSS model, such as new 
transformers, secondary lines. 

 Serving new load with new feeders or existing feeders. 

 Check system reliability. 

 



Project Location Map

Project Completion 
Time Line

Future Campus Renovation & Expansion 



Shuttle Electrification 

Objective:  
Upgrading the current diesel shuttles 
with electric buses, while maintaining 
current services. 

 

Solution:  

 Replacing 23 existing buses with 
23 electric buses ($900K/unit) 

 Charging Infrastructure: 
 2 fast chargers ($600K/unit) 

 10 stop chargers ($70K/unit) 

 Lithium titanate battery (6 years) 



Shuttle Electrification 
Breakdown of total NPV cost 
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Energy Storage 

Objective:  
Estimate the feasibility of introducing energy 
storage systems on campus. 

Solution:  
 NaS Battery (Sodium-Sulfur Battery) 

 Battery life (up to 13 years) 

 Efficiency: 78% (including PCS efficiency 95%) 

 Fixed costs 

 Battery  long-term cost ($250/kWh) 

 Power Conversion System ($150~$260/kW) 

 Balance of Plant ($100/kW) 

 Operation and Management Costs 

 Fixed O&M cost ($0.46/kW-year) 

 Variable O&M costs: ($0.7cents/kWh) 



Energy Storage 

Energy Storage Control Optimization:  
 

 

Objective:  
 Minimize total cost:  

 Fixed cost along the battery life 

 O&M cost 

 Charging Cost 

 Discharging revenue 

 Constraints: 

 DOD or Battery capacity 

 Efficiency 

 Peak charging/discharging rate 
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Visualization 

 Enhance situational awareness 

 Expose consumer behaviors 

 Encourage building-to-grid interactions 



Situational Awareness 

Test Bed Distribution System Over View 



Situational Awareness 

Bird’s-eye View of the Campus Energy Consumption 



Situational Awareness 

Building Energy Consumption Intensity Log 



Real Time Pricing 
 The test bed campus is served under “Real Time Pricing – Hour Ahead 

Schedule” (PTR-HA) tariff provided by Georgia Power. 

𝑇𝑜𝑡𝑎𝑙. 𝐵𝑖𝑙𝑙 = 𝑆𝑡𝑑. 𝐵𝑖𝑙𝑙 + 𝑅𝑇𝑃. 𝐵𝑖𝑙𝑙 

where 𝑅𝑇𝑃. 𝐵𝑖𝑙𝑙 =  𝑅𝑇𝑃. 𝑃𝑟𝑖𝑐𝑒 × (𝐿𝑜𝑎𝑑 − 𝐶𝐵𝐿)ℎ𝑟  

 Customer baseline load (CBL) is developed for the test bed according to the 
energy consumption of the test bed from the previous calendar year.  

 



Demand Response Applications 

 Demand Response Inputs 

 Real-time energy 
consumption 

 HAVC system setting 

 Chiller plant condition 

 Real-time price signals 

 Demand Response Outputs 

 Update HAVC setting 

 Chiller plant control 

 

 Metasys Software is used to integrate and control chillers based on price 
signals 



Thank you ! 


