

ITI.ILLINOIS.EDU

Director, Information Trust Institute

What purpose for a Test-bed?

Create a model of a physical system that

Captures salient features of interest

Can be observed through controlled presentation of inputs or

boundary conditions

We want the test-bed to "act like" the system it models

Present some input

We want the test-bed to "act like" the system it models

Input presented to some test-bed component

We want the test-bed to "act like" the system it models

Initiates some sequence of actions and inputs/

We want the test-bed to "act like" the system it models

Initiates some sequence of actions and inputs/

We want the test-bed to "act like" the system it models

Initiates some sequence of actions and inputs/

We want the test-bed to "act like" the system it models

Initiates some sequence of actions and inputs/

We want the test-bed to "act like" the system it models

Initiates some sequence of actions and inputs/

We want the test-bed to "act like" the system it models

Output observed

One wants the components to interact in the same way, with the same input/outputs, as in the field, to get the same output

We want the test-bed to "act like" the system it models

Output observed

As in the field, sequencing in the test-bed is governed by realtime delays

We want the test-bed to "act like" the system it models

Output observed

As in the field, sequencing in the test-bed is governed by realtime delays

Our View of a Smart Grid Test-bed

Devices

 Meters, relays, PMUs, data aggregators, adaptive multichannel source, etc.

Software

Control station, data historian, authentication servers, etc.

Power System Simulators

- Hardware assisted (e.g., RTDS, Opal-RT)
- Software only, PowerWorld, GridLab-D, OpenDSS, PSAT, etc.

Device Emulation

Xen, QEMU, LXC

Network Emulation

Emulab, CORE, Deter

Device/Network Simulation

ns-3, S3F, OmNet++, etc.

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

Time matters a lot

Normal emulation execution is best effort

Suppose in the modeled system 3 devices all send messages to the same router at the same time

But if synchronized in virtual time, dispatch is

We want the test-bed to "act like" the system it models

Output observed

As in the field, sequencing in the test-bed is governed by realtime delays

We want the test-bed to "act like" the system it models

Output observed

To sequence as in the field, we have to sequence with respect to **Virtual Time**

35

Imagine the Possibilities....

With a test-bed embedded in virtual time, you can

- model larger systems on smaller test-beds
 - More simulation, fewer devices
- Mask latencies in test-bed federation
 - Run xN slower, turns 50ms real delay into a 50/N ms virtual delay
 - Synchronization

Virtual Time Sequencing

Every component action needs a **time-stamp**Every component action needs a **time delay**Virtual time management framework

- Schedules component actions in virtual time
- Manages inter-component input/output

Virtual Time Sequencing

Every component action needs a **time-stamp**Every component action needs a **time delay**Virtual time management framework

- Schedules component actions in virtual time
- Manages inter-component input/output

Sometimes known as Discrete-Event Simulation Questions

- How to embed emulation in VT?
- How to embed power system flow simulation in VT?
- How to embed device execution in VT?
- How to coordinate it all?

Embedding Emulation in Virtual Time

Requires

- calls to clock return virtual time
 - Based on measured execution and time dilation factor
- Scheduling
 - Advance virtual machines concurrent w.r.t. virtual time

Examples

- Versions of Xen just shift off clock bits
 - TDF of 2,4,8, etc.
 - Ordinary VM scheduling
- Timekeeper scales time by TDF
 - Advances all LXCs paced by slowest container

Network Simulation/Emulation Coordination

Requires synchronization

- Virtual machines and simulators need to advance at the same rate
 - Best effort interactions within that
- Fine grained synchronization
 - Ensure that no simulator or VM receives a time-stamped communication "in its past"
 - Achieved using synchronization protocols from parallel discrete-event simulation
 - S3F and Timekeeper

Power System Flow Simulators and Virtual Time

Requirements

- Export state, with virtual time-stamps
- Pause/Restart, or scaled release execution
- Buffer state

Assembling Pieces of the Puzzle

Examples

Example Use of a Smart Grid Testbed

DDoS Attack Using C12.22 Trace Service in AMI

C12.22 Trace Service

- Amplification
 - Increased volume of traffic
- Reflection
 - Spoofed source address

Attacker 1 Attacker spoof victim source address Attacker 2 Destination 2 Destination 3 Destination 3 Simulated Meter Emulated Meter Trace Service Request Trace Service Response

Components used

- Meter emulation
- Meter simulation

- Access point simulation
- Zigbee wireless simulation

Experiment

- 4x4 blocks, 448 meters
- 5 attackers
- Victim: the single egress point (meter gateway)
- ZigBee wireless network, 1 Mb/s bandwidth
- Normal traffic: 100-byte packet per 10 second
- Attacking traffic: 200 times faster, 15-30 hops

- Egress Point
- Attacker
- Intermediate

Experimental Results

Conclusion

Virtual time consistency in Smart Grid test-beds

Allows greater flexibility in what can be studied

Integration of device/communication simulation + emulation well underway

Integration of power flow simulation with device/communication simulation has been accomplished

Flow simulator needs special hooks
 Integration of devices with virtual time is a Work in Progress