

Smart Grid Co-Simulation with mosaik and the SESA-Lab

Rapid Prototyping of Future Energy Systems
Sebastian Lehnhoff

Future Energy Systems

(a.k.a. Smart Grids)

- Integrating large amounts of active components into operation
 - Environmentally dependent and hard to forecast
 - Automated operation and (on-line) optimization necessary

ICT-based Solutions Necessary

- Appropriate information, communication and automation systems are known from other domains
 - But: long-term use in safety-critical energy systems mostly untested
 - High risk for stakeholders in energy supply
- Rigorous testing necessary!

Learning from other application domains...

"Hardware in the Loop"

Operation of the real electric controller hardware or a mechatronic component in a simulation of the real environment

But: what belongs into this simulated environment?

Influencing Factors of Future Energy Systems

- Relevant scope of "Smart Energy Systems" is hard to determine
 - Renewable fossil generation
 - Distribution grid transmission grid
 - Users consumers
 - Markets
 - ▶ ICT
 - **...**

- Complex interactions
- Small effects gain relevance through scaling

Simulation of **Smart Energy Systems**

- Adequate consideration of ALL facets required!
 - Formal analysis (not feasible anymore) vs. simulation
- Integration of heterogeneous models and simulators

Simulation of **Smart Energy Systems**

Adequate consideration of ALL facets required!

Major Challenges

Properly integrating hardware and software environments

- Use case-specific "functional" combination of coarse discrete models with high-resolution (dynamic) models
- Quantifying aleatory (*irreducible*) and epistemic (*reducible*) uncertainties (black-box models!)
- Rigorous testing schemes/strategies
 - Automatic composition and orchestration of heterogeneous models, depending on budget (model availability, time etc.)
 - Design of Experiments (statistical scenario design, model exchangeability etc.)

→ Recurring processes... let's get common and sound methods for that!

Probability Densi

Model R

Partial Differentia

Ordinary Differentia

Algebraic Equa

Discre

1 day

1 hour

1 minute

1 second

1 cycle

1° at 50 Hz

Static Rules/Descriptions (SR)

Smart Energy Simulation and Automation Laboratory (Hard- and Software Integration Platform)

Co-Simulation Framework (OFFIS – Institute for Information Technology)

Real-time Automation Lab (University of Oldenburg)

mosaik - modular Smart Grid Co-Simulation

- Software suite developed at the OFFIS for automated composition and orchestration of heterogeneous energy system models
- Flexible interfaces for simulators (grids, markets, environment etc.)
 and controllers (users, "smart" ICT etc.)
- Powerful scenario description language (rule-based instantiation and coupling of models)
- coordinated execution (simulation)
- After testing phase with international research partners now open source available (http://mosaik.offis.de)
 - Currently ~1.000 downloads per month

Practical mosaik Workshops

- Regular mosaik courses and user workshops abroad
- Hands-on model integration (simulators and hardware)
- Most recent workshop on 24.09.2014
 - DTU Denmark
 - 20 international participants from engineering, physics, mathematics computer science
- Next workshops
 - Tomorrow (CMU)
 - April, 28-29 (AIT) ...registration still open!

Smart Energy Simulation and Automation Laboratory (Hard- and Software Integration Platform)

Co-Simulation Framework (OFFIS – Institute for Information Technology)

Real-time Automation Lab (University of Oldenburg)

Topology-free Interconnection and Assignment

of I/O (analog and digital)

IDE

Smart Energy Simulation and Automation Laboratory (Hard- and Software Integration Platform)

- ► Hardware (emulation) in the simulation loop...
- Studying dynamic effects of a large amount of active components
 - Dynamic stability of distributed control
 - Oscillatory effects of market interactions
 - Dynamic effects of synchronized user behavior due to DR/DSM schemes

- Systematic design of operational concepts/controllers in more and more complex/extensive energy systems
- Development of tools/models for systematic integration and handling of heterogeneous/external models and processes
- SESA-Lab is NO replacement for existing tools and models
 - Integration platform for established tools and approaches
- Goal of energy informatics at OFFIS/University of Oldenburg
 - Interdisciplinary collaboration with domain experts from electrical engineering, economy, social sciences etc.
 - Creating system competence, developing system intelligence
- International network
 - CO-simulation-based energy SYstem Modeling plAtform (COSYMA)
 - UC Berkeley/Berkeley National Lab (us), NREL (us), CMU (us), TU Delft (nl), AIT (at), DTU (dk), OFFIS (de)

References

Integration of *Aristo* (Real-Time el. Grid Simulation)

Integration of Power Hardware (-in-the-loop), Integration of *Modelica* Models through *FMI*

Integration of SYSLAB (Flexible Intelligent Energy Laboratory)

Substation Modeling and Simulation, Integration of MAS-based Transmission System Control

Integration of Real-Time Low-Voltage Grid Simulation and State Estimation

Hybrid Simulation of large-scale Distribution Networks

Statistical Scenario Design and Validation

What about you?

Thank you!

Prof. Dr. Sebastian Lehnhoff Energy Information Systems lehnhoff@offis.de