

Example of SGRS Implementation for Cooperative Transient Stabilization Using FACTS

Miloš Cvetković

Massachusetts Institute of Technology

mcvetkov@mit.edu

Marija Ilić
Carnegie Mellon University
milic@ece.cmu.edu

CMU Electricity Conference Workshop

March 30, 2015

Pittsburgh, PA, USA

In this talk

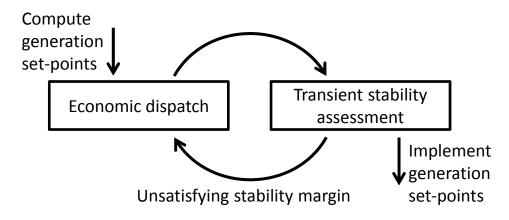


Need for Smarter Control

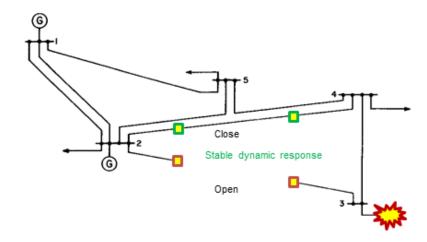
- Benefits to system operators:
- Safer integration of volatile renewables and unanticipated demand behavior
- Improved efficiency and reliability by improving dynamic performance
- Controlled dynamical interactions between devices
- Benefits to manufacturers of power electronics:
- Safe and reliable operation of devices
- Deployment for system-wide stability improvement

Today's Practice for Ensuring Transient Stability

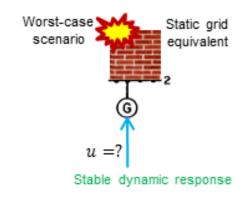
• Off-line stability assessment



• Special protection schemes



• Tuning controllers locally



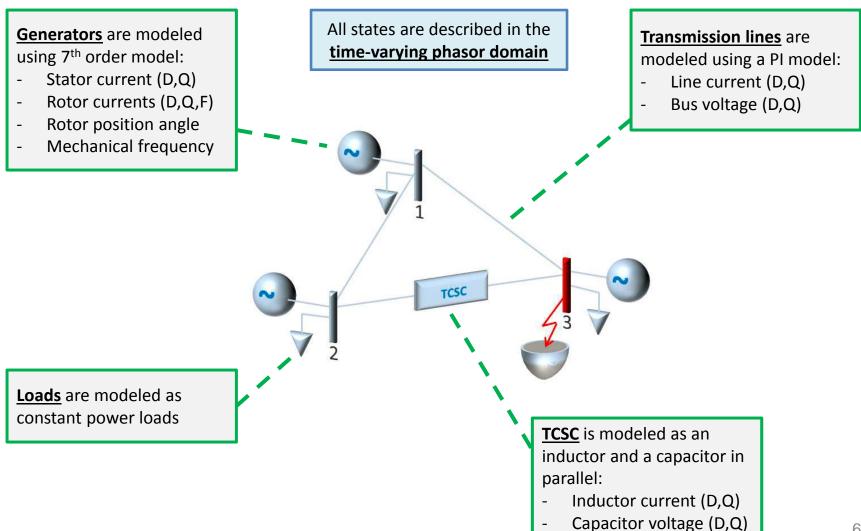
• What is missing?

- Conservative controller design
- Interactions are not captured when designing controllers
- 3. Use of power electronics as controllers in mesh grid topologies

Proposed Approach

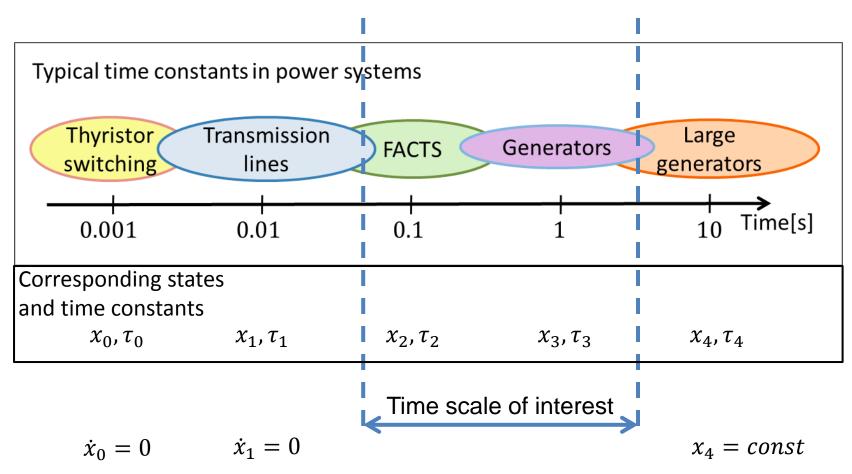
- Use line-flow power electronics as controllers because of
 - Fast thyristor switching (fast response time)
 - Potential to manage flows in the grid
- Energy-based modeling to capture interactions between FACTS and generators
- Tune controllers considering interactions
- Ectropy-based controller to redirect flows of energy in the grid
- SGRS module implementation using interaction-based models

A Comprehensive Power System Model

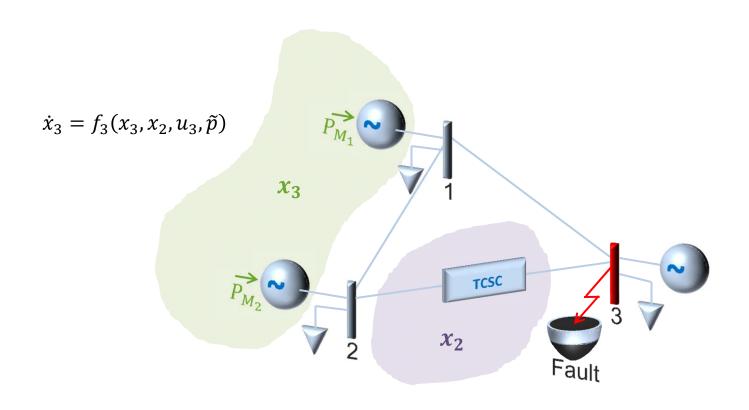


Extracting Time Scale of Interest

Singular perturbation is used to simplify the power system model



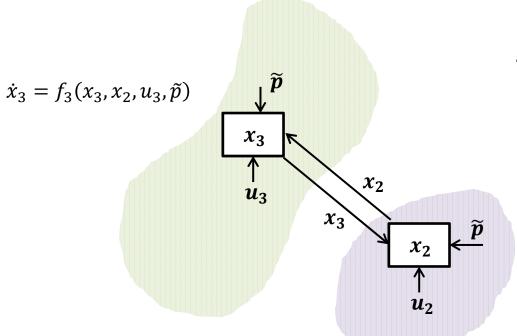
Reduced Order Model for Transient Stability



$$\dot{x}_2 = f_2(x_2, x_3, u_2, \tilde{p})$$

Reduced Order Model for Transient Stability Modular Form

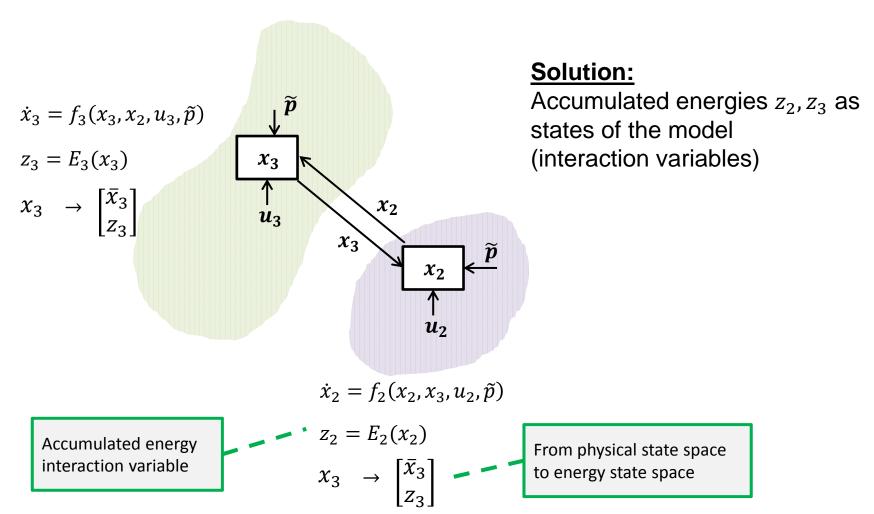
 $\dot{x}_2 = f_2(x_2, x_3, u_2, \tilde{p})$



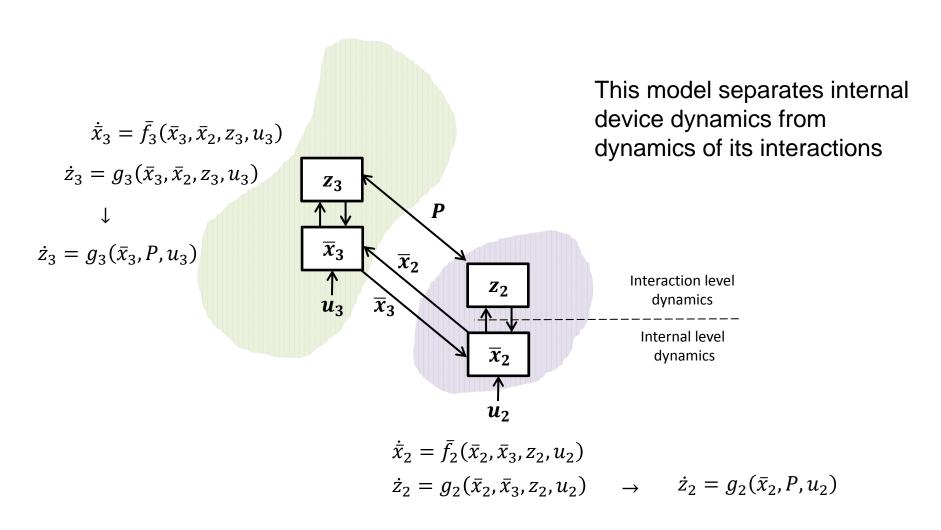
A practical concern:

Control signals u_2 , u_3 are, in general, functions of all system states x_2 , x_3

Introducing Interaction Variables

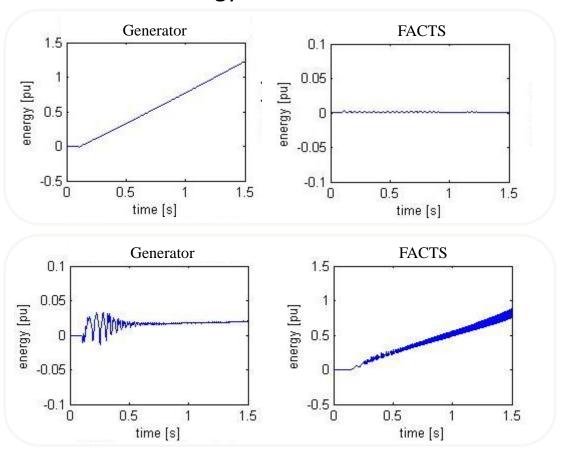


A Two-level Model Using Interaction Variables



Proposed Cooperative Controller

• Redistribute energy of disturbance



Accumulated (stored) energy in an uncontrolled system

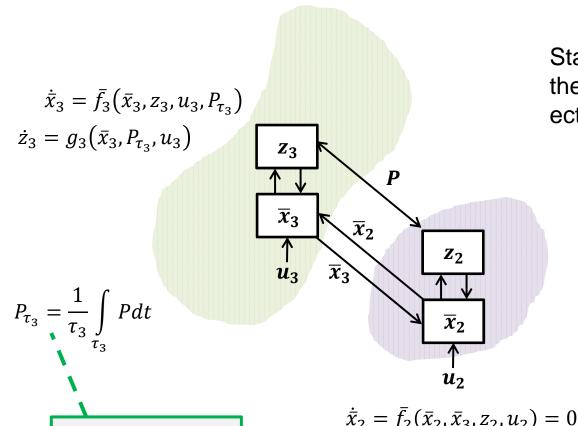
Accumulated (stored) energy in a system controlled by power electronics

Cooperative control is expressed in terms of higher (interaction) level dynamics.

M. Cvetkovic, M. Ilic, "Ectropy-based Nonlinear Control of FACTS for Transient Stabilization", IEEE Transactions on Power Systems, Vol. 29, No. 6, November 2014, pp. 3012-3020.

Control Objective at the Slower Time Scale

 $\dot{z}_2 = g_2(\bar{x}_2, P, u_2) = 0$



Stabilize interaction variable of the generators module using ectropy

$$\varepsilon = \frac{1}{2}(z_3 - z_3^*)^2$$

$$\dot{\varepsilon} = (z_3 - z_3^*)g_3(\bar{x}_3, P_{\tau_3}, u_3)$$

$$P_{\tau_3} = P$$

$$\downarrow$$

$$g_3(\bar{x}_3, P, u_3) = -K_z(z_3 - z_3^*)$$

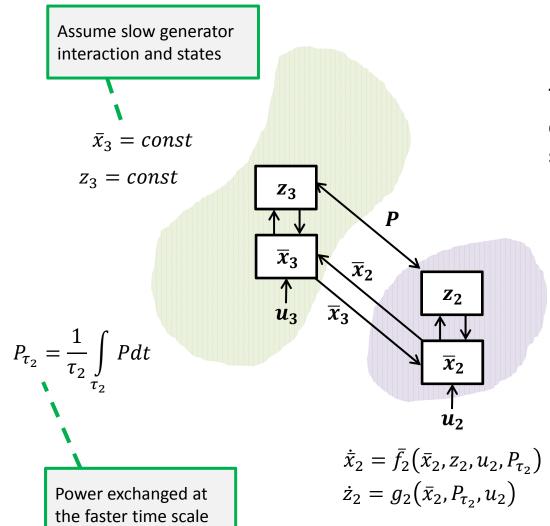
$$\dot{\varepsilon} < 0$$

Assume instantaneous dynamics of power electronics

Power exchanged at the slower time scale

M. Cvetkovic, M. Ilic, "Cooperative Line-flow Power Electronics Control for Transient Stabilization", IEEE Conference on Decision and Control, December 2014.

Control Logic at the Faster Time Scale



Track the power reference obtained from the ectropy stabilization problem

$$\nu = \frac{1}{2} (P_{\tau_2} - P_{\tau_3})^2$$

$$\dot{\varepsilon} = (P_{\tau_2} - P_{\tau_3}) \frac{dg_2(\bar{x}_2, P_{\tau_2}, u_2)}{dt}$$

$$u_{2} = u$$

$$\downarrow \qquad \qquad \downarrow$$

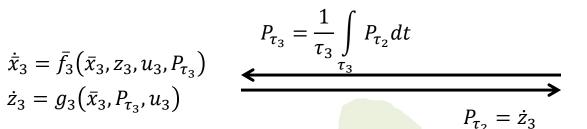
$$\frac{dg_{2}(\bar{x}_{2}, P_{\tau_{2}}, u)}{dt} = -K_{P}(P_{\tau_{2}} - P_{\tau_{3}})$$

$$\dot{v} < 0$$

Numerical Implementation for SGRS

$$\dot{\bar{x}}_3 = \bar{f}_3(\bar{x}_3, z_3, u_3, P_{\tau_3})$$

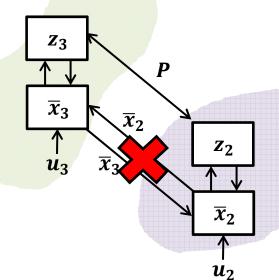
$$\dot{z}_3 = g_3(\bar{x}_3, P_{\tau_3}, u_3)$$



$$\dot{\bar{x}}_2 = \bar{f}_2(\bar{x}_2, z_2, u_2, P_{\tau_2})$$

$$\dot{z}_2 = g_2(\bar{x}_2, P_{\tau_2}, u_2)$$

 \bar{x}_3 fast compared to z_3 \bar{x}_3 evolves at rate τ_l , step l z_3 evolves at rate τ_3 , step N



 \bar{x}_2 at the same rate as z_2 \bar{x}_3 , z_3 evolve at rate τ_2 , step k

$$\bar{x}_{3}[l+1] = \bar{x}_{3}[l] + \tau_{l}\bar{f}_{3}(\bar{x}_{3}[l], z_{3}[l], u_{3}[l], P_{\tau_{3}}[l])$$

$$z_{3}[N+1] = z_{3}[N] + \tau_{3}g_{3}(\bar{x}_{3}[l], P_{\tau_{3}}[N], u_{3}[l])$$

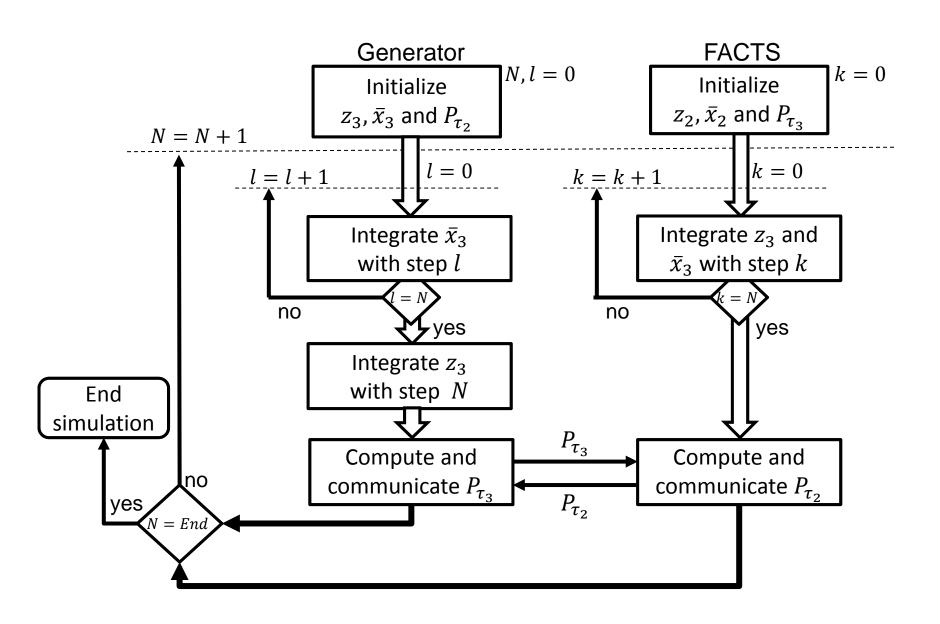
$$P_{\tau_{2}}[k] = \frac{z_{3}[N] - z_{3}[N-1]}{N}$$

$$\bar{x}_{2}[k+1] = \bar{x}_{2}[k] + \tau_{2}\bar{f}_{2}(\bar{x}_{2}[k], z_{2}[k], u_{2}[k], P_{\tau_{2}}[k])$$

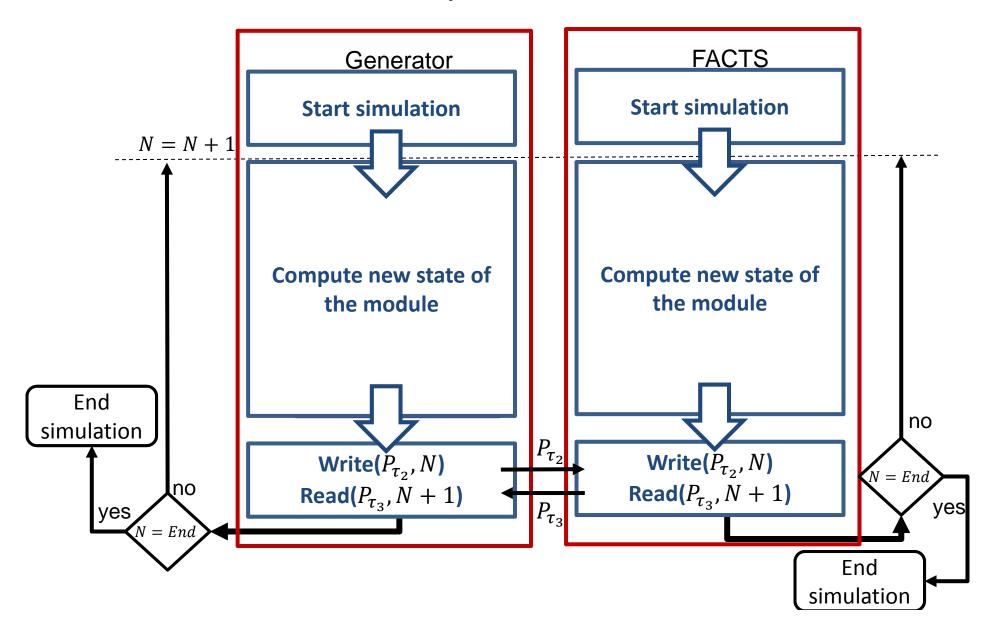
$$\dot{z}_{2}[k+1] = z_{2}[k] + \tau_{2}g_{2}(\bar{x}_{2}[k], P_{\tau_{2}}[k], u_{2}[k])$$

$$P_{\tau_{3}}[N] = \frac{1}{N/k} \sum_{i=1}^{N/k} P_{\tau_{2}}[N-1+i]$$
15

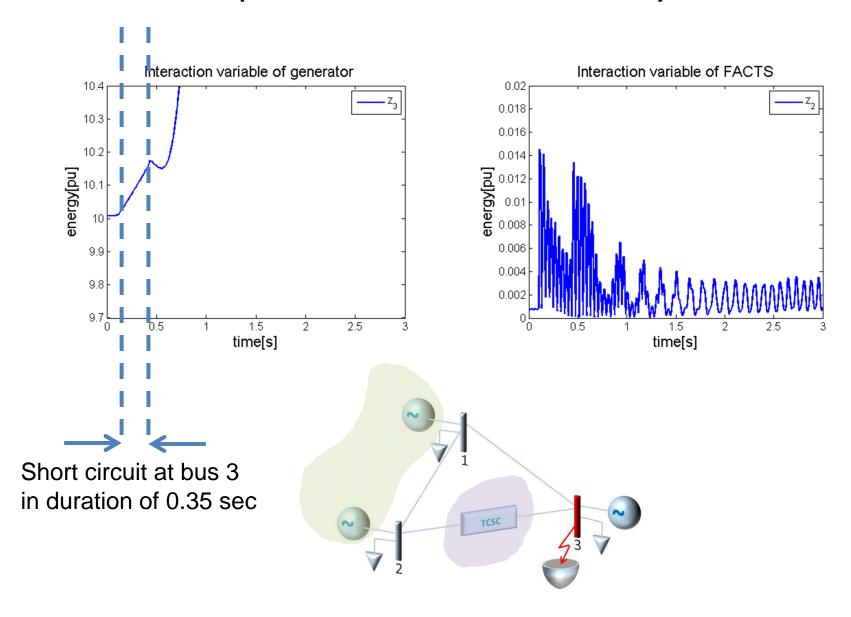
Numerical Integration Flow Chart



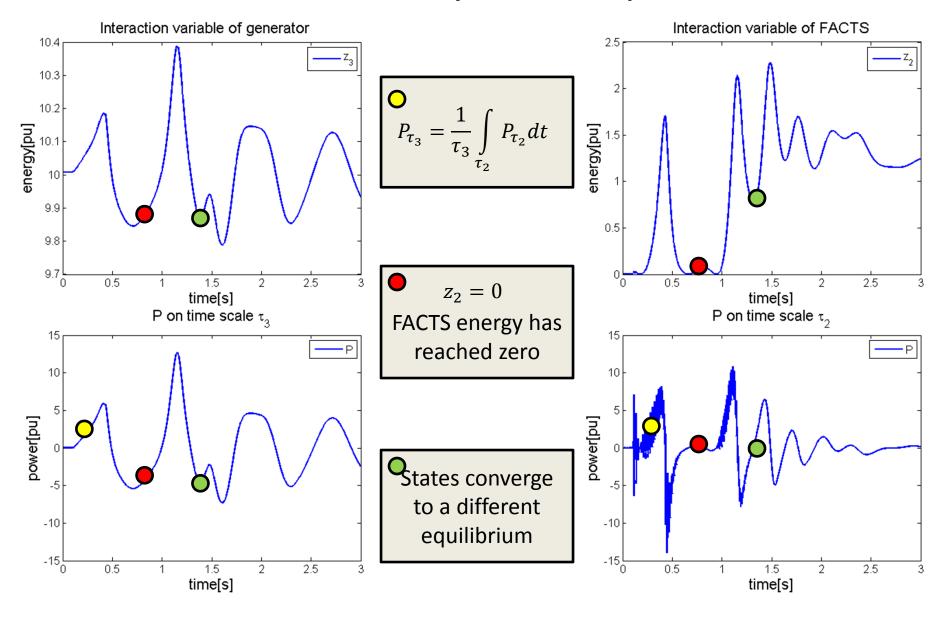
SGRS Implementation



Response of Uncontrolled System



Controlled System Response



Conclusions

- A two-level approach to power system modeling lends itself to:
 - Cooperative control design for power electronics
 - Time scale separation for reduced communication rate

Open questions:

- Sensitivity to time scale overlap
- Shortest communication rate between any two modules constrains the simulation
- Selection of modules for control purposes