
1

Optimal Regulation Provision by Aluminum
Smelters

Xiao Zhang, Gabriela Hug
Electrical and Computer Engineering, Carnegie Mellon University, USA

Abstract—The industrial electrolysis process which is used to
produce aluminum is a highly energy-intensive process. As it
is possible to adjust the power consumption of this process
on short notice without significantly affecting the quality of
the aluminum, aluminum smelting plants are able to provide
regulation to the electric power grid. In this paper, we focus
on determining the optimal regulation capacity that such a
manufacturing plant should provide to maximize the combined
profit from producing aluminum and providing regulation. The
approach is based on stochastic optimization and the stochastic
variable is the regulation signal sent to the smelter. Using
linear approximations of the high-resolution regulation signal
as scenarios, we can reduce the computational burden to solve
the associated optimization problem significantly. Simulations for
a specific aluminum smelting plant provide insights into the
optimal regulation provision by smelters with various cost and
price parameters.

Index Terms—Demand response, Regulation, AGC, Stochastic
programming, Industrial load.

I. NOMENCLATURE

H set of hours
I set of 5-minute intervals
S set of AGC signal scenarios
Ks set of AGC events in scenario s
L set of production lines
J set of production jobs
Vh regulation capacity in hour h
zl,i scheduled tap position for line l in interval i
ml,s,k tap movement of line l in scenario s at event k
ps probability of scenario s
Xs,k magnitude of AGC event k in scenario s
ts,k time that AGC event k occurs in scenario s
θl power adjustment per step for line l
τl time to move one step for line l
zupl , zlol tap position bounds for line l
V +
l,i , V

−
l,i available capacity for line l at inerval i

P 0
l base power consumption at zero tap
Wj minimum power consumption of job j
λEh profit of energy consumption during hour h
λTap
l cost of control for line l
λPh penalty of control error in hour h
λVh profit for regulation capacity in hour h

II. INTRODUCTION

A major global challenge in the coming decades is the
decarbonization of the electric energy system which will

require the integration of a large share of renewable generation
resources such as wind turbines and solar panels. However, the
power output from these resources are uncertain and can not be
controlled like conventional generation. Hence, dispatchable
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resources are needed to balance the variable power output.
A potential source to balance this variability is an increased
participation of demand response in power systems [1] [2].

Utilities are developing demand response programs to en-
courage electricity consumers to actively participate in the
power grid. Hence, research focuses on determining the po-
tential resources of individual demand response and the inte-
gration of these resources into power system. For instance, [3]
and [4] investigate the coordination of PHEV charging with
other controllable loads and cogeneration units; [5] and [6]
discuss the demand response provided by commercial build-
ings; [7] and [8] investigate the interaction and coordination
of utilities and customers.

There has also been particular interest in the participation
of industrial loads in demand response. In [9], the techni-
cal and economic potential of energy intensive industries to
provide demand response in Germany is discussed. Chlo-
ralkali processes, mechanical wood pulp production, electric
arc furnaces, aluminum electrolysis and cement milling are
identified as promising sources for demand response. Detailed
discussions of the industrial sector and its role in demand
response including food processing plants and greenhouses
can be found in [10] and [11]. In [12] and [13], the chemical
engineering community has proposed scheduling methods for
industrial plants taking into account the impacts of electricity
markets and varying electricity prices.

Electrolysis is an energy intensive chemical process which
is flexible enough to react to continuous requests to increase
or decrease its energy consumption on a very short term
basis. Consequently, it is a promising resource for demand
response from industry. This includes both chloralkali and
aluminum electrolysis. Alcoa’s Warrick Operation is already
providing regulation service to MISO [14]. Specifically, the
plant installed communication and control systems to meet the
requirements to participate in regulation which is generally
implemented using Automatic Generation Control (AGC).
Similar to generators, the aluminum production plant receives
the AGC signal and adjusts its power consumption according
to the signal. This project is considered to be the pilot project
for the provision of regulation services by any industrial pro-
cessing plant. In this paper, we propose a method which allows
a plant with an electrolysis process to optimally determine the
regulation capacity it should provide. The approach is based
on the physical model of the process and its integration into a
stochastic optimization problem in which the simplfied AGC
signal is the stochastic input variable.

III. PROBLEM STATEMENT

In ancillary service markets, a market participant bids its
hourly regulation capacity and the desired price. The bid
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and the clearing price are determined by the market opera-
tor after collecting offers from all market participants [15].
The participant should provide both positive and negative
capacities indicating that if a manufacturing plant wants to
provide regulation, it needs to operate below its full production
capacity to ensure the ability to follow regulation in both
directions. This regulation capacity is required by most ISOs
to remain the same for the entire hour. In our formulation,
we assume that positive and negative capacities are equal, but
this could easily be relaxed. The plant also needs to provide
a prediction of its energy consumption for the next hour in
a resolution of 5 minutes, i.e. 12 predicted values for the
hour. These predictions serve as the baseline for the regulation
performance evaluation. This power prediction reflects the
plant’s production schedule if no regulation is provided.

Aluminum smelter and other electrolysis plants are able to
adjust their power consumption by adjusting tap changers in
the rectifier stations that supply DC energy to the production
lines. The tap positions can be changed quickly and accu-
rately, enabling the provision of fast and precise regulation.
Though the chemical relationship within electrolysis is fairly
complex [16] and the traditional view for over almost a
century has been that keeping current and voltage stable was
critical for a stable and efficient aluminum production, it
has been demonstrated that the voltage of each potline can
be changed very frequently at Alcoa’s Warrick Operation,
providing regulation service while carrying on electrolysis
production at the same time [14].

Once the plant is cleared for a certain regulation capacity,
the plant receives compensation for the lost opportunity of
electrolysis production by being paid for the provision of
regulation capacity. It is obliged to fully respond to AGC
commands within that capacity range, otherwise a nonper-
formance penalty is imposed and the performance scoring is
affected. Regulation performance scoring in practice may be
very complicated to determine [17], hence, here we simplify
the calculation by only penalizing the difference between AGC
command and regulation mileage. In its cost/benefit optimiza-
tion, the industrial plant also needs to take into account its
own production costs such as labor cost, product sales, energy
cost, rectifier station degradation and so on.

To simplify the problem, we made the following assump-
tions for the considered electrolysis process:

Assumption 1: The production rate is proportional to the
power consumption and the power consumption is proportional
to the voltage at the rectifier which controls the electrolysis
process. The voltage on the other hand is linearly dependent
on the rectifier tap changer position.

Assumption 2: The regulation revenue is proportional to
the cleared capacity, the production revenue is proportional
to the energy consumed, the control cost is proportional to the
tap movement and the performance penalty is proportional to
the difference between regulation command and mileage. All
those prices are assumed to be parameters.

IV. AGC SIGNAL SIMPLIFICATION

Automatic generation control regulates the power output
of generators to balance generation and load momentarily.

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

−1

−0.5

0

0.5

1

PJM RegD 2012/12/18 1st hour

time (s)

A
G

C
 (

p.
u.

)

 

 

Original AGC

Simplification

Fig. 1. Simplification of AGC Signals. The red square dashed line represents
the linear simplification. The blue solid line represents the original PJM’s
RegD signals of the first hour on 12/18/2012 [18].

It is expected that in the future a greater contribution of
such regulation is provided by storage and flexible demand.
The AGC commands are sent by the control center based
on the real time power system conditions. The regulation
provider commits to responding to the commands which are
sent every 2s or 4s. The p.u. AGC signal multiplied by the
provided regulation capacity is the AGC command that the
plant committed to follow.

Given the high resolution of the AGC signal it is very
difficult if not impossible to predict the signal for a longer time
frame. However, as we intend to use stochastic optimization
to determine the optimal regulation capacity, we need to find a
way to generate scenarios and capture the expected regulation
provision without having an accurate prediction of the AGC
signal. Hence, we propose a linear simplification of AGC
signals by local extreme points and then create scenarios based
on such extreme points. First, we apply a low pass filter to the
original AGC signal to remove high frequency noise. Local
extreme points are then identified by numerical derivatives
along the curve, i.e. whenever the derivative changes its sign,
a local extreme point has been detected. Successive local
extreme points that fall within short distances both in time and
magnitude, e.g. time gaps less than 5s and value gaps less than
0.025p.u., are further aggregated as one single point. Hence,
local extreme points which will be called AGC events in the
remainder of the paper are identified and used for scenario
generation. Piecewise segments characterized by those AGC
events serve as a linear simplification of the AGC signal in
between extreme points as shown in Fig. 1.

This simplification approximates the real trajectory of the
AGC signal by piecewise linear segments. The statistics of
the AGC events’ magnitude and time interval are provided in
Fig. 2 and Fig. 3. Typically around 40 - 60 AGC events are
presented in an hour’s worth of regulation D signal. Given the
original scenarios of AGC signals, we apply the simplification
and obtain the simplified scenarios. Then, the proposed model
only responds to AGC events of the simplified scenarios and
tracks the piecewise linear trajectory. The approximation here
is reasonably sound and is able to reduce the computational
burden in the stochastic optimization significantly.

V. OPTIMAL REGULATION CAPACITY

In this section, the proposed optimal capacity provision
model is presented by which the plant decides its hourly
regulation capacity Vh that would be optimal for the plant
for the upcoming operating period. We focus on the regulation
provision from the industrial electrolysis process and optimize
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Fig. 2. Histogram of AGC Events’ Magnitude. The AGC events are
simplifications of PJM’s RegD Signals from 12/18/2012 to 01/18/2013 [18].
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Fig. 3. Histogram of AGC Events’ Time Interval - the time between two
successive AGC events.

its participation. Future work will focus on building a bidding
curve which the plant should bid into the market. As of now,
we determine the capacity that the plant ideally is cleared
for, assuming that the price it will receive has been predicted
reasonably well. Power flow constraints are not considered, as
we do not study the overall system in this paper. The plant
first needs to submit its predicted power consumption for every
5 minutes of the next hour. These values serve as a baseline
for the regulation provision and basically correspond to the
scheduled rectifier tap changer positions zl,i. The regulation
command it needs to follow is equal to the multiplication of
Vh and Xs,k where s indicates the scenario and k the k-th
AGC event. In order to follow this command, the tap position
of the rectifier of production line l moves by ml,s,k steps from
its original position zl,i. The rectifier tap positions evolve in
a discrete manner, hence, zl,i and ml,s,k are integer variables.
However, since the number of ml,s,k grows with the number
of scenarios and trajectory simplification is adopted, ml,s,k is
relaxed and assumed to be continuous in order to simplify the
calculations.

A. Constraints

1) Rectifier Tap Changer: Rectifier tap changers are de-
signed to operate within a certain range. In addition, changing
the tap position is a mechanical process which means that there
is a limit on how much change can be achieved within a certain
amount of time. Consequently, the following constraints need
to hold for ∀l ∈ L, i ∈ I, s ∈ S, k ∈ Ks :

zlol ≤ zl,I(k) +ml,s,k ≤ zupl (1)

dzl,s,k = |zl,I(k+1) +ml,s,k+1 − zl,I(k) −ml,s,k| (2)

dzl,s,k · τl ≤ ts,k+1 − ts,k (3)

where I(·) is a function mapping event k to its corresponding
5min interval i.

2) Regulation Capacity: The maximum regulation capacity
is the summation of available capacities over all production
lines. However, this capacity needs to remain the same for
the entire hour which is limited by the available capacity
within every 5min interval. For ∀l ∈ L, i ∈ i(h), the following
constraints need to hold:

VH(i) ≤
∑
l∈L

V +
l,i (4)

VH(i) ≤
∑
l∈L

V −l,i (5)

V +
l,i ≤ θl · (z

up
l − zl,i) (6)

V −l,i ≤ θl · (zl,i − z
lo
l ) (7)

where H(·) is a function mapping the 5min intervals i to its
corresponding operating hour h.

3) Plant Scheduling: The main purpose of the plant is to
carry out electrolysis and produce aluminium. Hence, we im-
pose a constraint which ensures that production targets are met.
Since production is proportional to electricity consumption,
the constraint can be formulated as a lower constraint on the
energy consumption of the plant. Hence, for ∀j ∈ J, s ∈ S:∑

l∈L

∑
k∈K(j)

((zl,I(k) +ml,s,k) · θl + P 0
l ) · T (k) ≥Wj (8)

where K(j) stands for all AGC events that occur during
production task j. T (·) is a function that calculates the time
duration for each AGC event k. For event k in scenario s, T (·)
returns (ts,k+1 − ts,k−1)/2, i.e. the time duration it affects
the energy consumption. This constraint should hold for every
scenario making sure the plant’s minimum production level is
ensured.
B. Objective

The overall objective of the optimization problem is a sum
of multiple cost and revenue terms.

1) Energy Consumption: The value λEh denotes the per
unit profits made by consuming electricity and producing
aluminum, which includes the revenue from selling aluminum
and the combined costs of producing aluminum. That part of
the objective function is given by

EProfit =
∑
s∈S

ps
∑
l∈L

∑
k∈Ks

θl(zl,i(k) +ml,s,k)T (k)λEh (9)

2) Control Action: There is a limit on how much the tap
of a rectifier could be changed because intensive movement
leads to frequent replacement of the rectifiers. The price
λTap
l reflects the average cost per movement resulting in the

following contribution to the overall objective

ACost =
∑
s∈S

ps
∑
l∈L

∑
k∈Ks

dzl,s,kλ
Tap
l (10)

3) Deployment Error: As a demand resource, the regulation
deployment is the negative summation of all tap changers
multiplied by the change in energy consumption per tap step,
thus the regulation error δs,k is equal to:

δs,k = |Xt,sVh +
∑
l∈L

θlml,s,k|

and the resulting penalty is given by:

Penalty =
∑
s∈S

ps
∑
k∈Ks

δs,kλ
P
H(I(k)) (11)
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TABLE I
POTLINE PARAMETERS

l θl/MW τl/s zupl zlol P 0
l /MW

1 0.8 5 10 -10 100
2 1.2 5 9 -9 100
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Fig. 4. Simplified AGC Signal Scenarios. Five scenarios are taken from the
first hour’s PJM Regulation-D signals from 2012/12/18 to 2012/12/22 [18].
These five scenarios and their negative constitute the original ten scenario
AGC set that is positive and negative well balanced.

4) Regulation Capacity: The electrolysis plant receives a
payment for the provision of its regulation capacity Vh, i.e.
the plant’s revenue from regulation provision is given by:

V Revenue =
∑
h∈H

Vh · λVh (12)

The overall objective function is given by the sum over all of
these objectives resulting in:

min −EProfit+ACost+ Penalty − V Revenue (13)

The resulting overall problem formulation is a mixed integer
linear programming problem.

VI. SIMULATION

A. Hourly Regulation Provision
1) Base Case: We consider an aluminum smelter that

optimizes its hourly regulation provision. It consists of two
potlines for which the parameters are listed in Table I. Ten
AGC scenarios are considered and it is assumed that the
probability of occurrence of each scenario is the same. The
linearized evolution of the AGC signal in these scenarios is
shown in Fig. 4. There’s one production task to complete
within the considered hour and the minimum production is
set to 95% of the base production which corresponds to the
production achieved if the tap position is zero. The minimum
regulation capacity required by the ISO is assumed to be 1MW.

In the following, we will carry out a range of simulations
for different combinations of values for the price parameters.
Hence, we define a price vector

π := (λEh , λ
Tap
l , λPh , λ

V
l )

to indicate the values for the individual parameters with units
in $/MWh, $, $/MW, $/MW. For the base case, we choose
π as (20,1.5,3,30). For this base case, the optimal regulation
capacity is 17.6MW and the average power consumption over
all scenarios is 200.68MWh. Fig. 5 gives more detailed results
showing the evolution of the power production over the entire
hour, the available regulation capacity and the deviations from
the regulation signal.

TABLE II
RESULTS UNDER DIFFERENT PARAMETERS

π Vh/MW W̄ /MWh
(20, 1.5, 3, 30) 17.6 200.68
(10, 1.5, 3, 30) 18.8 199.40
(50, 1.5, 3, 30) 14.0 205.28

(100, 1.5, 3, 30) 9.6 211.71
(20, 0, 3, 30) 18.8 198.73
(20, 0.5, 3, 30) 17.6 199.66
(20, 5, 3, 30) 1.0 198.22
(20, 1.5, 1, 30) 18.8 203.07
(20, 1.5, 10, 30) 15.2 200.85
(20, 1.5, 20, 30) 10.8 200.50
(20, 1.5, 3, 10) 1.0 198.31
(20, 1.5, 3, 20) 10.8 200.38
(20, 1.5, 3, 40) 18.8 199.75

2) Effects of Prices: Now, individual values in π are varied
to investigate the impact on optimal regulation capacity and
energy consumption. The results are summarized in Table II.
As the profit price increases, the average energy consumption
grows indicating that the plant produces more aluminum. As
the cost of tap movement increases, the optimal regulation
capacity decreases. The same also holds for if the penalty on
deviations from the requested AGC signal increases. In this
case, concurrently with a decrease in regulation capacity, the
regulation error decreases as shown in Fig. 6. Finally, as the
compensation for regulation increases, the optimal regulation
capacity increases.

B. Multi-hour Regulation Provision

In practice, the plant may have multiple hours to produce
a certain amount of aluminum which adds some additional
flexibility to the production schedule. Hence, here we carry out
a three hour simulation with again 10 different scenarios for
the AGC signal. It is assumed that it needs to produce at least
95% of the base production. The simulated price parameters
π are (10,1,5,30) (50,1,5,10) (12,1,5,32) for the three hours
which encourages regulation participation in the 1st and 3rd
hour while encouraging increased production in the 2nd hour.
The other parameters are same as in the base case. The results
for the optimal regulation capacities are shown in Fig. 7 .

VII. CONCLUSION

This paper considers the regulation participation from in-
dustrial demand and proposes an optimal regulation capacity
provision model for a given regulation price for electrolysis
processing plants. The stochastic optimization model uses
simplified AGC signal scenarios to consider the influence of
regulation participation and takes into account the impact of
different price settings on the decision of regulation capacity
provision. Increasing the compensation for regulation capacity
encourages higher capacity provision, while too expensive
control cost or too high penalties on non-performance lead
to low regulation participation. The simulation results suggest
more electricity consumption (and therefore more aluminium
production) and lower regulation participation when the profit
price is higher.

The main contributions of this paper are: (a) proposing
AGC signal simplification method that enables regulation
participation analysis by a stochastic programming method
with reasonable approximation and desirable computational
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Fig. 5. Results under π = (20,1.5,3,30). (a) Power consumption: red square line represents power prediction baseline while blue dashed lines denote power
consumption under scenarios. (b) Regulation Capacity: black dashed lines present available positive or negative capacities for each potline, red square lines
represent total available capacities while blue circle lines display optimal capacity to provide. (c) Regulation Performance: the deviation between regulation
mileage and original AGC command in each scenario is calculated on 2s basis and the average deviation over all scenarios is displayed as the red line.
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Fig. 6. Regulation Performance under π = (20, 1.5, λP , 30): (a)λP =1, (b)λP =10, (c)λP =20. As penalty increases, the regulation accurateness improves.
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Fig. 7. Regulation Capacity for 3 hour case.

complexity; (b) optimizing regulation capacity provision for
electrolysis processing plants which serves as a potential tool
for practical operation. Future work includes further investiga-
tion of AGC data, bidding curve design and optimization for
longer-term scheduling.
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