
Proactive Containment of Malice
in Survivable Distributed Systems∗

Michael G. Merideth and Priya Narasimhan
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213-3890

Abstract The uncontrolled propagation of faults due to ma-
licious intrusion can severely decrease system performance
and survivability. Our goal is to employ available information
about known or suspected faults in order to provide collusion-
avoidance and epidemic-avoidance. We proactively make use
of knowledge of faults to notify potentially damaged areas of
the system, in order to contain the tainted parts. Our objective
is to lessen the impact of an intrusion, by spreading the per-
formance cost of recovery over a controlled period of time.

Keywords: Byzantine, collusion, intrusion, proactive, repli-
cation

1 Introduction

Survivability is the ability to continue to operate cor-
rectly, despite the presence of malicious or arbitrary
faults; this ability is crucial to systems that can impact
human life, e.g., the electric power grid. Most surviv-
able systems detect a malicious fault, remove the fault
from the system, and then attempt to recover from the
fault. This approach is feasible as long as the fault is
isolated, and has not pervaded into the system.

In distributed systems, which contain interconnected
components that communicate with each other, it is pos-
sible for a fault to taint other parts of the system before
being detected and removed. Thus, not accounting for
the propagation of a fault has four consequences: (i)
it underutilizes valuable information, which is proba-
bly available in the system, that, if applied, might check
the spread of the fault, (ii) the system waits to detect a
fault in possibly tainted components (the “innocent until
proven guilty” strategy) instead of proactively seeking
out these components to initiate their recovery, (iii) a
series of such propagated faults could lead to the num-
ber of tainted components being sufficiently large to

∗The authors wish to acknowledge support through the High
Dependability Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

prohibit the reliable use of the system, and (iv) even
a small number of components with undetected faults
could severely disrupt the system through collusion and
coordinated action.

We borrow, from epidemiology, existing terminol-
ogy that we adapt in order to discuss some of the key
aspects of our system. In this paper, fault-transmission
refers to the propagation of a fault, analogous to the
spread of an infectious disease. Outbreak refers to the
case when the fault-transmission has led to the taint-
ing of one or more nodes in the system. An epidemic
is an outbreak from which the system cannot recover.
Containment involves identifying the fault, isolating or
restricting the faulty nodes, and recovering from any
adverse effects. There are four phases in the lifecy-
cle of a faulty process: (i) incubation-period, the time
from the fault’s initial presence in the system, up to the
(ii) symptomatic-period, when the fault starts to exhibit
malicious/untoward behavior, until (iii) fault-removal,
when the fault is removed from the system, and finally,
(iv) fault-recovery, when the faulty process is reinstated
to correct operation. Fault-detection can occur anytime
during (ii). The communicable-period, when the fault
is capable of being transmitted to the rest of the sys-
tem, can occur anytime between the onset of (i) and the
completion of (iii).

In this paper, we propose that by proactively prob-
ing for, and using, information extracted from the sys-
tem when a fault is detected, we can improve both
system performance and survivability. In addition, if
we incorporate mechanisms into survivable infrastruc-
tures to enable them to yield this information read-
ily and rapidly, we can develop systems that exhibit
collusion-avoidance and epidemic-avoidance. Our pri-
mary contribution is the recognition that intrusion in-
formation can be (but unfortunately, is often not) em-
ployed to enable the containment of fault-transmission,
and, thereby, to maintain control over the behavior of
the system.



The rest of this paper is organized as follows. Sec-
tion 2 describes our working assumptions, and intro-
duces proactive-containment as a solution to the fault-
transmission problem. Section 3 provides a way of rea-
soning about the tradeoffs between performance and
proactive recovery. Section 4 discusses mechanisms to
support proactive containment. In Section 5, we show
how our work builds on existing survivability founda-
tions, and Section 6 concludes this paper.

2 Proactive Containment
We consider a distributed asynchronous system with un-
bounded latencies and an inherently unreliable trans-
mission medium. Our fault model considers processor-
and process-crash faults, communication faults such as
message losses and message corruption, and Byzan-
tine/arbitrary faults in processes and processors. Us-
ing an underlying secure reliable totally-ordered group
communication system [1, 2, 3], we can tolerate the
communication faults and the processor-level arbitrary
faults of interest to us. Our previous research [4] has
shown us that the process-level fault-tolerance guaran-
tees need to be layered over the processor-level fault-
tolerance guarantees to ensure Byzantine-fault toler-
ance at the process and the processor levels.

Byzantine-fault detection [5], provided by the under-
lying secure group communication system, allows us
to identify a malicious processor. Using active replica-
tion [6] with majority voting, we can tolerate processor-
and process-level crash faults, as well as arbitrary faults
and value faults at the process level. As is common with
systems that employ active replication, we assume that
the application is deterministic.1

We define inter-process distance (IPD) as the vir-
tual distance between any two processes in the system,
e.g., an IPD of one from a faulty process refers to any
process that is one “hop” downstream from the fault,
i.e., it receives messages directly from the faulty pro-
cess, whereas an IPD of two refers to a process that
is two “hops” downstream from the fault. The con-
cept of fault-transmission is illustrated in Figure 1 (the
fault-free case is not shown in the figure). The example
shows communication between Byzantine-fault tolerant
process groups. The replicas in a process group work
together to provide a single reliable service.

Figure 1(a) shows that a replica in group A has be-
come maliciously faulty, through some external or in-
ternal event or interaction. At this point, the malicious
process has not yet been detected as faulty and, thus,

1Some survivable systems relax the non-determinism requirement
for state, but not for output values. This introduces the problem of
being unable to distinguish between non-determinism and malice.

the fault is latent. In Figure 1(b), the malicious replica
in group A transmits its fault to a replica in group B.
This is an instance of the fault-transmission problem on
which we focus are energies; the general issue is that
the fault in group A might spread unchecked, eventu-
ally resulting in an epidemic or a collusion-enabled co-
ordinated attack. Figure 1(c) shows the detection of the
malicious replica in group A; the more interesting part
of this figure is that the correct replicas of group B are

Replicated
Process A

Inter-Process Distance

Inter-Process Distance

Replicated
Process B

Replicated
Process CMalicious

Replica

(a)

(b)

(d)

(c)

Source of
infection

Malice
spreads
covertly

Malicious
replica
removed

Correct
replica
recovered

Suspected
replica
confined

Notifications

Figure 1: (a) Incubation period, (b) communicable period
and fault transmission, (c) fault removal and proactive notifi-
cation, (d) fault recovery and containment. Dashed lines de-
note secure reliable group communication.



notified of the presence of a malicious member replica
in their group. This notification is an intrinsic part of the
proactive containment strategy. In Figure 1(d), fault-
recovery is initiated, restoring group A to its Byzantine-
fault tolerant strength, in terms of the number of repli-
cas. Furthermore, the malicious replica in group B has
been contained—in the sense that it has now fallen un-
der suspicion; therefore, its range of activities might be
restricted until it displays trustworthy behavior. Note
that our proactive fault-containment strategy hinges on
our ability to identify a malicious replica within a group.

Proactive containment seeks to minimize the
communicable-period of the faulty process and to limit
the outbreak radius. In the example just given, the
communicable-period was reduced, via value-fault de-
tection and recovery, and the outbreak radius was re-
stricted (to an IPD of one), via proactive notification.
Thus, the potential damage to the system, caused by the
fault source in group A, has now been mitigated. Over
time, the replica in group B might be detected to be
malicious; it would then be removed from the system as
well.

The key part of the proactive containment strategy
is the determination that a replica in group B has been
tainted by a replica in group A. This is possible only
through the tracking of the possible avenues—secure
or covert—of infection that stem from the malicious
replica in group A. The most interesting cases in proac-
tive containment occur if the fault-transmission takes
place during the incubation-period for the malicious
replica in group A, i.e., even before this faulty replica
begins to exhibit symptoms.

Note that malice can be transmitted via covert point-
to-point channels between any two replicas either in the
same group or in different groups. However, malice
cannot be transmitted from one replica to another via
the secure group communication system, because the
infrastructural voting mechanisms support value-fault
detection, which make it possible to detect an anoma-
lous transmission from a malicious replica. To han-
dle the case when the theoretical Byzantine-fault tol-
erance guarantees are violated (one-third or more of the
replicas in the group are malicious) and existing voting
mechanisms do not suffice, we will develop new ways
of detecting malice.

3 Analysis

3.1 Modeling Fault-Transmission
Figure 2 shows fault-transmission starting from a single
malicious replica, which acts as the fault source. Here,
the malicious replica can communicate with three other
processes—each located at an IPD of one away from the

fault source—via distinct covert channels. These three
processes are, in turn, connected to other processes—
each located at an IPD of two away from the fault
source. In the figure, we focus on three distinct paths of
fault-transmission—Paths A, B and C—each radiating
from the fault source, and then spanning a specific set
of processes that may be tainted successively by fault-
transmission.

The directed path from any process P1 to a process
P2 is labeled with a number that represents P2’s rela-
tive susceptibility with regard to P1, i.e., the probabil-
ity that the receiving process P2 will be tainted, given
that the transmitting process P1 has been tainted. For
example, the process on Path A at an IPD of one away
from the fault source has a 45-percent chance of be-
ing tainted by the malicious replica; if this process be-
comes corrupted, then its downstream neighbor, at an
IPD of two away from the fault source, has a 60-percent
chance of being tainted.2 Note that some of the paths
(Paths B and C) contain firewalls that might partially
filter any malicious traffic, that is, the relative suscep-

2These numbers are intended to be conceptually illustrative, and
should not be construed as real data. We intend, however, to gather
data in order to assign relative susceptibilities to various parts of the
system.

Malicious
Replica

Firewall Process in
Contamination Path

Other connected
Process

0.4

0.45
0.6

0.8

0.1

0.01

0.35

0.02

0.9

Distance=3

Distance=2

Distance=1

Path A

Path B

Path C

Figure 2: Three possible corruption paths, each with varying
degrees of relative susceptibility.



tibility of a downstream process might be lowered by
placing a firewall before upstream traffic reaches it. On
the other hand, processes on Path A display increasing
relative susceptibilities; this means that the risk of fault-
transmission (and therefore, the penetration of the fault
into the system) is higher, because each process, once
tainted, does little to protect the downstream processes
in its path.

The three paths are presented in order to show ex-
amples of three possible scenarios that we might expect
to encounter in the real world. For instance, Path C

might represent the route, from an Internet-enabled web
client, to server processes inside an industrial corpora-
tion. On Path C, the process at IPD=1 might repre-
sent the company’s front-end web-server, the process
at IPD=2 might represent the company’s internet-to-
intranet gateway machine behind a firewall, while the
processes at IPD=3 might represent the back-end pro-
cessing servers within the company’s intranet. Corrupt-
ing the web-server might be a difficult task (relative sus-
ceptibility = 35 percent), as such systems are typically
designed with security in mind. Even if it were cor-
rupted, the web-server would find it even harder (rel-
ative susceptibility = 2 percent) to corrupt the gateway
machine, given that the gateway is located behind a fire-
wall. However, if the gateway were breached, then,
the corruption might become rampant within the in-
tranet, given that the relative susceptibilities within the
intranets of companies are usually high (about 90 per-
cent, in the example shown). Thus, the last line of de-
fense in this case is likely to cause the most damage,
if corrupted. Path A models applications where secu-
rity guarantees diminish with increasing distance from
a highly protected core, given that the core has already
become tainted. On the other hand, Path B represents
an application with increasingly stringent lines of de-
fense spanning the connected processes; this would be
useful in modeling military applications where layer
upon layer of security and access control are used to
protect a critical resource, such as a target-engagement
system.

Apart from allowing us to model the relative con-
tamination of various paths in the system, the notion
of relative susceptibility is useful in deciding if, and
how much, recovery action ought to be taken. For one,
it allows us to examine the vulnerable points in each
possible path of fault-transmission. It also equips the
survivable infrastructure with an estimate of the speed
with which a fault might taint processes in its path. This
form of advance warning, if propagated faster than the
fault itself, can result in proactive fault-tolerance and
fault-recovery without needless loss of resilience. Fur-
thermore, the advance warning might also enable un-
tainted downstream processes to deploy additional se-

curity mechanisms dynamically, e.g., increase access
control and filtering, in preparation for their possible
infection.

3.2 Performance Issues
Proactive fault-containment mechanisms are not inex-
pensive. Enough information needs to be extracted from
the system in order to enable untainted parts of the sys-
tem to defend themselves from impending malice. Iden-
tifying this information in distributed systems is diffi-
cult, because it can not be found at a centralized loca-
tion; therefore, it needs to be first aggregated from dif-
ferent sources, and then interpreted to yield something
of value.

There are two parts to the performance cost of proac-
tive fault-containment. One part arises primarily from
the continuous book-keeping that needs to occur at vari-
ous parts of the system, in terms of (i) recording incom-
ing/outgoing invocations and responses at processes,
(ii) discovering the different forms of communication
that are usable by processes, and (iii) profiling the “nor-
mal” behavior of processes, in order to be able to detect
any anomalous behaviors. The other contributor to the
performance cost is the proactive notification/recovery;
the period of reinforcement, at the untainted parts of the
system, could result in increased resource usage and re-
duced performance.

Thus, indiscriminate use of the proactive mecha-
nisms is wasteful of resources and of useful work that
the system might instead perform. The relative sus-
ceptibility of the different processes in the system is
a useful parameter in determining how quickly, and to
what extent, the proactive fault-containment must hap-
pen. Thus, we need to determine the relative suscepti-
bility, as well as the criticality, of every process in our
system, so that we might contain the fault-transmission
effectively, but only when needed.

In this context, it is worth mentioning that, without
the advance notification of the possible tainting of the
system, we would have to wait for existing Byzantine-
fault detection mechanisms to detect malice. Unfortu-
nately, Byzantine-fault-tolerant service-replication pro-
tocols are expensive both in terms of time and in terms
of bandwidth. Thus, the more frequently the Byzantine-
fault detector is exercised, the worse the performance.
If malice spreads unchecked, without proactive notifi-
cation, it is likely that the Byzantine-fault detector will
be exercised frequently, thereby resulting in degraded
performance.

Knowing the speed of the fault-transmission would
enable us to estimate the outbreak radius, in order to
focus the proactive recovery efforts. The communica-
bility of the corruption can affect the speed of the fault-



transmission; other factors include the number of paths
radiating from the fault source, the number of processes
connected (directly or indirectly) to the fault source, and
the rate at which the fault source can send messages.
It is also worth considering the severity of the conse-
quences of ignoring the advance warnings. In some
cases, particularly when the application is not perform-
ing mission-critical operations, ignoring the warnings
for a period of time might be acceptable. Finally, it is
possible that the corruption is transient, meaning that it
could disappear on its own. Therefore, if we were cer-
tain of a fault’s transience, proactive recovery might not
be worth the cost.

4 Candidate Mechanisms

Enabling proactive recovery hinges on the capacity to
detect faulty behavior, and to distinguish a malicious
process from a correct process. Byzantine-fault detec-
tion alone is not sufficient for all situations or systems.
A malicious process that is intelligent enough to corrupt
other processes via covert channels, might well behave
correctly when its outputs are voted on; in this case, the
fault would escape Byzantine-fault detection.

Logging the use of any common resource that could
potentially impact other processes, be it the network or
the file system, is a possible and attractive approach.
The logs could be scanned and analyzed for anoma-
lous behavior [7]. Regardless, some malicious behavior
might go unnoticed, and some correct behavior might
be flagged wrongly as malicious. Handling the lat-
ter case in an automated system, without human inter-
vention, is particularly challenging. Creating the logs
would require all sensitive operations to be recorded.
The logs would need to be stored in a way such that
the history of actions about a certain process could be
retrieved by other processes, even if the process in ques-
tion is corrupted or malicious; for security reasons, we
would also want to make these logs tamper-resistant.

Instead of modifying methods to log their actions,
we might adopt a sand-boxing approach: to restrict the
use of certain functions. To enable ease of program-
ming, we might not want a rigidly restrictive environ-
ment with static policies; instead, functions might be
restricted based on the context of their operations.

Understanding the characteristics of the class of cor-
ruption is dependent on being able to diagnose the cor-
ruption. Taking the correct proactive action would be
assisted by having some sort of reference (of prior in-
trusions) to consult in each case. Other issues of con-
cern with diagnosis include quantifying the strength of
the accuracy of the diagnosis, and being able to detect
when the corruption has been completely removed.

5 Related Work

BFT [1], SecureRing [2], and Rampart [3] are designed
to tolerate Byzantine failures of up to f processors in
a system containing (3f + 1) replicas; our proposed
system would likely build on a similar substrate. Se-
cureRing and Rampart both use secure group member-
ship protocols, which enable them to recognize and vote
on failed or compromised processors. BFT does not
require this feature for liveness; for our purposes this
might mean that the client would need to be involved in
more decisions concerning the detection of faulty pro-
cesses. ITDOS [8] and Immune [4] are survivable sys-
tems that use BFT and SecureRing, respectively, to add
survivability to CORBA.

The Hive [9] system partitions shared memory into
cells. These cells are monitored for corruption. The
goal is to ensure proactively that data are not read from
a corrupted cell, as, if they were, they might then cor-
rupt other cells that are accessed by the process reading
the data. The proactive action to prevent corruption is
conceptually similar to the proactive containment in our
system. Hive, however, was built for multi-processing
systems that are not necessarily distributed.

Staniford et al. [10] discuss and give examples of
the contagion class of worms, which stealthily infect
computers over a network. This spreading is a real-
world example of the type of infection we are consider-
ing. They also suggest that it is likely that we will soon
see, on public networks, worms that use cryptographic
or hidden channels to communicate. Theoretically, this
would allow for the worms to collude actively in the
manner with which we are concerned.

6 Conclusion

We have introduced the fault-transmission problem in
the context of survivable systems that are composed of
actively-replicated Byzantine-fault tolerant processes.
We have outlined techniques for controlling corruption,
given its detection in some part of the system—even if
the corruption is undetected in other parts of the sys-
tem. We have discussed the performance trade-offs
associated with proactive fault-containment. Finally,
we have presented candidate mechanisms for collusion-
avoidance and epidemic-avoidance in survivable sys-
tems.

References

[1] M. Castro and B. Liskov, “Practical Byzantine
fault tolerance,” in Proceedings of the Third Sym-



posium on Operating Systems Design and Imple-
mentation (OSDI ’99), 1999.

[2] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-
Smith, “The SecureRing protocols for securing
group communication,” in Proceedings of the 31st
Annual Hawaii International Conference on Sys-
tem Sciences (HICSS), vol. 3, pp. 317–326, IEEE
Computer Society Press, 1998.

[3] M. K. Reiter, “The Rampart toolkit for build-
ing high-integrity services,” in Theory and Prac-
tice in Distributed Systems, vol. 938, pp. 99–110,
Springer-Verlag, Berlin Germany, 1995.

[4] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and
P. M. Melliar-Smith, “Providing support for sur-
vivable CORBA applications with the Immune
system,” in International Conference on Dis-
tributed Computing Systems, pp. 507–516, 1999.

[5] D. Malkhi and M. Reiter, “Unreliable intrusion de-
tection in distributed computations,” in Proceed-
ings of the 10th Computer Security Foundations
Workshop (CSFW97), (Rockport, MA), pp. 116–
124, 1997.

[6] F. B. Schneider, “Implementing fault-tolerant ser-
vices using the state machine approach: a tuto-
rial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.

[7] R. A. Maxion and T. N. Townsend, “Masquer-
ade detection using truncated command lines,” in
Proceedings of the International Conference on
Dependable Systems and Networks (DSN ’02),
pp. 219–228, 2002.

[8] D. Sames, B. Matt, B. Niebuhr, G. Tally, B. Whit-
more, and D. Bakken, “Developing a heteroge-
neous intrusion tolerant CORBA system,” in Pro-
ceedings of the International Conference on De-
pendable Systems and Networks, 2002 (DSN ’02),
pp. 239–248, 2002.

[9] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri,
D. Teodosiu, and A. Gupta, “Hive: Fault con-
tainment for shared-memory multiprocessors,” in
Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, pp. 12–25, ACM
Press, 1995.

[10] S. Staniford, V. Paxson, and N. Weaver, “How to
0wn the Internet in your spare time,” in Proceed-
ings of the 11th USENIX Security Symposium (Se-
curity ’02), 2002.


