
Enhancing Survivability with Proactive Fault-Containment
Michael G. Merideth

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213-3890

mgm@cs.cmu.edu

Abstract— Realistic survivable systems must assume that
faults will occur within the system. When a malicious fault
is activated, it may work to cause damage and to spread;
until the system has recovered from this damage, it will
have a lower degree of survivability than it did before
the fault occurred. By proactively containing faults that
would otherwise spread throughout the system, we can
reduce the amount of potential damage to the system, and
thereby maintain system survivability. Enabling proactive
survivability carries with it a number of challenges, includ-
ing the need to quantify survivability in order to justify
the potential overhead of the proactive mechanisms, the
need to select appropriate fault detection strategies, and
the need to address runtime problems like deciding when
and where to focus proactive effort.

I. I NTRODUCTION

When a malicious fault is activated in a system, it may
work to cause damage and to spread to other parts of
the system. Until the system has recovered from this
damage, it will have a lower degree of survivability than
it did prior to the fault. Survivable systems are designed
to prevent and tolerate faults through the employment
of four categories (resistance, recognition, recovery, and
adaptation) of mechanisms [1]. However, previous sur-
vivable systems have tended to focus on stationary (non-
propagating) faults, and, therefore, have been designed
to recover reactively,i.e., after a fault occurs. In the
Starfish system [2], we additionally consider faults that
can self-propagate, over covert/abnormal channels, to
other parts of the system. If these self-propagating
faults spread at a rate faster than the rate at which
the traditional reactive mechanisms are able to recover
the system, then, the survivability of the system may
ultimately be compromised. However, it may be possible
to monitor the system proactively for fault propagation,
paying particularly close scrutiny to the parts of the
system where faults have recently been detected or are

This work is supported by the Army Research Office through grant
number DAAD19-02-1-0389 (“Perpetually Available and Secure In-
formation Systems”) to the Center for Computer and Communica-
tions Security at Carnegie Mellon University.

suspected to exist. Based on this monitoring data, we
can enableproactive fault-containment, whereby we take
action to stop the spread of the faults, before they are
able to taint other parts of the system. This may be
done through a combination ofproactive-notification,
proactive-isolation, proactive-adaptation, andproactive-
recoverymechanisms.

A proactively survivablesystem contains the spread of
malicious behavior and adaptively sustains survivability.
Our research on the Starfish system is focused on the
creation of realistic survivable distributed infrastructures.
Starfish is a proactively survivable system that employs
an epidemiological model (whose terminology is sum-
marized in Table I) [3] for analyzing and containing the
spread of malicious faults. Such faults, if they propagate
unchecked, can bring the system down. Another rami-
fication of the unchecked spread of malicious behavior
is the possibility of collusion; multiple corrupted nodes
might lie in wait, and strike collectively when the system
is vulnerable. One example of this is distributed denial
of service, where several subverted computers can coor-
dinate an attack to damage the system.

Castro and Liskov [4] have designed one strategy for
proactive recovery, in which parts of the system are

Term Definition
fault-transmission propagation of fault
fault-containment identification of the fault, isolation and

restriction of the faulty nodes, and re-
covery

incubation-period time from fault’s initial presence to
symptomatic-period

symptomatic-period time during which fault may exhibit
untoward behavior

communicable-period time during which fault-transmission
may occur

fault-recovery faulty process is reinstated to correct
operations

outbreak one or more tainted nodes
epidemic outbreak from which the system cannot

recover

TABLE I

EPIDEMIOLOGICAL FRAMEWORK FOR PROPAGATING FAULTS



conservatively reinitialized periodically to remove any
faulty behavior that might exist. A primary difference
between their approach and ours, is that, under Starfish,
proactive recovery needs to occur only if a fault exists
in the system. Epidemiological models, similar to that of
Starfish, have been previously explored in the context of
computer-virus research [5], and also in the context of
the transmission of malicious faults [6].

Because Starfish is designed to work in a realistic envi-
ronment, we have attempted to make our assumptions as
non-restrictive as possible. We assume a distributed asyn-
chronous system with unbounded communication laten-
cies and an inherently unreliable transmission medium.
Our fault model considers processor- and process-crash
faults, communication faults such as message losses and
message corruption, and Byzantine/arbitrary faults in
processes and processors.

This paper presents a number of research challenges
and our candidate solutions; both will impact our ability
to enable proactive survivability. Each section explores
the state of our current work on the topic, and then
presents any open issues. Section II surveys a number
of techniques that we are evaluating for the purposes
of building proactively survivable infrastructures. Sec-
tion III cites the lack of survivability metrics as a
problem in analyzing the effectiveness of a survivable
system, and explains the need for new fault injection
mechanisms, in order to provide the capability to sim-
ulate malicious faults at the system level. Section IV
discusses when and where it is most appropriate for the
system to focus its proactive fault-containment efforts.

II. M ECHANISMS FORPROACTIVE

FAULT-CONTAINMENT

A. Recognition of Faults and of Fault-Transmission

Enabling proactive fault-containment hinges on the
capacity to recognize faulty behavior and fault-
transmission, and the ability to discriminate between
a malicious process and a correct one. A combination
of approaches for fault-detection are needed, because a
malicious process that is intelligent enough to corrupt
other processes might well appear, via the employment
of covert channels for fault-transmission, to behave cor-
rectly to any number of fault detectors.

We expect that systems might employ Byzantine-fault
tolerance mechanisms like [4] for their most critical pro-
cessing. A key feature of many Byzantine-fault tolerant
state-machine replication algorithms is that they detect,
as well as tolerate, malicious faults. This Byzantine-fault
detection can be used as one step in proactive fault-
transmission containment. However, the weakness with

this strategy is that the faulty component could output
correct values whenever its outputs are to be subject to
a vote, and thereby escape Byzantine-fault detection.

Strategies based on statistical techniques to detect
the anomalous use [7] of any common resource (e.g.,
the network or the file system) that could potentially
impact other processes, must, in general, trade accuracy
for coverage. The system would need to create logs of
all sensitive operations, so that proof of the anomalous
behavior could be presented to interested parties. These
logs would need to be stored in such a way that the
history of actions about a certain process could be re-
trieved by other processes, even if the process in question
is corrupted or malicious; for security reasons, we would
also want these logs to be tamper-resistant. Minimizing
the intrusiveness of this log-based approach would be
important for reasons of both system performance and
privacy.

In addition to attempting to detect faults and their
transmission, we might adopt a sand-boxing approach
to strictly limit the use of certain functions, so that these
functions could not be used for covert fault-transmission.
To enable ease of programming, we might not want a
rigidly restrictive environment with static policies; in-
stead, functions might be restricted based on the context
of their operations.

B. Containment, Recovery, and Adaptation

Once a fault is detected, we require some means of
isolating and restricting it, as well as recovering from it,
and adapting our system to handle the same or similar
faults more effectively in the future. The system could
make use of a trusted channel for proactive notifications
about suspected or known fault-transmissions and faulty
processes. Additionally, we might need a mechanism for
increasing the priority of the proactive notifications over
that of all other traffic. The danger with such a channel,
is that it could be a target for abuse by an attacker; for
example, a denial of service attack could be launched
against the system itself through the repeated triggering
of the proactive mechanisms.

Understanding the behavioral characteristics of a ma-
licious fault is dependent on the system’s ability to diag-
nose the corruption. Taking the correct proactive action
would be assisted by having some sort of reference (of
prior intrusions) to consult for each instance of a fault.

Biologically inspired immunization techniques [8]
could allow for system adaptation toward increased
survivability. Mechanisms to discriminateself from non-
self could be used both for fault detection and advice
during adaptation. Databases of signatures could be



built dynamically from characterization of system-call
patterns, or built statically using techniques akin to those
employed in virus-scanning programs. Such databases
of attack signatures need not necessarily be built only
through the occurrence of real attacks. Instead, similar
to the process of vaccination in immunology, we might
deliberately inject a controlled (and therefore, less dan-
gerous) version of the propagated fault into the system,
in order to trigger/educate the system’s containment
mechanisms. This training mechanism could increase the
system’s resistance to a real version of the attack.

III. M ETRICS AND EVALUATION

It is difficult to anticipate or to model realistically all of
the types of faults that may occur in a real system. We
feel that this is a primary cause of the dearth of faulty-
case measurements and metrics. However, in order to
measure the effectiveness of proactive fault-containment
in improving the survivability of a system, we require
ways to express and quantify survivability benefits.

A. Metrics

We consider three general contexts for which measure-
ments would be of use: (i) thefault-free case, (ii) the
faulty reactive case, in which the system is sustaining
faults and using only reactive mechanisms to recognize,
recover, and adapt, and (iii) thefaulty proactive case,
which is much like the faulty reactive case, except that
the system may additionally be employingproactive
fault-containment mechanisms. A survey of the literature
has shown that, while many survivable systems have
measured the performance overhead of their survivability
mechanisms under the fault-free case, they very rarely
consider either the faulty reactive case or the faulty
proactive case. Thus, there is currently no objective way
to (i) compare any two survivable systems/strategies, or
(ii) measure how “good” a survivable system really is,
under attack. To rectify this situation, in order so that
we can evaluate the effectiveness of Starfish’s proactive
fault-containment strategy, we are developing and eval-
uating a number of metrics.

B. Fault Injection

Realistic survivable systems should assume that faults
may represent malicious system-compromises that are
actively being exploited by an intelligent adversary.
Therefore, to show that our survivability mechanisms are
of real-world value, we feel that it is important to be able
to inject maliciously intelligent, faulty behavior into the
system.

Manually orchestrating malicious behavior on a case-
by-case basis is not scalable, would require the partic-
ipation of a skilled human, and suffers from problems
of ensuring representative fault-coverage. What we are
really after, is a way to automate the fault-injection
process.

IV. A LLOCATING PROACTIVE EFFORT

In a proactive system, if a fault is detected, then,
the Starfish system must decide whether containment
is appropriate. Candidate factors for consideration in
making this decision include the runtime cost of the
proactive mechanisms, the potential damage that the
malicious fault can cause, and the speed of the fault-
containmentvs. the speed of fault-transmission. If the
decision to use containment is affirmative, then, Starfish
must judiciously decide where to allocate its containment
efforts, and at what rate. Assuming that the fault is
detected in a highly connected section of the system,
then, due to either resource constraints or cost-benefit
analysis, it might not be practical to attempt containment
universally throughout the system.

REFERENCES

[1] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson,
T. Longstaff, and N. R. Mead, “Survivable network systems: An
emerging discipline,” tech. rep., CMU/SEI-97-TR-013, Software
Engineering Institute, Carnegie Mellon University, 1997.

[2] K. P. Kihlstrom and P. Narasimhan, “The Starfish system: Pro-
viding intrusion detection and intrusion tolerance for middleware
systems,” inIEEE Workshop on Object-oriented Real-time De-
pendable Systems, 2003.

[3] M. G. Merideth and P. Narasimhan, “Proactive containment of
malice in survivable distributed systems,” inProceedings of the
2003 International Conference on Security and Management
(SAM’03), 2003.

[4] M. Castro and B. Liskov, “Proactive recovery in a Byzantine-
fault-tolerant system,” inProceedings of the Fourth Symposium
on Operating Systems Design and Implementation (OSDI ’00),
2000.

[5] C. Wang, J. C. Knight, and M. C. Elder, “On computer viral
infection and the effect of immunization,” in16th Annual Com-
puter Security Applications Conference (ACSAC), (New Orleans,
Louisiana), December 2000.

[6] M.-J. Lin, A. M. Ricciardi, and K. Marzullo, “A new model
for availability in the face of self-propagating attacks,” inNew
Security Paradigms Workshop, (Charlottesville, VA), September
1998.

[7] R. A. Maxion and T. N. Townsend, “Masquerade detection using
truncated command lines,” inProceedings of the International
Conference on Dependable Systems and Networks (DSN ’02),
pp. 219–228, 2002.

[8] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer im-
munology,” Communications of the ACM, vol. 40, pp. 88–96,
October 1997.


