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Motivation 
•  Major outages are rare in production systems 

•  Such blackouts also detected by alarms 

•  Chronic performance problems (brownouts) 
•  System still works, but with degraded performance 
•  Problem typically affects subset of users/requests 
•  Admins often unaware until the user complains 

•  Chronics are fairly common 
•  Production VoIP system:  

–  Source of 42% of failed calls in worst month of outages  
•  Production Hadoop cluster (OpenCloud):  

–  Source of 78% of reported problems in 11-month period 
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Challenges (1) 
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PSTN 

 Customers with 
Non-IP service 
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 Customers with 
IP service 

Scale: Thousands of 
network elements,  
millions of calls 

Never seen before: 
First indication is cryptic 
customer complaint 

Under radar: Symptoms 
often not severe enough 
to trigger system alarms 

Multiple ongoing 
problems: Difficult to 
disambiguate 

IP Base Elements 

Application Servers 

Gateway Servers 



•  Labeled failure-data not always available  
•  Difficult to diagnose problems not encountered before 
  

•  Desired level of instrumentation might not be possible 
•  Existing vendor instrumentation with limited control 
•  Cost of adding instrumentation might be high 
•  Instrumentation might be diverse, at different sampling rate 

Challenges (2) 
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Outline 
•  Thesis statement 
•  Approach 

•  Instrumentation 
•  Anomaly detection 
•  Problem localization 

•  Experimental evaluation 
•  Fault injection 
•  Case studies 

•  Extensions 
•  Conclusion 
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Thesis Statement 
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Diagnosis of chronic performance problems in production 
systems is possible through the analysis of common 
white-box logs to extract local behavior and system-wide 
dependencies, coupled with the analysis of common 
black-box metrics to identify the resource at fault. 



Goals and Non-goals 
•  Goals of approach 

•  Diagnosis using existing instrumentation in production systems 
•  Anomaly detection in the absence of labeled failure-data 
•  Differentiation of workload changes from anomalies 

•  Non-goals 
•  Diagnosis of system-wide outages 
•  Diagnosis of value faults and transient faults 
•  Root-cause analysis at code-level 
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Assumptions 
•  Majority of the system is working correctly 
•  Problems manifest as observable behavioral changes  

•  Exceptions or performance degradations 
•  Visible to the end-user 

•  All instrumentation is locally time-stamped  
•  Clocks are synchronized to enable system-wide 

correlation of data 
•  Instrumentation faithfully captures system behavior 
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Target Systems for Validation 
•  VoIP system at large ISP 

•  10s of millions of calls per day 
•  1000s of network elements with heterogeneous hardware 
•  24x7 Ops team uses alarm correlation to diagnose outages 
•  Separate team troubleshoots long-term chronics 
•  Labeled traces available 

•  Hadoop: Open-source implementation of MapReduce 
•  Diverse kinds of data-intensive workloads 
• Graph mining, language translation 

•  Hadoop clusters have homogeneous hardware 
•  400-node Yahoo! M45, 64-node OpenCloud clusters 

•  Controlled experiments in Amazon EC2 cluster 
•  Long running jobs (> 100s): Hard to label failures 
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Contributions 
VoIP HADOOP 

Anomaly 
Detection 

Heuristics-based Peer comparison without 
labeled data 

Problem 
Localization 

Localize to customer/network-
element/resource/error-code 

Localize to node/task/
resource 

Types of 
chronics 

Exceptions, performance 
degradation, single-source, 
multiple-source 

Exceptions, performance 
degradation, single-source, 
multiple-source 

Experimental 
Evaluation 

Production VoIP system,  
1000s of network elements 

OpenCloud, 64 nodes 

Publications SLAML’11, OSR‘11, DSN‘12 
 

WASL’08, HotMetrics’09, 
ISSRE’09, ICDCS’10, 
NOMS’10, CCGRID’10 
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list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Overview of Approach 
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Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

End-to-end 
flows 

Labeled  
End-to-end flows 

Normalized black-
box metrics 

Anomalous nodes 



Black-Box Instrumentation 
•  For both Hadoop and VoIP 
•  Resource-usage metrics collected periodically from OS 
•  Monitoring interval varies from 1s to 15min 
•  Examples of metrics 

•  CPU utilization, CPU run-queue size 
•  Pages in, pages out 
•  Memory used, memory free 
•  Context-switches 
•  Packets received, packets sent 
•  Disk blocks read, disk blocks written 
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White-Box Instrumentation 
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•  Each node logs each request that passes through it 
•  Timestamp, IP address, request duration/size, phone no., … 

•  Log formats vary across components 
•  Application-specific parsers extract relevant attributes 

•  Construction of end-to-end traces 
•  Extract control flow information  

–  Control flow captures sequence of events executed  
–  E.g., dependencies between Maps and Reduces in Hadoop 

•  Extract data flow information 
–  Data flow captures transfer of data between components  

•  Stitch end-to-end flows using control and data flow information 



TaskTracker 

DataNode 

JobTracker 

NameNode 

M
as
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r 
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s 

HDFS 

Maps Reduces Maps 

Job Job 

Reduces 

Target Systems’ Instrumentation 
Hadoop Clusters 

(OpenCloud, Yahoo! M45) ISP’s VoIP System 
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Customers 

PSTN 

 
 

Customers 

Application Servers Application Servers Application Servers 

IP Base Elements 

Gateways ISP 
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list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

White-Box Analysis 
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Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

Questions 
•  How do we extract local control- and data-flow? 
•  How do we infer dependencies with other components? 
•  How do we deal with missing dependency information? 

End-to-end 
flows 

Labeled  
End-to-end flows 

Normalized black-
box metrics 

Anomalous nodes 



White-Box Logs 
Hadoop Logs 
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2011-10-12 23:59:55,625 INFO org.apache.hadoop.mapred.TaskTracker: 
attempt_201106031747_9630_m_013846_0 0.027189009% Records R/W=208/1!
2011-10-12 23:59:55,943 INFO org.apache.hadoop.mapred.TaskTracker: Sent 
out 43000 bytes for reduce: 37 from map: 
attempt_201106031747_9630_m_013677_0 given 43000!

VoIP Call Detail Record 
Mon Apr 29 07:30:14 2013!
NAS-Identifier = “other”!
Acct-Status-Type = “Accounting-off”!
NAS-IP-Address = 172.30.11.36!
Client-IP-Address = 172.30.11.36!
Acct-Input-Packets = 5!
Acct-Output-Packets = 5!
Acct-Input-Octets = 100!
Acct-Output-Octets = 2789!

control flow 

control flow 

control and data flow 

data flow 



TaskTracker 8 
10:03:59, SHUFFLE 
task_656_r_900 
copying 
task_188_m_98!
!
10:03:59, REDUCE 
task_656_r_900 
192.168.22.3!

Datanode 34 

TaskTracker 6 
10:03:59, MAP 
LaunchTaskAction!
task_188_m_98!

White-Box Analysis: Hadoop 
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   Each node logs task 
(or block) info. locally 

1 

10:04:01, 
BLOCK_WRITE 
blk_8987676!
192.168.22.3 to 
192.168.22.6!
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2       Domain-specific 
knowledge used to 
extract attributes of 
interest 

3    Infer dependency  
using exact key 
match on task ID. 4   Match on IP 

address within given 
time window 



IP Base  
Element 3 

White-Box Analysis: VoIP 

http://www.pdl.cmu.edu/" 20 

IPBE CDR!
10:03:59, START!
973-123-8888 to 
409-555-5555!
192.156.1.2 to 
11.22.34.1!
10:04:02, STOP!

Gateway 
Server 12 
GS CDR!
10:04:10, 
ATTEMPT!
973-123-xxxx to 
409-555-xxxx!
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   Each node logs call 
outcomes locally in Call 
Detail Record 

1

     Domain-specific 
knowledge used to extract 
attributes of interest 

2

    Infer dependency  
using exact key 
match on phone no. 

3

Application  
Server 5 
AS CDR!
10:04:05, 
ATTEMPT!
973-123-8888 to 
409-555-5555\!

   Approx match 
on partial phone 
no. and time 

4



Output of White-box Analysis 

Block 
Write!

Timestamp: 10:04:01 
Type:      BLOCK_WRITE!
BlockID:   blk_8987676!
From IP:   192.168.22.3  
To IP:   192.168.22.6!

Reduce!

Timestamp: 10:04:01 
Type:    task_656_r_900!
From IP: 192.168.22.3  
From IP: 192.168.22.6!

Unstructured logs transformed into structured log  

Inferred dependencies between components 
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list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Anomaly Detection 
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Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

Questions 
•  How to detect performance problems in the absence of labeled data?  
•  How to distinguish legitimate application behavior vs. problems?  

End-to-end 
flows 

Labeled  
End-to-end flows 

Normalized black-
box metrics 

Anomalous nodes 



Anomaly Detection 

•  Some user-visible problems manifest as errors 
•  Detected by extracting error codes from failed flows, or 
•  Apply domain-specific heuristics 

•  Performance problems can be harder to detect 
•  Exploit the notions of “peers” to detect performance problems 
•  Determine what system behaviors can be considered 

equivalent (“peers”) under normal conditions 
•  Significant deviation from “peers” is regarded anomalous 
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Block 
Write!Reduce!
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rika (Swahili), noun. peer, contemporary, age-set, 
undergoing rites of passage (marriage) at similar times.  



Anomaly Detection: Hadoop (1) 

•  Extract exceptions from failed and canceled tasks 
•  Detect performance problems using “peers” 

•  Empirical analysis of production data to identify peers 
–  219,961 successful jobs (Yahoo! M45 and OpenCloud) 
–  89% of jobs had low variance in their Map durations 
–  65% of jobs had low variance in their Reduce durations 

•  Designate tasks belonging to the same job as peers 
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Block 
Write!Reduce!



Anomaly Detection: Hadoop (2) 
•  At the same time, behavior amongst peers can 

legitimately diverge due to various application factors 
•  Identified 12 such factors on OpenCloud 
•  Example: HDFS bytes written/read 
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Exploit regression to automatically learn 
factors influencing task durations 

Flag tasks which do not fit regression 
model as anomalous 



Anomaly Detection: VoIP 

•  Detecting blocked or dropped calls 
•  Extract defect codes (e.g., timeout) from failed calls 
•  Exploit domain-specific heuristics to detect problems 

–  Examples: Callback soon after call end, zero talk-time 
 

•  Detecting performance problems 
•  Designate peers to be calls belonging to the same service 
•  Simple statistical technique to detect peers when deviate 

–  Packet loss exceeds 90th percentile of calls 
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App. 
Server!

IP Base 
Element!

Gateway 
Server!



Output of Anomaly Detection 
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Block 
Write!Reduce!

Block 
Write!

Map!

Block 
Read!

FAIL 

SUCCESS 

Labeled end-to-end flows 



list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Problem Localization 
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Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation Questions 

•  How to identify problems due to combination of factors? 
•  How to distinguish multiple ongoing problems? 
•  How to find resource that caused the problem? 
•  How to handle “noise” due to flawed anomaly detection? 

End-to-end 
flows 

Labeled  
End-to-end flows 

Normalized black-
box metrics 

Anomalous nodes 



Identify Suspect Attributes (1) 
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Server1! Server8! Map2! Map3! Outcome!

Task1! 1! 0! 1! 0! SUCCESS!

Task2! 1! 1! 0! 1! FAIL!

Task1: 09:31am,SUCCESS, Server1, Map2, BlockRead3,!

Task2: 09:32am,FAIL, Server1, Map3, Server8, BlockRead5,!

   !:!

   !: !

10s of thousands of attributes 
10s of 
millions of 
flows 

http://www.pdl.cmu.edu/ 

Labeled end-to-end traces generated by anomaly-detection  

Binary representation supports scalable representation 
of attributes as sparse table. 

STEP 1: Find individual attributes most likely to occur in failed flows 



Identify Suspect Attributes (2) 

•  Estimate conditional probability distributions 
•  Prob(Success|Attribute) vs. Prob(Failure|Attribute) 

•  Update belief on distribution with each flow seen 
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STEP 1: (contd) 



Find Attribute Combinations 

•  Find attribute combinations that maximize anomaly score 
•  Greedy, iterative search limits combinations explored 
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Map 65!Block Read!

Server6! Server8!

Step 1: All flows 

Shuffles!

Server6!

Step 2: Remove all flows that match 
Signature1. Repeat. 

350!120!

670 90 

290!

450!

Indict path with highest anomaly score 

STEP 2: Determine if chronic is triggered by combination of factors  



Rank Problems by Severity 

•  Rank problems based on number of flows affected 
•  Spurious attributes introduced by noise receive low-rank 
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1. Chronic signature1 
Server8!
BlockRead!
 
2. Chronic signature2 
Server64!

Time of Day (GMT) 

Fa
ile

d 
Fl

ow
s 

UI: Ranked list of chronics identified 
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Visualization allows operators to identify recurrent problems 

STEP 3: Rank list of identified problems by severity 
 



Server 13   Server 10   Server 8   

Culprit Node Peer Peer 

Fusing Black-box Metrics 
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Annotate flows associated with culprit nodes (and peers) 

Time:  10:03:59, !
Map ID: 
task_188_m_98  
Bytes Read: 7867!
Duration: 25 
seconds!
Status: FAILED!

Mean CPU: 70.4% 
Mean Memory: 500MB 
Mean DiskUtil: 30KB 
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Mean resource-usage on 
node during event duration 

Time:  10:03:59, !
Map ID: 
task_188_m_76  
Bytes Read: 7867!
Duration: 3 seconds!
Status: SUCCESS!

Mean CPU: 12.4% 
Mean Memory: 430MB 
Mean DiskUtil: 32KB 

Time:  10:03:59, !
Map ID: 
task_188_m_85  
Bytes Read: 6863!
Duration: 2 seconds!
Status: SUCCESS!

Mean CPU: 15.4% 
Mean Memory: 480MB 
Mean DiskUtil: 23KB 

STEP 4: Determine if resource-usage metrics affected 



Culprit Black-Box Metrics 
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Failed Flows 

Compare distribution of each black-box metric for 
successful/failed flows 

Indict metric if difference between distributions is statistically significant 

STEP 4: (contd) 
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Experimental Evaluation 
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HADOOP VOIP 

Workload Gridmix cluster benchmark One-week of ISP’s call logs  

Injected faults Resource hogs/Task hangs 
10 iterations per fault 

Server/Customer problems 
1000 simulated faults in total 

Experimental 
setup 

10-node EC2 cluster 
2 1.2GHz cores, 7GB RAM 
 

1 simulation node 
2 2.4GHz cores, 16GB RAM 

Production 
Sytem 

OpenCloud Production VoIP system at ISP 

Status Post-mortem offline analysis of 
real incidents 

Used in production for 2 years 
since 2011 

C
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Expt #1: Impact of Dependencies 
QUESTION: Does knowledge of dependencies affect diagnosis? 
 
METHOD: Hadoop EC2 cluster, 10 nodes, fault injection.  
•  Apply problem localization with white-box metrics. 
•  Compare against approach without knowledge of dependencies. 
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   


































Flow-level 
Without dependencies 
With dependencies 

Map       
hang 

Disk Hog Reduce  
hang 

Packet 
loss 

Knowledge of dependencies 
improves diagnosis 



Expt #2: Impact of Fusion 
QUESTION: Does fusion of metrics provide insight on root-cause? 
  
METHOD: Hadoop EC2 cluster, 10 nodes, fault injection.  
•  Apply problem localization with fused white/black-box metrics. 
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Fusion of metrics provides 
insight on most injected faults 

Top Metrics Indicted Insight on  
root-cause Fault Injected White box  Black-box 

Disk hog Maps Disk ✓ 

Packet-loss Shuffles - ✗ 

Map hang (Hang1036) Maps - ✓ 

Reduce hang (Hang1152) Reduces - ✓ 
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




















Expt #3: Impact of Fault Probability 
QUESTION: Can we effectively diagnose low-probability faults? 
  
METHOD: One week of ISP’s call logs, 1 node, fault simulation. 
•  Randomly label 1-10% of flows with attributes of interest as faulty. 
•  Apply problem localization with white-box metrics. 
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Robust to changes in 
fault probability 
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Expt #4: Impact of Noise 
QUESTION: Does flawed anomaly-detection (noise) impact 
diagnosis? 
METHOD: One week of ISP’s call logs, 1 node, fault simulation. 
•  Mislabel 5-20% of failed flows.  
•  Apply problem localization with white-box metrics 
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Recall robust to noisy labels. 

Precision drops due to 
spurious attributes. 



Case #1: Multiple Hardware Issues 
INCIDENT: Multiple hardware problems in OpenCloud cluster 
•  User experiences multiple job failures with cryptic exceptions. 
•  Administrators initially suspected memory configuration issue. 
•  Took a week to resolve. Bad disk and bad NIC on two nodes. 
 
DIAGNOSIS APPLIED 
•  Apply problem-localization approach with white-box metrics. 
•  Correctly identified nodes with bad hardware in top-10 ranked list 
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Identified multiple simultaneous problems 
affecting user’s job. 



Case #2: Quality (QoS) Violations 
INCIDENT: Calls in VoIP system experiencing high packet-loss 
•  Operators suspect issue with network elements at ISP. 
•  Took a weeks to resolve.  

DIAGNOSIS APPLIED 
•  Flag calls whose packet-loss exceeds 85th percentile as faulty. 
•  Apply problem-localization approach with white-box metrics.  
•  Showed most QoS issues were tied to specific customers.  

Soila P. Kavulya  © May 13 "http://www.pdl.cmu.edu/ 43 

Operators alerted customers’  of problem on their site. 
Customer fixed problem and QoS violation resolved. 



Case #3: Performance Problem 
INCIDENT: Intermittent performance problem in VoIP system 
•  Intermittent performance problem with two application servers. 
•  Affected 0.1% of all calls passing through application servers. 
 
DIAGNOSIS APPLIED 
•  Apply problem-localization using white/black-box metrics.  
•  Post-mortem analysis confirmed issue with application servers. 
•  Also flagged anomalous CPU and memory usage.  
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Successfully identified low-severity fault 
affecting multiple servers. 
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Lessons Learned (1) 
•  Synthesis of end-to-end causal traces possible 

•  Local logs capture local control- and data-flow info 
•  Approximate-matching infers implicit dependencies 

•  In absence of labeled data, peer-comparison is feasible 
approach for anomaly detection 
•  Peers can be tasks (Hadoop), end-to-end flows, calls within 

the same service (VoIP) 

•  Regression can help to differentiate between 
•  Legitimate application behavior (more bytes read/written) vs. 
•  Anomalous behavior (task taking longer to run for other 

unexplained reasons) 
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Lessons Learned (2) 
•  Important to analyze both successful and failed flows  

•  Limiting analysis to only failed flows might elevate common 
elements over causal elements 

•  Fusion of white+black-box data can provide more 
insight into source of problem  

•  Ranking problems by severity helps tolerate noise 
•  Spurious labels receive lower ranking 
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Limitations 
•  No diagnosis for the Master node of a Hadoop cluster 

•  Problems at master typically result in system-wide issues 

•  Peer-groups are defined statically 
•  Need to automate identification of peers 

•  False positives occur if root-cause not in logs 
•  Algorithm tends to implicate adjacent network elements 
•  Need to incorporate more data to improve visibility 

•  Does not detect dormant problems that do not  
impact user-perceived system behavior 
•  Examples: Blacklisted nodes in Hadoop 
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Extensions (Future Work) 
•  Visualization in heterogeneous systems 

✓  User study on diagnosis interfaces in Hadoop [CHIMIT11] 

✓  Visual signatures of problems in Hadoop [LISA12] 
✗  Visual signatures of problems in heterogeneous systems 
✗  Extensible visualization framework for diagnosis 

•  Online monitoring and diagnosis 
✓  Generic framework for monitoring and diagnosis [WADS09] 
✓  Streaming implementation of problem-localization [DSN12] 

✗  Scalable monitoring and diagnostic framework 
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list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Visualization 
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Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

Questions 
•  How to develop compact visualizations for large clusters? 
•  Can visualizations help spot/discriminate different anomalies? 



Theia: Visual Signatures of Problems 
•  Maps anomalies observed to broad problem classes 

•  Hardware failures, application issue, data skew 

•  Supports interactive data exploration  
•  Users drill-down from cluster- to job-level displays 
•  Hovering over the visualization gives more context 

•  Compact representation for scalability 
•  Can support clusters with 100s of nodes 
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Conclusion 
•  Approach for diagnosis of chronic problems 

•  Amenable for use in production systems 
•  Infers dependencies from existing white-box logs 
•  Uses heuristics and peer-comparison to detect anomalies 
•  Localizes source of problem using statistical approach 
•  Incorporates both white-box and black-box logs 

•  Demonstrated for two production systems 
•  VoIP system at ISP  (approach deployed for 2 years now) 
•  OpenCloud Hadoop cluster 

•  Initial progress on extensions (visualization) 
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