
Kahuna: Problem Diagnosis for MapReduce-Based
Cloud Computing Environments

Jiaqi Tan, Xinghao Pan
DSO National Laboratories, Singapore

Singapore 118230
{tjiaqi,pxinghao}@dso.org.sg

Eugene Marinelli, Soila Kavulya, Rajeev Gandhi
and Priya Narasimhan

Electrical & Computer Engineering Dept.
Carnegie Mellon University, Pittsburgh, PA 15213

emarinel@andrew.cmu.edu,{spertet,rgandhi}@ece.cmu.edu, priya@cs.cmu.edu

Abstract—We present Kahuna, an approach that aims to
diagnose performance problems in MapReduce systems. Central
to Kahuna’s approach is our insight on peer similarly, i.e., that
nodes behave alike in the absence of performance problems,
and that a node that behaves differently is the likely culprit
of a performance problem. Kahuna incorporates techniques to
statistically compare black-box (OS-level performance metrics)
and white-box (Hadoop-log statistics) data across the different
nodes of a MapReduce cluster, in order to identify the faulty
node(s). We motivate our peer-similarity observations through
concrete evidence from the 4000-processor Yahoo! M45 Hadoop
cluster. In addition, we demonstrate Kahuna’s effectiveness
through experimental evaluation of its algorithms for a number
of reported performance problems, on four different workloads
(including Nutch and Pig) in a 100-node Hadoop cluster hosted
on Amazon’s EC2 datacenter.

I. INTRODUCTION

Cloud computing is becoming increasingly common, and has
been facilitated by frameworks such as Google’s MapReduce
[1], which parallelizes and distributes jobs across large clus-
ters. Hadoop [2], the open-source implementation of MapRe-
duce, has been widely used at large companies such as Yahoo!
and Facebook [3] for large-scale data-intensive tasks such as
click-log mining and data analysis. Performance problems–
faults that cause jobs to take longer to complete, but do
not necessarily result in outright crashes–pose a significant
concern because slow jobs limit the amount of data that can
be processed. Commercial datacenters like Amazon’s Elastic
Compute Cloud (EC2) charge $0.10-0.80/hour/node, and slow
jobs impose financial costs on users. Determining the root
cause of performance problems and mitigating their impact
can enable users to be more cost-effective.

Diagnosing performance problems in MapReduce environ-
ments presents a different set of challenges than multi-tier web
applications. Multi-tier web applications have intuitive time-
based service-level objectives (SLOs) as they are required to
have low latency. Current state-of-the-art problem-diagnosis
techniques in distributed systems rely on knowing which
requests have violated their SLOs and then identify the root-
causes [4] [5] [6]. However, MapReduce jobs are typically
long-running (relative to web-request processing), with Google
jobs averaging 395 seconds on 394-node clusters [7], or equiv-
alently, 43 node-hours (i.e., with a 43-node cluster, the average
job will run for an hour). These job times are dependent on

the input size and the specific MapReduce application. Thus,
it is not easy to identify the ”normal” running time of a given
MapReduce job, making it difficult for us to use time-based
SLOs for identifying performance problems.

In the Kahuna technique, we determine if a performance
problem exists and identify the culprit nodes, in a MapReduce
system, based on the key insight of peer-similarity among
nodes in a MapReduce system: (1) the nodes (that we loosely
regard as “peers”) in a MapReduce cluster tend to behave
symmetrically in the absence of performance problems, and (2)
a node that behaves differently from its peer nodes, is likely to
be the culprit of a performance problem1. In this paper, (1) we
evaluate the extent to which the peer-similarity insight is true
on Hadoop, the most widely-used open-source MapReduce
system, based on empirical evidence from data from real-world
research jobs on the 4000-processor, 1.5 PB M45 cluster, a
Yahoo! production cluster made available to Carnegie Mellon
researchers, and (2) we investigate the extent to which this
insight can be used to diagnose performance problems. We ex-
perimentally evaluate of two of our earlier problem-diagnosis
algorithms based on the peer-similarity insight. These two
algorithms diagnose problems in Hadoop clusters by compar-
ing black-box, OS-level performance metrics [8], and white-
box metrics derived from Hadoop’s logs [9], respectively,
and are examples of algorithms that can be built around the
peer-similarity insight. We refer to them as Kahuna-BB and
Kahuna-WB respectively. We perform extensive evaluation of
these algorithms using multiple workloads and realistically-
injected faults. Concretely, our contributions in this paper are:
(1) empirical evidence to substantiate the validity of our peer-
similarity insight, and (2) extensive experimental evaluation of
whether the peer-similarity insight can be built on to diagnose
performance problems.

II. BACKGROUND: MAPREDUCE & HADOOP

Hadoop [2] is an open-source implementation of Google’s
MapReduce [7] framework that enables distributed, data-
intensive, parallel applications by decomposing a massive job
into smaller (map and reduce) tasks and a massive data-set

1We do not claim the converse: we do not claim that a performance problem
will necessarily result in an asymmetrically behaving node. In fact, we have
observed correlated performance degradations for certain problems, whereby
all of the nodes behave identically, albeit incorrectly.

Hadoop
Hadoop

.

MASTER SLAVES

HDFS

Hadoop

TaskTracker

Map
Reduce

DataNode

data
blocks

D
at

aN
o
d
e

lo
g

T
as

k
T

ra
ck

er
lo

g

s
a
d
c

ve
ct

o
rs

/proc

Hadoop

JobTracker

NameNode

N
am

eN
o
d
e

lo
g

Jo
b
T

ra
ck

er
lo

g

s
a
d
c

ve
ct

o
rs

/proc

Fig. 1. Architecture of Hadoop, showing the logs of interest to Kahuna.

II. BACKGROUND: MAPREDUCE & HADOOP

Hadoop [2] is an open-source implementation of Google’s

MapReduce [1] framework that enables distributed, data-

intensive, parallel applications by decomposing a massive job

into smaller (Map and Reduce) tasks and a massive data-set

into smaller partitions, such that each task processes a different

partition in parallel. Hadoop uses the Hadoop Distributed File

System (HDFS), an implementation of the Google Filesystem

[10], to share data amongst the distributed tasks in the system.

HDFS splits and stores files as fixed-size blocks.

Hadoop’s master-slave architecture, shown in Figure 1, en-

compasses a unique master node and multiple slave nodes. The

master node typically runs two daemons: (1) the JobTracker

that schedules and manages all of the tasks belonging to a

running job; and (2) the NameNode that manages the HDFS

namespace by providing a filename-to-block mapping, and

regulates access to files by clients (i.e., the executing tasks).

Each slave node runs two daemons: (1) the TaskTracker that

launches tasks on its local node, as directed by the remote

JobTracker; the TaskTracker also tracks the progress of each

task on its node; and (2) the DataNode that serves data blocks

(on its local disk) to HDFS clients.

Figure 1 shows the Hadoop logs (labeled the TaskTracker

and DataNode logs) that serve as white-box input to Kahuna-

WB, as well as the /proc-based OS performance data

(labeled as sadc-vectors) that serves as black-box input

to Kahuna-BB. While Kahuna-BB can identify the culprit

slave node, it cannot differentiate between the TaskTracker

or DataNode as the source of a problem; on the other hand,

Kahuna-WB, operating on the semantically-rich Hadoop logs,

can distinguish between the two as the source of a problem.

III. PROBLEM STATEMENT

Our primary research questions focus on whether a peer-

comparison approach can localize performance problems accu-

rately, even for large clusters. Ancillary questions concern the

analysis of black-box vs. white-box data, and their respective

Crash with user!level error
4%

Incorrect
value
34%

Hang (task halted)
11%

Performance
Problem (task slow)

20%

Crash with
system!level error

31%

Fig. 2. Reported Hadoop bugs classified by manifestation, Hadoop bug
database, Jan 2007-Feb 2008.

fault coverage, w.r.t. their ability to capture the symptoms of

various performance problems.

Motivating evidence. To investigate the impact of perfor-

mance problems on Hadoop, we studied the manifestations

of reported bugs from the Hadoop bug database (Apache’s

JIRA issue tracker) [11] over a 14-month period from Jan

2007 to Feb 2008. We found that 31% of bugs manifested

as degraded performance (hangs, performance problems), and

a further 35% of bugs manifested as crashes (see Figure 2),

indicating that performance problems are an important class

of problems to address for diagnosis. Furthermore, we believe

that the impact of performance problems is underrepresented

in the bug database, because performance problems that do

not crash/halt Hadoop are likely to go unreported.

Goals. Our diagnosis should run transparently to, and not

require any modifications of, the Hadoop applications and

infrastructure. Our approach should impose minimal instru-

mentation overheads on the system and be usable in production

environments, where administrators might not have the luxury

of instrumenting applications for code-level debugging, but

might have access to OS-level data and Hadoop logs. Our

diagnosis should produce low false-positive rates, under a

variety of workloads, and even under workload changes2, for

realistic workloads such as Nutch and Pig.

Fault model. We clarify our terminology and differentiate

between our use of the terms fault, crash failure and per-

formance problem. A performance problem can result in a

“limping-but-alive” manifestation, i.e., a slowdown/degrada-

tion that doesn’t necessarily escalate into a node/job/task crash

failure (an abrupt halt) but that causes a Hadoop job to take

longer than usual to complete. Abnormally long runtimes

can be due to a variety of faults, i.e., root-causes that range

from environmental factors on the node (e.g., a non-Hadoop

2Workload changes and faults can both impact a system’s behavior and
can be mistaken for each other. Our peer-comparison approach is more
discriminating because (i) fault-free Hadoop slave nodes experience workload
changes together, and (ii) thus, a node that is the “odd-man-out” is likely
experiencing a performance problem and not a workload change.

2

Fig. 1. Architecture of Hadoop, showing the logs of interest to Kahuna.

Hadoop
Hadoop

.

MASTER SLAVES

HDFS

Hadoop

TaskTracker

Map
Reduce

DataNode

data
blocks

D
at

aN
o

d
e

lo
g

T
as

k
T

ra
ck

er
lo

g

s
a
d
c

ve
ct

o
rs

/proc

Hadoop

JobTracker

NameNode

N
am

eN
o

d
e

lo
g

Jo
b

T
ra

ck
er

lo
g

s
a
d
c

ve
ct

o
rs

/proc

Fig. 1. Architecture of Hadoop, showing the logs of interest to Kahuna.

II. BACKGROUND: MAPREDUCE & HADOOP

Hadoop [2] is an open-source implementation of Google’s

MapReduce [1] framework that enables distributed, data-

intensive, parallel applications by decomposing a massive job

into smaller (Map and Reduce) tasks and a massive data-set

into smaller partitions, such that each task processes a different

partition in parallel. Hadoop uses the Hadoop Distributed File

System (HDFS), an implementation of the Google Filesystem

[10], to share data amongst the distributed tasks in the system.

HDFS splits and stores files as fixed-size blocks.

Hadoop’s master-slave architecture, shown in Figure 1, en-

compasses a unique master node and multiple slave nodes. The

master node typically runs two daemons: (1) the JobTracker

that schedules and manages all of the tasks belonging to a

running job; and (2) the NameNode that manages the HDFS

namespace by providing a filename-to-block mapping, and

regulates access to files by clients (i.e., the executing tasks).

Each slave node runs two daemons: (1) the TaskTracker that

launches tasks on its local node, as directed by the remote

JobTracker; the TaskTracker also tracks the progress of each

task on its node; and (2) the DataNode that serves data blocks

(on its local disk) to HDFS clients.

Figure 1 shows the Hadoop logs (labeled the TaskTracker

and DataNode logs) that serve as white-box input to Kahuna-

WB, as well as the /proc-based OS performance data

(labeled as sadc-vectors) that serves as black-box input

to Kahuna-BB. While Kahuna-BB can identify the culprit

slave node, it cannot differentiate between the TaskTracker

or DataNode as the source of a problem; on the other hand,

Kahuna-WB, operating on the semantically-rich Hadoop logs,

can distinguish between the two as the source of a problem.

III. PROBLEM STATEMENT

Our primary research questions focus on whether a peer-

comparison approach can localize performance problems accu-

rately, even for large clusters. Ancillary questions concern the

analysis of black-box vs. white-box data, and their respective

Crash with user!level error
4%

Incorrect
value
34%

Hang (task halted)
11%

Performance
Problem (task slow)

20%

Crash with
system!level error

31%

Fig. 2. Reported Hadoop bugs classified by manifestation, Hadoop bug
database, Jan 2007-Feb 2008.

fault coverage, w.r.t. their ability to capture the symptoms of

various performance problems.

Motivating evidence. To investigate the impact of perfor-

mance problems on Hadoop, we studied the manifestations

of reported bugs from the Hadoop bug database (Apache’s

JIRA issue tracker) [11] over a 14-month period from Jan

2007 to Feb 2008. We found that 31% of bugs manifested

as degraded performance (hangs, performance problems), and

a further 35% of bugs manifested as crashes (see Figure 2),

indicating that performance problems are an important class

of problems to address for diagnosis. Furthermore, we believe

that the impact of performance problems is underrepresented

in the bug database, because performance problems that do

not crash/halt Hadoop are likely to go unreported.

Goals. Our diagnosis should run transparently to, and not

require any modifications of, the Hadoop applications and

infrastructure. Our approach should impose minimal instru-

mentation overheads on the system and be usable in production

environments, where administrators might not have the luxury

of instrumenting applications for code-level debugging, but

might have access to OS-level data and Hadoop logs. Our

diagnosis should produce low false-positive rates, under a

variety of workloads, and even under workload changes2, for

realistic workloads such as Nutch and Pig.

Fault model. We clarify our terminology and differentiate

between our use of the terms fault, crash failure and per-

formance problem. A performance problem can result in a

“limping-but-alive” manifestation, i.e., a slowdown/degrada-

tion that doesn’t necessarily escalate into a node/job/task crash

failure (an abrupt halt) but that causes a Hadoop job to take

longer than usual to complete. Abnormally long runtimes

can be due to a variety of faults, i.e., root-causes that range

from environmental factors on the node (e.g., a non-Hadoop

2Workload changes and faults can both impact a system’s behavior and
can be mistaken for each other. Our peer-comparison approach is more
discriminating because (i) fault-free Hadoop slave nodes experience workload
changes together, and (ii) thus, a node that is the “odd-man-out” is likely
experiencing a performance problem and not a workload change.

2

Fig. 2. Manifestations of Hadoop bugs reported in Jan 2007–Feb 2008.

into smaller partitions, such that each task processes a different
partition in parallel. Hadoop uses the Hadoop Distributed File
System (HDFS) implementation of the Google Filesystem
[10], to share data amongst the tasks in the system. HDFS
splits and stores files as fixed-size blocks. Hadoop uses a
master-slave architecture, as shown in Figure 1, with a unique
master node and multiple slave nodes. The master node
typically runs the JobTracker daemon which schedules tasks
belonging to a running job and the NameNode daemon which
manages the HDFS regulates access to files by clients (i.e.,
the executing tasks). Each slave node runs the TaskTracker
daemon which launches and tracks tasks on its local node, as
directed by the remote JobTracker , and the DataNode which
serves data blocks (on its local disk) to HDFS clients. Figure 1
shows the inputs to Kahuna-BB, /proc-based OS perfor-
mance data (sadc-vectors), and to Kahuna-WB, Hadoop’s
TaskTracker and DataNode logs, respectively.

III. PROBLEM STATEMENT

Our primary research question focuses on whether a peer-
similarity based approach can localize performance problems

accurately, even in large clusters. Ancillary questions concern
the analysis of black-box vs. white-box data, and their respec-
tive fault-coverage with respect to their ability to capture the
symptoms of various performance problems.
Motivating evidence. To investigate the impact of perfor-
mance problems on Hadoop, we studied the manifestations
of reported bugs from the Hadoop bug database [11] over
a 14-month period from Jan 2007 to Feb 2008. We found
that 31% of bugs manifested as degraded performance (hangs,
performance problems), and a further 35% of bugs manifested
as crashes (see Figure 2), indicating that performance problems
are an important class of problems to address for diagnosis.
Furthermore, we believe that the impact of performance prob-
lems is underrepresented in the bug database, as those which
do not crash nor halt Hadoop are likely to go unreported.
Goals. Our diagnosis should run transparently to, and not
require any modifications of, both the hosted applications and
Hadoop itself. Our diagnosis should be usable in production
environments, where administrators might not have the luxury
of instrumenting applications for code-level debugging, but
could likely leverage readily available black-box data or ex-
isting native Hadoop logs. Our diagnosis should produce low
false-positive rates, in the face of a variety of workloads for the
system under diagnosis, even if these workloads fluctuate, as
in the case of real-world workloads such as Nutch and Pig.
Our data-collection should impose minimal instrumentation
overheads on the system under diagnosis.
Fault model. Performance problems in Hadoop clusters can
result in jobs taking longer than usual to complete. Such
abnormally long runtimes can be due to environmental factors
on the node (e.g., an external, non-Hadoop workload), due
to causes not specific to the node (e.g., non-deterministically
triggered bugs within Hadoop), or due to data-dependent
issues. The outcome of our diagnosis algorithm is a set of
slave nodes in the cluster that our algorithm has identified as
those that caused the job to take longer than usual to complete.
We do not attempt to predict the normal completion-time of a
given job. Instead, we identify jobs that undergo performance
problems that cause the jobs to take longer to complete than
if the problem were not present, and identify the nodes that
caused the slowdown.
Assumptions. We assume that the target MapReduce system
(i.e., the Hadoop infrastructure and Hadoop jobs) is the
dominant source of activity on every node. We assume that a
majority of the Hadoop slave nodes are problem-free and that
all nodes are homogeneous in hardware. As a part of future
work (see Section X), we propose to study the peer-similarity
principle in the case of heterogeneous cluster configurations;
this is outside the scope of the current paper.
Non-goals. We currently aim for coarse-grained problem di-
agnosis that localizes problems to the culprit slave node(s).
This differs from finer-grained root-cause analysis that might
aim instead to identify the underlying fault or bug, or offending
line of code. While the presented algorithms can be run online,
we focus on the offline evaluation of collected data. We also
currently do not target master node problems, nor attempt to

2

predict normal runtimes of a given job.

IV. EMPIRICAL EVIDENCE OF PEER-SIMILARITY

Over the past year, we have conducted several experiments
with, and analyzed data from, different large-scale MapReduce
systems, including our 100-processor Amazon EC2-based
Hadoop cluster [12] as well as the 4000-processor Yahoo!
M45 production cluster [13]. We experimented with multiple
workloads, such as the simple RandWriter and Sort and
the more realistic Nutch and Pig. We have also analyzed
traces of Hadoop jobs run by other researchers on M45.

We have observed that, in the absence of performance
problems, the slave nodes in a MapReduce cluster tend to
exhibit similar behavior, as measured in any number of ways,
e.g., CPU usage, network traffic, Map-task completion-times,
etc. When we inject a performance problem (or when we
observe a problem in the field, in the case of the M45
traces), we observed further that the slave node on which
the problem originated (the culprit node) deviated from the
other slave nodes in its behavior. These observations held
across multiple traces, multiple experiments, multiple users,
and testbeds. These two empirically-observed insights–peer
similarity under fault-free conditions and peer-divergence in-
dicates a performance problem–form the key motivators of
our Kahuna approach, as described in Section V.
Justification. This observed behavior is intuitive and reason-
able to expect in a MapReduce cluster. Slave nodes typically
process copies of the same task that operate on different
inputs; with each task processing large numbers of records,
the aggregate behavior of slave nodes that we observe would
be similar. In addition, we argue that, for a job to complete
as quickly as possible, nodes (with the same processing capa-
bilities) should spend comparable amounts of time handling
comparable amounts of work, as the system completes its job
only when the slowest node completes. Hence, peer-similarity
amongst (homongeous) nodes is not merely an observed, but
also a necessary, characteristic, for optimal performance.
Supporting evidence. We provide empirical evidence from
traces of real Hadoop jobs in the Yahoo! M45 production
cluster, to support our key insights. We obtained the Hadoop
logs for jobs that were run by researchers (whose data-
intensive jobs range from machine translation to large-scale
data mining) over the five-month period, April–September
2008. The logs spanned 12854 experiments run by 26 users.
Each experiment consisted of multiple Hadoop jobs. Table I
provides a summary of the log statistics. Apart from the
visual inspection of these log traces, we sought to establish,
in a statistical way, that (i) slave nodes performing the same
jobs behave similarly, and (ii) the similarity between nodes is
affected when a job suffers from performance problems.

We measured the similarity among nodes by computing the
absolute value of the Pearson’s pair-wise correlation coeffi-
cient (between 0 and 1, with 1 expressing maximum similarity)
of the average number of Maps/second being executed across
slave nodes during a job across every pair of nodes in each
job. We considered the number of Maps/second, rather than

TABLE I
SUMMARY OF M45 LOGS.

Number of experiments 12854
Number of users 26
Average jobs per experiment 3.84 ± 20
Average nodes per experiment 21.42 ± 24
Average experiment duration (mins) 19.74 ± 82
Longest running experiment (hours) 23.32

workload that hogs a resource), bugs within Hadoop (e.g., a

memory leak), or data-dependent issues.

Scope of paper. We focus on offline diagnosis supported

by online data-collection, although our offline algorithms can

also be run online. We restrict our diagnosis to performance

problems only at slave nodes and not at the master node. Our

diagnosis produces a list of slave nodes that our algorithm

has identified as those that (for some reason) exhibit different

behavior from the majority of nodes. Finer-grained root-cause

analysis, which might trace the problem even further to the

faulty line of code, is outside our scope. We do not attempt

to predict a job’s normal completion-time. We also do not

currently attempt to distinguish between, or even to determine,

the possible root-causes of the performance problem.

Assumptions. The target MapReduce system (i.e., the Hadoop

infrastructure and Hadoop jobs) is the dominant source of

activity on every node. The majority of the Hadoop slave nodes

are fault-free and nodes are homogeneous in hardware.

IV. MOTIVATING A PEER-COMPARISON APPROACH

Over the past year, we conducted several experiments with

and analyzed data from two MapReduce systems, including

a 100-processor Amazon EC2-based cluster [4] under our

control and the 4000-processor Yahoo! M45 cluster [12] not

under our control. We experimented with multiple workloads,

such as the simple RandWriter and Sort , and the more

realistic Nutch and Pig. In addition to our own traces, we

also analyzed the traces of Hadoop jobs of other M45 users.

We observed that, in the absence of performance problems,

the slave nodes in a MapReduce cluster tend to exhibit similar

behavior, in terms of various metrics, e.g., CPU usage, network

traffic, Map-task completion-times, etc. When we inject a fault

(or when we observe a performance problem in the field, as in

the case of the M45 traces), we observed that the slave node

where the problem originated (the culprit node) deviated from

the other slave nodes in its behavior, again in terms of various

metrics. This peer-similarity observation held across multiple

traces, multiple experiments, multiple users, and regardless

of the workload, the specific performance problem, and the

Hadoop cluster (Amazon’s EC2 or Yahoo! M45). Section V

describes how these two empirically-driven insights motivate

Kahuna.

Justification. On reflection, this observed behavior is intuitive

and reasonable to expect in a MapReduce system. For a given

job, slave nodes typically process different instances of the

same Map or Reduce task and should exhibit similar behav-

ior, despite operating on different data. When Hadoop detects

an inequitable allocation of work across nodes, it attempts to

redistribute work across nodes in order to reduce overall job-

completion time. However, such redistribution comes at a cost

and detracts from useful work that Hadoop could otherwise

be doing. Thus, to trigger minimal redistribution, Hadoop

tries to ensure an equitable workload distribution so that each

slave node in the cluster spends approximately the same time

TABLE I
SUMMARY OF HADOOP LOGS FROM M45.

Number of experiments 12854

Number of users 26

Average jobs per experiment 3.84 ± 20

Average nodes per experiment 21.42 ± 24

Average experiment duration (mins) 19.74 ± 82

Longest running experiment (hours) 23.32

0 200 400 600 800 1000 1200

Time (seconds)

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

node1

node2

node3

slow host has fewer
maps scheduled

M
a

p
s/

s
M

a
p

s/
s

M
a

p
s/

s

Fig. 3. Peer-comparison of Map tasks across M45 nodes highlights a slow
node in a user’s Hadoop job.

processing each task instance.

Supporting evidence. We examine the traces of real Hadoop

jobs in the Yahoo! M45 production system, to support our

peer-comparison approach. M45 uses Hadoop on Demand

(HOD) to provision virtual Hadoop clusters over a large

physical cluster. We obtained the Hadoop logs for 12854

experiments across 26 users (whose data-intensive jobs ranged

from machine translation to large-scale data mining) over

the five-month period, April–Sept 2008. Each experiment

consisted of multiple Hadoop jobs. Table I summarizes the

log statistics.

Apart from visually inspecting these log traces, we sought

statistical measures to measure the similarity among nodes

involved in the same job. We computed corr_coeff, the

Pearson’s correlation coefficient (∈ (0,1), with 1 expressing
maximum similarity) of the average number of Maps/second

being executed across slave nodes during a job. We focused

on the number of Maps/second, rather than the number of

Reduces/second, because a third of the jobs (for this specific

user and workload) did not involve any Reduce tasks.

For successfully completed jobs, 89% of the nodes had

corr_coeff ≥ 0.6 with all of other nodes involved in the
job. On the other hand, for jobs aborted by the JobTracker,

only 43% of the nodes had corr_coeff ≥ 0.6 with other
nodes involved in the job. This demonstrates that fault-free

nodes exhibit peer-similarity, and can be seen visually in

Figure 3.

3

Fig. 3. Peer-comparison of Map tasks scheduled across M45 hosts helps to
highlight a slow host in a user’s Hadoop job.

the number of Reduces/second, because a third of the jobs
(for this specific user and workload) did not involve any
Reduce tasks. Figure 3 shows a graphical view of the number
of Maps/second being executed on each node. We found
that, for successfully completed jobs, 89% of the nodes in
had correlation coefficients ≥ 0.6 with all of other nodes
involved in the job. On the other hand, for jobs aborted by
the JobTracker, only 43% of the nodes with correlations ≥ 0.6
with other nodes involved in the job. This evidence supports
our insights of peer-similarity amongst slave nodes in fault-
free conditions, while nodes behave much less similarly in jobs
that failed to complete. This is illustrated visually in Figure 3.

V. DIAGNOSIS APPROACH

Based on our key insights in Section IV, we assert that a
node whose behavior differs from the majority of nodes in
the cluster is anomalous and can be a potential source of
a performance problem. To enable us to quantify how sim-
ilar/dissimilar nodes are to each other, we need to define the
notion of “behavior” more concretely.Hence, Kahuna-BB sta-
tistically compares black-box data across nodes, and Kahuna-
WB statistically compares white-box data across nodes.
Black-box instrumentation. We gather and analyze black-
box (i.e., OS-level) performance metrics, without requiring any
modifications to Hadoop, its applications or the OS. We use the
sadc program in the sysstat package [14] to collect 14 OS
metrics, as listed in Table II) from /proc, at a sampling interval

3

user % CPU time in user-space
system % CPU time in kernel-space
iowait % CPU time waiting for I/O job
ctxt Context switches per second

runq-sz Number of processes waiting to run
plist-sz Total number of processes and threads
ldavg-1 system load average for the last minute

eth-rxbyt Network bytes received per second
eth-txbyt Network bytes transmitted per second
pgpgin KBytes paged in from disk per second

pgpgout KBytes paged out to disk per second
fault Page faults (major+minor) per second
bread Total bytes read from disk per second
bwrtn Total bytes written to disk per second

TABLE II
GATHERED BLACK-BOX METRICS (SADC-VECTOR).

of one second. We denote each vector containing samples of
these 14 metrics, all collected at the same instant of time,
sadc-vector. We use these sadc-vectors as our metric for
diagnosis in Kahuna-BB.
White-box instrumentation. We collect the system logs gen-
erated by Hadoop’s native logging code from the TaskTracker
and DataNode daemons on slave nodes, and use the SALSA
log-analysis technique [9] to extract state-machine views of
the execution of each daemon. Kahuna-WB treats each entry
in the log as an event, and uses particular events to identify
states in the control-flow of each daemon, e.g., Map and
Reduce states in the TaskTracker, and ReadBlock and
WriteBlock states in the DataNode. Kahuna-WB generates
sequences of state executions, data-flows between these states,
and durations of each state, for each node in the cluster.
Kahuna-WB compares these durations across slave nodes to
perform its diagnosis.

VI. DIAGNOSIS ALGORITHMS

For each of the metrics of diagnosis (sadc-vector for Kahuna-
BB and state durations for Kahuna-WB), over a given period
of time, we compare that metric’s values at each node with
the metric’s corresponding values at all of the other nodes. If
the values of metric X at a given node, N, differ significantly
from sufficiently many nodes in the cluster, metric X is said
to indict node N as the culprit, and our algorithms flag the
presence of a performance problem. Kahuna-BB and Kahuna-
WB are similar in their use of a peer-comparison strategy, but
differ in that (i) they operate on different sets of metrics, (ii)
they impose different hypotheses on the data, and (iii) they
can operate independently of each other.

A. Kahuna-WB: White-Box Diagnosis

We assume that state durations of interest have been ex-
tracted from Hadoop’s logs using [9]. Kahuna-WB performs
peer-comparison on the durations of the states extracted
through log analysis, i.e. the Map, Reduce, ReduceCopy
and ReduceMergeCopy states from TaskTracker logs, and the
ReadBlock and WriteBlock states from DataNode logs.
For each state, for a given period of time, we generate a
histogram of the durations of that state for each node, in

order to create an aggregate view of the state’s durations for
that node. Then, for each node, we compare its histogram
for that state’s duration with the corresponding histograms of
every other node in the cluster. We perform this comparison
by computing a statistical measure (square-root of the Jensen-
Shannon divergence [15]) of the distance between histograms.
If a given node’s histogram differs significantly (by more than
a threshold value) from those of a majority of the other nodes,
then, we diagnose the cluster as undergoing a performance
problem with that node being the culprit.

B. Kahuna-BB: Black-Box Diagnosis

Unlike Kahuna-WB, which simply performs a statistical com-
parison across nodes, Kahuna-BB requires a priori training to
summarize system metrics into a small number of behavior
profiles. This enables it to extract meaning out of black-
box data typically devoid of semantic information. Kahuna-
BB is based on two related hypotheses about the behavior
of MapReduce slave nodes from the perspective of black-
box, OS-level performance counters: (i) that MapReduce slave
nodes exhibit a small number of distinct behaviors, and that (ii)
in a short interval of time (say, 1s), the system’s performance
tends to be dominated by one of these behaviors. We then
exploit our peer-similarity insight in Kahuna-BB to incriminate
any node whose dominant distinct behavior differs from those
of a majority of the other nodes in the cluster.
Learning. The K distinct profiles, each of which captures
one of the distinct Hadoop behaviors hypothesized above, are
first learned a priori from fault-free runs of various workloads
(described in Section VII-A). This phase involves collecting
sadc-vectors from these runs, and then using the Expectation-
Maximization (EM) algorithm [16] to cluster these sadc-
vectors into behavior profiles. These profiles have no semantic
meaning, and are used to condense Hadoop’s different behav-
iors into a small number of profiles, as manifested across all
14 elements of the sadc-vectors.
Diagnosis. First, we classify each node’s sadc-vector into
one of the learned K distinct profiles. We then compute the
histograms of these profiles for each node, decayed exponen-
tially with time to weight past behavior less. We then compute
the pairwise distance between the histograms of every pair of
nodes in the cluster in each time period, using a statistical
measure (the square-root of the Jensen-Shannon divergence
[15]). If a specific node’s histogram differs significantly (by
more than a threshold value) from those of a majority of the
other nodes, then we declare the system to be undergoing a
performance problem and indict that node to be the culprit.

VII. EXPERIMENTAL EVALUATION

Each experiment consists of a {problem, workload} pair, with
a Hadoop cluster running a particular workload, with a specific
single fault injected at one of the slave nodes during the
experiment. These injected performance problems increase the
workload’s running time, as compared to the control fault-
free case, as shown in Table IV. We evaluate Kahuna-BB’s
and Kahuna-WB’s ability to detect and localize the injected

4

Fault / Workload RandWriter Sort Nutch Pig
Control (none) 0% 0% 0% 0%

CPUHog 7.2% 28.2% 25.1% 11.6%
DiskHog 5.7% 26.6% 10.6% 16.3%
DiskFull 1.4% 4% 0% 0%

PacketLoss1 0% 0% 0% 0%
PacketLoss5 0% 23.2% 30.1% 0%

PacketLoss50 0% 89.8% 116.5% 561.1%
HANG-1036 1% 12.8% 99.4% 37.0%
HANG-1152 0% 24.4% 44.0% 6.6%
HANG-2080 0% 23.7% 6.1% 0.5%

TABLE IV
IMPACT OF INJECTED PROBLEMS ON PERFORMANCE OF EACH

WORKLOAD. WE REPORT THE PERCENTAGE SLOWDOWN OF THE
COMPLETION TIME OF EACH JOB RELATIVE TO THE “CONTROL” CASE.

performance problems for each Hadoop workload. We selected
these injected problems to cover both (i) resource-contention
(CPU, disk, network) problems, as well as (ii) Hadoop bugs
that result in performance slowdowns or hangs.

A. Experimental Setup

We collected and analyzed traces from Hadoop clusters run-
ning on virtual machines on the Amazon EC2 virtual data-
center. Each node consisted of an “extra-large” node instance
on EC2, with 4 dual-core Intel Xeon-class CPUs, 15GB of
memory, and 1.6TB of Elastic Block Store (EBS) storage [12].
We collected traces from 10-, 25-, 50- and 100-node Hadoop
clusters. We collected both black-box, OS-level performance
counters throughout the experiment, and white-box Hadoop
logs at the end of each experiment for offline processing.
Black-box data collection incurred an overhead of less than
1% CPU utilization; white-box data-collection did not require
additional effort as Hadoop generates logs by default.
Workloads. To evaluate the effectiveness of Kahuna on a
variety of workloads, we collected traces of Hadoop under
four different workloads: two simple benchmarks that are
packaged with Hadoop (Sort , RandWriter), and two
Hadoop applications (Nutch, Pig) commonly used in real-
world installations. These are described below:
• RandWriter: Write-intensive workload that generated 24
GB of random data on each task
• Sort : Read/Write workload that sorts 5 GB of randomly-
ordered records generated by RandWriter. Sort and
RandWriter are common Hadoop benchmarks
• Nutch: Distributed web-crawler for Hadoop, in use
at several companies [3], representative of a real-world,
fluctuating workload typical of many Hadoop workloads
• Pig: High-level language for expressing data analysis
programs [17], that is compiled into Hadoop programs,
typical of a sophisticated, multi-job Hadoop workload

Fault Injection. Table III describes the faults that we injected
into one of the slave nodes in each experiment, and our
fault-injection methodology. These faults trigger performance
problems reported on the Hadoop users’ mailing list or on
the Hadoop bug database [11]. The faults studied were inten-
tionally selected to induce performance problems, specifically

Fig. 4. Results for all problems on Nutch for all cluster sizes.

Fig. 5. Results for all problems on Pig for all cluster sizes.

those that caused Hadoop jobs to take longer to complete
than expected, as compared with our control (i.e. fault-free)
experiments. Table IV captures the impact of these injected
faults on the job-completion times of the four workloads.

VIII. RESULTS

For each experimental trace, we analyzed the trace-data using
both Kahuna-WB and Kahuna-BB, each of which returned a
list of nodes it indicted as culprits. We evaluated this outcome
as follows: an indictment of the fault-injected node was a true-
positive, an indictment of any other node was a false-positive
(FP), and a failure to indict the fault-injected node was a
false-negative (FN). The true-positive (TP) and false-positive
rates (∈ [0.0,1.0], with T P = 1.0,FP = 0.0 representing a
perfect diagnosis) are presented here for 10 fault-induced
experimental runs for each {problem, workload} pair. These
results are computed for a specific threshold (for Kahuna-BB
and Kahuna-WB) for each {workload, cluster-size} pair.

A. Kahuna-BB: Black-box diagnosis

Figures 4, 5, 6, and 7 show the TP and FP rates for each
{fault,workload} pair. The bar graphs are grouped by injected
fault, and each set of 4 bars shows results for the 10-, 25-,

5

[Source] Reported Failure [Problem Name] Problem-Injection Methodology
[Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resulted
from running master and slave daemons on same machine

[CPUHog] Emulate a CPU-intensive task that consumes 70%
CPU utilization

[Hadoop users’ mailing list, Sep 26 2007] Excessive messages logged
to file during startup

[DiskHog] Sequential disk workload wrote 20GB of data to
filesystem

[HADOOP-2956] Degraded network connectivity between DataN-
odes results in long block transfer times

[PacketLoss1/5/50] 1%,5%,50% packet losses by drop-
ping all incoming/outcoming packets with probabilities of
0.01,0.05,0.5

[HADOOP-1036] Hang at TaskTracker due to an unhandled excep-
tion from a task terminating unexpectedly. The offending TaskTracker
sends heartbeats although the task has terminated.

[HANG-1036] Revert to older version and trigger bug by
throwing NullPointerException

[HADOOP-1152] Reduces at TaskTrackers hang due to a race con-
dition when a file is deleted between a rename and an attempt to call
getLength() on it.

[HANG-1152] Simulated the race by flagging a renamed file as
being flushed to disk and throwing exceptions in the filesystem
code

[HADOOP-2080] Reduces at TaskTrackers hang due to a miscalcu-
lated checksum.

[HANG-2080] Deliberately miscomputed checksum to trigger
a hang at reducer

TABLE III
INJECTED PROBLEMS, AND THE REPORTED FAILURES THAT THEY SIMULATE. HADOOP-XXXX REPRESENTS A HADOOP BUG-DATABASE ENTRY.

Fig. 6. Results for all problems on RandWriter for all cluster sizes.

Fig. 7. Results for all problems on Sort for all cluster sizes.

50-, and 100-node clusters respectively. In general, Kahuna-
BB was successful at diagnosing most injected faults on
all workloads, achieving high TP rates and low FP rates.
We candidly discuss deviations where and why Kahuna-BB
performed less than satisfactorily.
PacketLoss: The PacketLoss1 problem was generally not

diagnosed on all workloads, as compared to other problems,
because Hadoop uses TCP, which provides some resilience
against minor packet losses. The diagnosis of more severe
packet losses had high TP rates, indicating we could detect
the problem. However, the high FP rates indicated that we
regularly indicted wrong nodes, due to the correlated nature
of the problem since a packet loss on one node (e.g. due to
a flaky NIC) can also register as a problem on other nodes
communicating with it. Also, the PacketLoss problem was
less successfully detected on RandWriter because its jobs
largely involved disk I/O but minimal network communication.
HANG-2080, HANG-1152: The HANG-2080 and HANG-
1152 problems affect the Reduce stage of computation. Since
the RandWriter workload has no Reduce tasks, these hang
problems have less impact on it (as shown in Table IV) than
on Sort and Pig, which have relatively long Reduces.
We could not diagnose the problem on the Nutch workload
as it affected a majority of the nodes in the cluster, so that
peer-comparison failed to diagnose this problem.
DiskFull: The DiskFull problem was not diagnosed success-
fully on the Pig workload, with relatively low TP rates. In
this problem, the node with a full disk would use remote
DataNodes rather than its local one to perform operations,
so that workloads which perform more disk operations would
be more greatly impacted. However, the Pig job in our
experiments was largely compute-intensive, and less disk-
intensive, so that the drop in disk activity on the problematic
node did not cause the disk activity of that node to deviate
significantly from those of other nodes.

B. Kahuna-WB: White-box diagnosis

Kahuna-WB diagnosis was performed with the durations of
each of the following states: ReadBlock and WriteBlock
states on the DataNode, and the Map, Reduce, ReduceCopy
and ReduceMergeCopy states on the TaskTracker. We
found that diagnosis using the Map state was most effective;
we summarize the results for diagnosis using all other states
due to space constraints. The Map state was more effective
for diagnosis as our candidate workloads spent the majority of

6

Fig. 8. False-positive rates for all problem-workload pairs (Maps).

Fig. 9. False-negative rates for all problem-workload pairs (Maps).

their time in the Map state, while only Sort and Pig had sig-
nificant Reduce tasks, so that the Map state was more likely
to reflect problems. The ReadBlock and WriteBlock
states were more likely to reflect problems in read-intensive
and write-intensive workloads respectively, but were less ef-
fective on workloads with balanced I/O. The ReduceCopy
and ReduceMergeCopy states were generally short-lived
and occurred sparingly, and so were less effective. We present
the FN (= 1−T P) and FP rates for diagnosis using the Map
state in figures 8 and 9 respectively, and the average FN and
FP rates for diagnosis using all other states in figures 11 and
10 respectively. Each cell in the heatmap shows the FN or FP
rate respectively for the given { problem, workload } pair for
a given cluster-size (indicated after each workload). Deeper
shades and deeper reds show low FN/FP rates, while lighter
shades show high FN/FP rates.
Diagnosis using Maps. We diagnosed all problems relatively
effectively, with low FN rates. However, we suffered high
FP rates on the Packet Loss problems due to the correlated
nature of packet losses, as explained in Section VIII-A. We
also suffered high FP rates on HANG-1152 and HANG-2080
on Nutch and RandWriter, as explained in Section VIII-A.
Diagnosis using other states Non-Map states were less effec-
tive for diagnosis, achieving poorer (higher) FP and FN rates.
In particular, they were ineffective for RandWriter because
the workload had no Reduce and minimal ReadBlock
states– this small number of non-Map states resulted in higher
sensitivity of Kahuna-WB and hence higher FP rates.

Fig. 10. False-positive rates for all problem-workload pairs (all other states).

Fig. 11. False-negative rates for all problem-workload pairs (all other states).

C. Discussion

Our experimental results show that our peer-comparison ap-
proach works well at diagnosing resource faults that result
from over- or under-utilization of resources; e.g. in the CPU
and DiskHog faults, compute and I/O capacities were exces-
sively used, while in the HANG-1036 fault, compute capacities
were underutilized due to the hang. This is reinforced by our
diagnosis being more effective on faults that result in more
severely increased job runtimes, in comparing Table IV with
our diagnostic results. However, the peer-comparison approach
works less well on communication failures e.g. packet losses.
Also, Kahuna-WB does marginally better than Kahuna-BB at
the more subtle faults, i.e. HANG-1152 and HANG-2080 in
workloads with significant Reduce activity. Thus, our peer-
comparison approach can be applied at different levels of
granularity to enable more comprehensive diagnosis coverage.

IX. RELATED WORK

Diagnosing faults in distributed systems involves: (i) collecting
system data, (ii) localizing faults to requests or nodes, and (iii)
identifying root-causes. We compare our approach with recent
work in some of these tasks. Also, we target MapReduce
environments, which have long-lived jobs relative to Internet
services with short-lived jobs and easily-defined SLOs that
much recent work has dealt with [18], [4], [19], [6], [20].
Instrumentation sources. Magpie [18] uses black-box OS-
level metrics, similarly to Kahuna-BB but at a finer granularity
with request attribution, which Barham et al. achieve by

7

exploiting expert input. Pip [21], X-trace [22] and Pinpoint
[5] extract white-box metrics about paths through systems
by tagging messages between components, while Kahuna-WB
uses information extracted transparently from logs. [6] infers
request paths by capturing messaging layer messages.
Root-cause analysis. Given failed requests, [4], [19] perform
root-cause analysis on known-failed requests using cluster-
ing and decision trees respectively. [5], [20], [6] identify
components along request paths, or anomalous paths, that
contribute to failures/slowdowns. They uncover root-causes
of known failed requests, while Kahuna-WB and Kahuna-BB
identify requests with performance problems in systems where
knowledge of SLO violations is not easily obtained.
Peer-comparison techniques. Peer comparison has been used
to identify anomalous nodes or components, in actively repli-
cated systems [24] and load-balanced web-service clusters
[25], and from past views of peers in the system [20]. Slave
nodes in MapReduce and Hadoop clusters are not strictly
peers, as they handle different inputs; thus, it is interesting
for our hypothesis of peer-symmetry to be borne out. [26]
described initial work towards peer comparison in Dryad [27].
PeerPressure [28] diagnoses known configuration faults on a
single host offline by comparing the suspect configuration with
other labelled ones.
Diagnosis in MapReduce and Hadoop. [29] mined error
messages DataNode logs to identify those correlated with
actual errors, while we target performance problems. [22] was
used to instrument Hadoop to return causal paths for iden-
tifying slow paths. [9] presented initial results in comparing
state durations in Hadoop’s execution, and [8] compared OS-
level metrics; we evaluate these two techniques as part of the
peer-similarity hypothesis extensively.

X. CONCLUSION

Kahuna aims to diagnose performance in MapReduce systems
based on the hypothesis that nodes exhibit peer-similarity
under fault-free conditions, and that some faults result in
peer-dissimilarity. This gives rise to our peer-comparison
approach, applied to Hadoop, which we have validated using
empirical evidence from real-world traces on the Yahoo! M45
cluster, and using experimental evaluation of two earlier peer-
comparison algorithms on extensive benchmark and produc-
tion workloads. Also, the applicability of our peer-comparison
approach to multiple levels of Hadoop behavior suggests that
this is a generally applicable approach, and our results show
that applying peer-comparison to multiple levels (black-box
system-level and white-box application-specific) of behavior
can enhance the diagnosis coverage.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in OSDI, San Francisco, CA, Dec 2004, pp. 137–150.

[2] Apache Software Foundation, “Hadoop,” 2007, http://hadoop.apache.
org/core.

[3] ——, “Powered by Hadoop,” 2009, http://wiki.apache.org/hadoop/
PoweredBy.

[4] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox,
“Capturing, indexing, clustering, and retrieving system history,” in
SOSP, Brighton, United Kingdom, Oct 2005, pp. 105–118.

[5] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in DSN,
Bethesda, MD, Jun 2002.

[6] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, “Performance debugging for distributed system of black
boxes,” in SOSP, Bolton Landing, NY, Oct 2003, pp. 74–89.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communcations of the ACM, vol. 51, no. 1, pp. 107–
113, Jan 2008.

[8] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Ganesha:
Black-Box Diagnosis of MapReduce Systems,” in Workshop on Hot
Topics in Measurement & Modeling of Computer Systems (HotMetrics),
Seattle, WA, Jun 2009.

[9] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “SALSA:
Analyzing Logs as State Machines,” in USENIX WASL, San Diego, CA,
Dec 2008.

[10] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system.” in
SOSP, Lake George, NY, Oct 2003, pp. 29 – 43.

[11] Apache Software Foundation, “Apache’s JIRA issue tracker,” 2006,
https://issues.apache.org/jira.

[12] Amazon Web Services LLC, “Amazon Elastic Compute Cloud,” 2009,
http://aws.amazon.com/ec2/.

[13] Yahoo! Inc., “Yahoo! reaches for the stars with M45 supercomputing
project,” 2007, http://research.yahoo.com/node/1884.

[14] S. Godard, “SYSSTAT,” 2008, http://pagesperso-orange.fr/sebastien.
godard.

[15] D. M. Endres and J. E. Schindelin, “A new metric for probability
distributions,” Information Theory, IEEE Transactions on, vol. 49, no. 7,
pp. 1858–1860, 2003.

[16] D. R. A. Dempster, N. Laird, “Maximum likelihood from incomplete
data via the em algorithm,” Journal of the Royal Statistical Society,
vol. 39, pp. 1,38, 1977.

[17] C. Olston and B. Reed and U. Srivastava and R. Kumar and A.
Tomkins, “Pig Latin: A Not-So-Foreign Language for Data Processing,”
in SIGMOD, Vancouver, BC, Canada, Jun 2008.

[18] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using Magpie for
request extraction and workload modelling,” in OSDI, San Francisco,
CA, Dec 2004.

[19] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer, “Failure
diagnosis using decision trees,” in ICAC, New York, NY, May 2004, pp.
36–43.

[20] E. Kiciman and A. Fox, “Detecting application-level failures in
component-based internet services,” IEEE Trans. on Neural Networks:
Special Issue on Adaptive Learning Systems in Communication Net-
works, vol. 16, no. 5, pp. 1027– 1041, Sep 2005.

[21] P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah, and A. Vahdat,
“Pip: Detecting the unexpected in distributed systems,” in NSDI, San
Jose, CA, May 2006.

[22] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “X-Trace: A
pervasive network tracing framework,” in NSDI, Cambridge, MA, Apr
2007.

[23] S. Pertet, R. Gandhi, and P. Narasimhan, “Fingerpointing Correlated
Failures in Replicated Systems,” in SysML, Cambridge, MA, Apr 2007.

[24] M. Munawar, M. Jiang, and P. Ward, “Monitoring Multi-tier Clustered
Systems with Invariant Metrics Relationships,” in International Work-
shop on Software Engineering for Adaptive and Self-Managing Systems,
Leipzig, Germany, May 2008.

[25] G. Cretu-Ciocarlie, M. Budiu, and M. Goldszmidt, “Hunting for Prob-
lems with Artemis,” in USENIX WASL, San Diego, CA, Dec 2008.

[26] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Building Blocks,”
in EuroSys, Lisbon, Portugal, Mar 2007.

[27] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang, “Automatic
Misconfiguration Troubleshooting with PeerPressure,” in OSDI, San
Francisco, CA, Dec 2004.

[28] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Detecting large-
scale system problems by mining console logs,” in SOSP, Big Sky, MT,
Oct 2009.

8

