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Abstract 
We propose a simple and practical probabilistic 

comparison-based model, employing multiple incomplete 
test concepts, for handling fault location in distributed 
systems using a Bayesian analysis procedure. This 
approach is more practical and complete than previous 
ones since it does not assume any conditions such as 
permanently faulty units, complete tests, perfect environ- 
ments, or non-malicious environments. Fault-free systems 
are handled without overhead, hence the test procedure 
may be used to monitor a functioning system. Given a 
system S with a specific test graph, the corresponding 
conditional distribution between the comparison test results 
(syndrome) and the fault patterns of S can be generated. 
To avoid the complex global Bayesian estimation process, 
we develop a simple bitwise Bayesian (B-)  algorithm for 
fault location in S, which locates system failures with 
finear complexity, suitable for hard real-time systems. 

Keywords: Bayesian decision rules, Distance measure, 
Fault location, Loss function, Probabilistic comparison 
model, System Diagnosis. 

1. Introduction 

This paper studies fault location using Bayesian 
inference methods based on a simple probabilistic compari- 
son-based model. The objective of testing a system is 
generally twofold: first, discover whether a fault exists in 
the system and second, locate the fault or faults once they 
are known to exist. For the past few years, significant 
advances have been made in locating faults of a system 
under test, S, using a probabilistic approach [l,  3-10, 12, 
17, 19,341. Indeed, the use of probability in fault location 
may be more realistic than deterministic methods because 
the former can accommodate the multiplicity of the 
random effects outlined in (ii) through (vii) below which 
tend to perturb the latter. However, the computational 
complexity involved in fault location usually increases 
drastically, if all the possible random effects of faults in S 
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are considered. The situations in the following list have 
been a constant challenge for researchers when dealing 
with fault location of S. Some of the papers that address 
the problems are shown in parenthesis: 
(i) The diagnosis results for a system may only be valid 

for a bounded number of faulty units (Smith [33]). 
(ii) Systems may have non-permanent faults (Mallela and 

Mason [23]). 
(iii) Faulty units may behave maliciously-they may lie 

about their results (Gupta and Ramakrishnan [14]). 
(iv) Tests may be incomplete (Russell and Kime [28,29]). 
(v) For some test strategies, faulty units have to be 

assumed to be still able to execute assigned tests 
(Preparata et al. 1271). 

(vi) There may be noisy environments, or errors in trans- 
mittingheceiving devices (Blount [SI). 

(vii) The probability of failure may vary as the run time 
advances. (Chang [61 and Chang el al. [?-91) 

In relation to item (vii), the probability of failure is 
assumed to be constant by Blough and Sullivan [4], Lin 
and Shin [19], and Berman and Pelc [3]. Furthermore, it is 
necessary to consider how to manage testing policies for 
fault location in S, where failures are dependent upon 
operation-time [9]. Any of these phenomena may actually 
occur together during the testing process. Hence, rather 
than trying to directly monitor and control the randomness 
of the system during the tests, we propose to simply apply 
a set of tests, gather all the results from the outputs and 
utilize stochastic methods to solve the fault location 
problem. In doing that, one should really consider a 
generalized approach that includes all possible random 
phenomena. Recently, Dahbura [ 121, Fussell and Rangar- 
ajan [131, Lee and Shin [I81 proposed to use comparison 
testing in their probabilistic diagnosis strategies. The idea 
of performing the comparison tests among unils is inspired 
by earlier research by Malek [22], and Chwa/Hakimi [l l] .  
The main reason for this form of testing is that it is less 
intrusive and easier to compare test results among units, 
e.g. microprocessors, than to use some units t o  test others. 
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Thc generalized probabilistic approaches have so far 
incurred exponential computational complexity during 
diagnosis [l, 5 ,  19,211 but more recent work in real-time 
fault-tolerant systems demonstrates that the complexity can 
be reduced to linear, see Chang et al., [7, 8, 101. A related 
problem is that storage for the a przorz lagnostic data has 
also been exponential if all random effects are considered 
[ l ,  5 ,  61. Lander and Chang Cl71 show that only limited 
quantities of data are required per test cycle and that the 
data can be generated on-line in polynomial time. 

We may state the problem as follows: given a system 
S with n units or subsystems and given an observed set of 
outputs from S resulting from a set of tests, what is the 
fault pattern of the system? The failures that occur during 
the operation of S could be caused by one or more faulty 
units in S. Hence, the probability that a unit has a fault 
[21] should play an important part in the fault location 
process. Further, it should be recognized that this proba- 
bility may change with the time of operation. Most of the 
fault location research developed for multiprocessor 
systems in the past two decades more or less resembles the 
concepts developed by the PMC model [27]. The main 
reason for this similarity is that the problems which have 
been defined in the area of system diagnosis are based on 
essentially the same set of simplifying assumptions, see the 
mc le  by Dahbura [12]. In fact, those assumptions do not 
reflect the constraints of physical fault-tolerant designs too 
closely and various authors have attempted to modify the 
assumptions to correct this inconsistency, as listed above. 
Other approaches can be seen in [3, 4, 14, 17, 19, 27, 30, 
32, 331, including work for a general multiprocessor 
system. 

Evidently, any of the phenomena mentioned above, 
which have been introduced in the literature, might 
actually occur together, rather than in isolation, during the 
testing process. The only two things that we can do are to 
apply tests to the input and to gather the test results from 
the output; we have no means of governing random effects 
or directly monitoring the events that happen to the system 
during the tests. Thus, when utilizing stochastic methods 
to solve the fault location problem, one should really 
consider a generalized approach that includes all possible 
random phenomena. As a consequence, this paper proposes 
altcmative methods taken from decision theory. Although 
a generalized solution to fault location using stochastic 
methods is NP-complete, we are able to design the B- (bit- 
wise Bayesian) algorithm to locate the faults with linear 
run-time complexity, thus making it of interest in hard 
real-time applications. The reason that our solution can be 
so simple without sacrificing any information gathered 
from the tests is that we decompose the system’s (global) 
Bayesian estimation into a bitwise Bayesian estimation, 
aftm the loss function has bccn introduccd. The loss 

function that we choose is an admissible Bayesian decision 
rule [2] for fault location. In the light of the work of 
Malek [22], we use a simple probabilistic comparison- 
based model together with the Bayesian inference a p  
proach. We argue that a comparison-based model is more 
appropriate for a homogeneous system. Both techniques 
consider the whole fault set; thus, it is not necessary to 
bound the number of faulty units. In addition, the Bayesian 
fault location strategy also includes the faulty probability 
of every unit in the c1 priori information. Another Bayes- 
ian approach can be found in Lin and Shin [18], where the 
prior distribution of unit failures is used as the basis of the 
Bayesian decision rule. Their approach targets one fault at 
a time and uses repetitions to diagnose multiple faults. 

2. Probabilistic Comparison-based Model 

BASIC NOTATION 
We consider an undirected test graph G(U,E) with 

vertex set U and edge set E. Vertices are denoted uk . 
Denote the status of unit uk by Qk , where Qk is 1 (0) if uk 
is faulty (fault-free), for k = 0, 1, 2, ..., n-1. Then, @ = 

... +o denotes the (system) fault pattern of the n 
units. If we consider a system S with n units, we assume 
that one or more units may be faulty simultaneously. The 
faults in S will be identified by a fault pattern Q, and we 
denote the set of all fault patterns by 9 = ( Q1, ... , 
@2n-l 1 .  Each fault pattern a, E 8 is assumed to be 
possible in S. A rest is a procedure for identifying whether 
one of the UUTs is behaving normally or abnormally-in 
the comparison model-by means of the value it returns. 
We assume there is a test T = {Il ,  tZ,  ..., rp ) consisting of 
p test tasks that can be applied to S. Individual tests may 
be incomplete in the sense that they may not always cause 
a faulty unit to retum an incorrect result. This paper will 
be concemed with sequences T = IT@), k = 1, 2, ..., t), 
where each T (k) is a collection of incomplete individual 
tasks 5 .  Note that, Russell and Kime [28,29] suggested 
that it is hardly feasible to generate a complete test for the 
UUTs, so, as indicated by Dahbura [12], the most realistic 
approach is to assume tests are incomplete. Comparing 
tests T (k) and T (k3, they may be replications or they may 
include different tasks belonging to the same class. The 
symbol C = cmq1 cm-2 ... co denotes the global (or system) 
comparison pattern of m links, where c ( ,  P = m-1, m-2, 
..., 0, denotes the pairwise comparison result of Pth link. 
When the units agree we set cI = 0 and when the units 
disagree we set cd = 1. We denote the set of all compari- 
son patterns by Y .= I CO, C,, ... , C2m-l ) . 

Suppose a given system S has n units with tn compari- 
son-test links and an undirected graph G = (U,E), where E 
= ( ( u i ,  U,) : ui , uj E U} indicates the set of comparison 

45 



assignments of the UUTs of the system. For example, take 
a complete graph of n = 4 units and m = ( 2" ) = ( ) links. 
The structure is displayed in Figure 1. 

It is assumed that a test sequence T, as above, is 
performed by a system S. Each test T @ )  consists of a set 
of jobs assigned to all the units u i .  The comparison 
pattern observed as a result of test T(k' is denoted @. 
After observing a sequence of such pattems 
{C(k )  E Y, k= 1,2, ..., T}, probabilistic analysis is applied 
to determine the faulty units, This analysis is described in 
remaining sections. 

Figure 1 

Suppose the edge (link) c, connects ui and U, . The 
behavior of the comparison test of two units ui and U, can 
be characterized and modeled using the following condi- 
tional probability test parameters: 

p, = Pr(c, = 0 I Cpi = @ j  = 0), the probability of 
agreement between fault-free units 

q,= Pr(c, = 1 I Qi f @,), the probability of dis- 
agreement between a faulty and a fault-free unit, 
and 

r,= Pr(c, = 1 I @i = Cp, = 11, the probability of 
disagreement between faulty units. 

To further simplify the analysis, we shall assume 
homogeneity. By homogeneous, we mean that the UUTs 
are either identical or at least functionally equivalent, e.g., 
multiprocessor-based systems. This assumption implies 
symmetry in the definition of q,, i.e. Pr(c,= 1 I = 0, +, = 1) = Pr(c, = 1 I @, = 1, @, = O), and, further, it is 
reasonable to assume there are non-stochastic constants p, 
q, r such that p ,  = p ,  q r =  q, r, = r. Chang [6] and 
Chang et al., @,lo] justifies that, in the comparison-based 
model, the components of C are statistically independent 
in the sense that Pr(C 10) = rI7;; R(c, I 0). Hence, the 
conditional distribution of Pr(CI0) can be evaluated as a 
function of p, q, and r.  Blount [ 5 ]  and Barsi [I] made a 
similar claim; however, the assumption is harder to justify 
in the PMC model, where each tester tests and decides the 
status of a subset of the UUTs. If c, connects ui and U, , 
call c, a p-link when ui and U, are fault-free, a q-link 
when one of ui and U, is faulty and one IS fault-free and an 
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r-link when ui and U, are faulty. 
2.1. Observation. If c, is a p-link for Q, then Pr(c, = 
0 10) = p and R(c, = 1 I @) = 1 - p. If c, is a q-link for 
a, then Pr(c,= 110) = q and R(c,= O l @ )  = 1 - q and 
similarly for an r-link. Thus 

m - 1  

(1) f i ( C I @ )  = n W C # l @ )  
I -  0 

= pa-dP(1 - p )  d P q  n P - d q  (1 -q )dqrnr -dr ( l  -r>d, 
where np , nq and n, are the numbers of p-, q- and r-links, 
respectively, np+nq+nr = m, and d p ,  dq and d, are the 
numbers of misdiagnosedp-, q- and r-links in the compari- 
son pattem C,  respectively. Further, if we introduce the 
notation $ = (1 - p) /p ,  tq = (1 - 414 and $, = (1 - r)/r, 
then equauon (1) simplifies to 

An example of the use of this formula is as follows. 
Consider a system of four functionally identical units with 
a complete connection assignment. We examine one of the 
possible fault pattems: 

b 5 1  

c,= 0 

c5= 'U/ 
+2= 0 

Figure 2 

2.2. Example. If Q = @3 q2 4, +o = 001 1 and C = c5 c, 
cg cz c1 co = 110110, then it follows that 

P ~ ( C  I a) = Pry, R(C, I 0) = {l-r)(1-q)q%-p) 
There are two faulty units (units uo and ul) and three 

erroneous comparison results (co, cg, cs) as ln Figure 2. 
The objective of testing a system is to find out 

whether a failure exists in the system at the time of the 
test, and then to locate the failed unit if there is one. 
Hence, after the fault location process is completed, some 
level of repair or reconfiguration will have to be initiated. 

Note that the conditional distributions C I 0, can be 
combined into a table listing all the values of Pr(C, I @I>. 
called the likelihood table (LT), which is a probabilistic 
comparison table and can be computed prior to the opera- 
tion of the system. However, it is obvious that the storage 
size of the LT is 0(2n*2m), e.g. refer to Table I at the end 
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of die paper. Chang [6] develops an analytical method to 
avoid the need to store this enormous amount of data. The 
method requires O(m) time to retrieve a data item or 
O(log m) time when prestored reference data is used. The 
number of data items retrieved at test time is small and has 
an absolute upper bound of z, the number of tests. Exam- 
ple 4.7 provides an illustration. 

3. Assignment of Multiple Test Sets 

When diagnosing a system S, tests must be adminis- 
tered at some point in time. After the tests are run, the 
outcomes of the tests, i.e. the comparison patterns, are 
collected and analyzed. The whole process then turns to 
the fault location procedure which is intended to locate the 
faulty units. There is an inherently random nature to the 
comparison results of any given system for a variety of 
reasons, e.g. refer to [3-10,14,19,2327-29,331. It is 
therefore appropriate to apply the Same or functionally 
equivalent tests many times to have more reliable data for 
diagnosis. Consequently, we apply to S the sequence T of 
2 tests T o ,  defined in Section 2; then z comparison 
results will form the observed output data (comparison 
syndrome): IC("" E Y ,  s = 1, 2, ..., T}, where C (') 

denotes the comparison pattern observed after the s-th test 
is applied. Here, each test task t in any T( , )  is designed 
to cover partial functionality of the UUT, so that T(') 
attempts to achieve pseudo-exhaustive testing [24]. The 
tests T(,)  are repeated z times, with variation of the 
individual tasks t within a test class, both to improve test 
coverage, since the tests may not be complete, and to take 
account of random effects in the test environment, e.g. 
situations (ii), (iii) and (vi) discussed in Section 1. Suppose 
the z comparison results are conditionally independent, 
i.e.. 

where I%(@) I aj) can be obtained from the comparison 
probabilistic table forj = 0, 1, ".. , 2"-1. Consequently, the 
posterior distribution can be evaluated by Bayes' theorem: 

Pr( Qj I C(l)C(2)...C(7)) 

To further simplify the notation in (3), we write 
dl-') = el), d2), ... , @. AS a rationale for the prior 
distribution on the parameter @E 8 of interest, we follow 
the suggestion of previous research in the field [16.21.25, 
26, 31, 34, 353 and assume that the components of a, 
namely , , ..., $o are independent, identically 
distributed (i.i.d), having an exponential distribution with 
parameter h. This assumption is justified by the fact that 
all UUTs are homogeneous. The choice of the prior 
probability R(@) does not affect the discussion in the next 
section. Hence the pmcedure is robust with respect to the 
choice of the prior distribution. 

4. The Bayesian Analysis of Fault Location 

In general, there are two possible ways to perform 
fault location using Bayesian analysis. One is analogous 
to classical inference methods that mostly deab: with the 
posterior distribution. In classical inference methods, we 
may choose either point estimation or set estimation to 
perform the fault location process (see Chang [6] and 
Chang et al. [7-91). The other introduces the idea of a loss 
function and turns the problem into one from decision 
theory. In this section the latter is studied. 

We employ the Bayesian decision-theoretic approach, 
which enables us to estimate the fault status of each unit 
by doing point estimation with the choice of a reasonable 
loss function SP [21. We claim that the distance measure 
is a reasonable measure for all misdiagnosed results. The 
loss function derived is computed bitwise from the global 
fault pattem. The reasons for choosing this loss function 
include computational efficiency and the fact that the 
center mean and mode of its distribution are the same. 

To assist our Bayesian analysis, it is necessary to 
transform the likelihood table, Pr(Ci I Qj) .  to a bitwise 
version of the likelihood table, Pr(Ci I $,). As shown in 
Table 11, the number of columns which was 2" in a table 
such as Table I has become simply 2n. In Section 2, we 
wrote $k for the fault status of unit ut ($k = 0 or 1) and 
now we also write 4jc for the status of unit U, conditional 
upon the fault pattern being a,, so that CD. = QjeRl ...Oi& ... 
$,,*. We may extend the expressions denved m previous 
sections and consider the case $k = 6, where 6 = 0 or 1, 
to obtain: 

J. 

fori = 0, 1, ..., 2" - 1. 
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The conditional probabilities Pr(C, I Qk ), k = 0, ..., n-1 
in Table I are generated from a conditional probability 
distribution. Hence the column sums of the table are one 
but this is not m e  of the row sums. That is entirely as 
expected. Table I1 is generated by equation (4) and was 
validated by two different programs written separately in 
the C and Matlab languages. As in Table I, the tabulated 
values are multiplied by 104 for computational accuracy 
and readability. The shape of the distribution in each 
column is similar to that in Table I but the rate at which 
the values decrease is slower than in Table I. This 
observation is reasonable since the bitwise conditional 
diwibution in Table I1 only specifies all the possible fault 
conditions of one unit, not all the units. Although this 
bi twise distribution seems to have a less pronounced shape 
than the global distribution in Table I, Table I1 is far 
smaller. Together with the bitwise method in this section, 
the small size of the table will reduce the complexity of 
the analysis markedly. Besides that, one can note that 
R(C, I $ A = ~ )  is not equal to pr<ci l$k=l) in general. 
Swh an equality, rarely occurring in practice, would yield 
an inconclusive test result and compromise the comparison 
steps in the diagnosis process (see step (3) of the B- 
algorithm in this section). If such an inconclusive test 
result were to occur it could be improved by upgrading the 
quality of the test tasks t or by increasing z, the number 
of tests. The latter would be necessary if faults were 
intermittent. 

POINT ESTIMATION 
Use- the olpervep comparison p2ttems to determine 

a,, = $a-1 ... Qk ... Qo E 8, where aML is the "general- 
ized maximum likelihood estimate" of @, that is, the 
largest mode of the posterior distribution Pr(@ I dl-" ) 
(see Berger ,[2], p.133). This maximum likelihood esti- 
mate is expected to be unique. It is clearly O(2") to 
examine all Oj E 8 to find the maximum of all the 
Pr(@ I d'-') ) if all Qj have to be examined. However, 
Chang and LanderA[7, 81 gave a heuristic-based search 
algorithm to find This algorithm has only O(n) 
worst case complexity to locate the faults with a 1 - a 
level of confidence. 

SkT ESTIMATION 
It is possible to obtain the lOO(1 - a)% highest 

posterior density (HPD) credible region for the random 
variable @, given some small real number a. To calculate 
the HPD we consider all subsets r '  c 8 such that 
Pr(r' I d'-.') ) 2 1 - a. Among these subsets r ' we 
have to fiid the one with the highest density of posterior 
probability. This is taken to mean the subset such that 
MIN b(aj I dl-')) : 0, E r 1 I is the largest, i.e. let 

Table II. The simplified bitwise likelihood table of 
Pr(Ci I $k )*1@ based on Table I, where Pr(g,=O) = 0.8, 
Pr($pl) = 1 - 0.8 = 0.2 for all Qk (see Table I for the bit 
patterns for each Cj ), 

@ 0- -0 @ 0- -1 @ 1- -0 @,=I @,=O @,=1 03=1 
CO 3767 5 3767 5 3767 5 3767 5 
C, 208 40 208 40 218 1 218 1 
C, 208 40 218 1 208 40 218 1 
C, 12 360 101 6 101 6 101 3 
C, 208 40 218 1 218 1 208 40 
C, 12 360 101 6 101 3 101 6 
C, 12 360 101 3 101 6 101 6 
C, 2 3224 804 13 804 13 804 13 
C, 218 1 208 40 208 40 218 1 
C, 101 6 12 360 101 6 101 3 
C.,  101 6 101 6 12 360 101 3 
c;; 12 37 12 37 I2 37 20 5 
C,, 13 8 13 8 13 8 13 8 
C.. 11 51 1 1  51 17 26 17 26 
C;; 11 51 17 26 11  51 17 26 
C,, 4 312 60 86 60 86 76 23 
C,, 218 1 208 40 218 I 208 40 
C., 101 6 12 360 101 3 101 6 
C;; 13 8 13 8 13 8 13 8 

1 1  51 11 51 17 26 17 26 2' 101 6 101 6 101 3 12 360 

C, 1 1  51 17 26 17 26 1 1  51 
C, 4 312 60 86 76 23 60 86 
C, 101 3 12 360 101 6 101 6 
C.,. 804 13 2 3224 804 13 804 13 

c; 12 37 12 37 20 5 12 37 

C z  17 26 1 1  51 1 1  51 17 26 
Cg 60 86 4 312 60 86 76 23 
C, 17 26 1 1  51 17 26 1 1  51 
C.,, 60 86 4 312 76 23 60 86 
Cii 52 214 52 214 52 214 52 214 
C,, 15 674 15 674 159 99 159 99 
C,, 218 1 218 1 208 40 208 40 
C.,, 13 8 13 8 13 8 13 8 
C, 101 6 101 3 12 360 101 6 
C,. 1 1  51 17 26 1 1  51 17 26 
C i i  101 6 101 3 101 6 12 360 
C,, 1 1  51 17 26 17 26 1 1  51 
c,. 12 37 20 5 12 37 12 37 
CE 4 312 76 23 60 86 60 86 
C,, 101 3 101 6 12 360 101 6 
C,, 17 26 1 1  51 1 1  51 17 26 
C,, 804 13 804 13 2 3224 804 13 
C,, 60 86 60 86 4 312 76 23 
C., 17 26 17 26 1 1  51 1 1  51 
C l  52 214 52 214 52 214 52 214 
C,, 60 86 76 23 4 312 60 86 
C,, 15 674 159 99 15 674 159 99 
C,, 101 3 101 6 101 6 12 360 
C,, 17 26 1 1  51 17 26 1 1  51 
C., 17 26 17 26 1 1  51 1 1  51 

'61 
c62 
'63 

52 
804 
60 
60 
15 
20 
76 
76 
159 
76 
159 
159 
49 

214 52 214 52 214 52 214 
13 804 13 804 13 2 3224 
86 60 86 76 23 4 312 
86 76 23 60 86 4 312 
674 159 99 159 99 15 674 
5 12 37 12 37 12 37 
23 4 312 60 86 60 86 
23 60 86 4 312 60 86 
99 15 674 15 674 159 99 
23 60 86 60 86 4 312 
99 15 674 159 99 15 674 
99 159 99 15 674 15 674 
404 49 404 49 404 49 404 
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K(r ' )=MIN ( R(Oj \ 6 ' - " ) : O j ~  r ' ] ,  
then the HPD for O is the subset r which maximizes this 
K, i.e. such that 
~(r) = MAX K(T : Pr(r I c ( ~ - ~ )  ) 2 1 - a 1. 

Thc computation cost of finding all such r ' is exponen- 
tial. 

An alternative is to find a set I- ' for which the 
R(aj I d'--') ) for all if,J E ' are relatively large_and 
use that I' ' as a reasonable replacement for r. Since if,ML 
is the most likely system fault pattern, the other fault 
patterns Oj E €3 may be considered as misdiagnosed. 
Hence the number of misdiagnosed units can be ysed as a 
measure of distance of any fault pattern Oj from OML. As 
shown by other research found in Chang [6] and Chang 
and Lander [7, 81, R(Oi 1 d'-" ) decreases as the 
distance between Oj and QML. Hence we construct r '  
using only those if,j closest to OM, . The distance between 
bhlL and if, can be defined as 

n -  1 

d ( b M L * Q j )  E 1 I 6 k  - @ j , k  I 
k = O  

so that d ( & M L , Q j )  E { 0.1 ...., n )  . 

it Iollows that 
Furthermore, since $k = o or 1 and @j,k = o or 1 only, 

n - 1  

n - 1  n - 1  

where 0 denotes the 'exclusive OR' operation. 
The remaining step is to construct a lOO(1 - a)% 

crpdible region for 0 which we expect approximates the 
HPD region. Althqugh "(a, I dl-')) does not necessar- 
ily decrease as d(QM, , aJ ) increases, the fault pattern 
with fewer misdiagnosed links should appear more fre- 
quently. Therefore we include the O, that have the 
smallest d(O,, OJ ) fist. In this manner, it is possible 
to find the minimum h E (0, 1,2, ..., n )  such that if we 
define r E (if,, E Ep : 0 2 d(OML , Qj ) I h) then 
Pr(T I dl-.') ) 2 1 - a. Thus, the region is a 
loO(1 - a)% credible region for 0. Since does not 
necessarily contain all a, E 8 that have higher posterior 
density than all other OJ,  E r, r cannot be assumed to be 
the lOO(1 - a)% HPD credible region for 0. However, 
the computation of r is a more efficient. 

lar test result, the rule decides on a particular fault pattern. 
The Bayesian approach considers the true fault pattern 
which we denote by if, = ... @k ... @o , although it is 
unknown, of course. We must then choose a reasonable 
loss funcdon. In the discussion on set estimation in the 
previous subsection, we claimed that the distance measure 
is a reasonable measure of the amount of misdiagnosis in 
a pattern. Given the test result d'.."' s_uppose an arbitrary 
decision rule assigns the fault pattem if, = I$,,.~ ... $ k  ... $o 
E 8, then consider the lossfunction: 

n - 1  

Ep(4mJ)  3 d ( & , @ )  = ( 6 k  - & I 2  
k=O 

n - 1  n-1 
= ( Q k - @ k l  = ( $ k @ @ k )  

k = O  k -0 

The statistical significance of this function is that, 
since @k and Qk only take the values 0 and 1, it has the 
same properties as the square-error loss and absolute error 
loss. Moreover, the loss function is computationally 
practical since it can be evaluated by the 'exclusive OR' 
operation which is an efficient operation. This will shorten 
the unit computation time. 

Given a loss function, we have to consider the fact 
that if, is unknown and, in fact, every @, is possible and 
given d'-'), the probability of O being @, is exactly the 
posterior probability Pr(O, I dl-') ). We may define a 
risk function p as the expected loss given this probability 
distribution for if,: 

p(&,if,) = E[YI(&,O) IC('..')] 

In this equation the conditional dependence is attached 
to the random variable 0. The risk function may be 
expanded to explicit sums as follows but the sums here are 
over 2" elements [6]: 

Se(&,,O)-Pr(C('..') I o)+v(o) 
p ( & , O )  =I 

R(c(1-7) I i f , ) * P r ( i f , )  
@ € 0  

Now we may select the Bayesian decision rule which 
... @: ... 4: E 0, makes @-') correspond to 0; = 

the fault pattem that minimizes the risk function: 

p(OG,O) 5 E [Ep(if,i,O) IC"..")] 
n-1  ( 5 )  

= P (@;>@k) 
k = O  

BAYESIAN DECISION THEORETIC APPROACH 

point estimation. A decision rule is a mapping from the 
test results d'"' to the fault patterns Oj :  given a particu- 

where the full derivation is given in Chang 161 and 
We now turn to the decision theoretic approach to p (4; ,@k) E [(@; @@k) I c(l-..T)l 

We note that @; = Qz-1 ... 4; ... @: minimizes p(Oi , O) 
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if and only if 0; minimizes p(+;, +) for a~ k = 0, 1,2, 
..., n-1. Hence the complex global analysis of all the @ E 

9 is decomposed into a simple bitwise analysis, In other 
words, in order to compute the 6 assigned by the global 
Bayesian decision rule, it is sufficient to find al l  bitwise 
assignments 4; = o or 1 (k = 0, 1, 2, ..., n - 1) that 
minimize 

P(+i ,4&)  E [($;@+&I I C('.')I 

or equivalently minimize the numerator 

for +;= o or 1. 
The complexity of analysis, by using this methodolo- 

gy, has been reduced dramatically since sums with 2" 
terms are replaced by the sum of two terms! However, it 
may be reduced further by noting the following. Using the 
fact that +; and +k art? binary variables we know that if 
$: = 0, then $; @ 4, = I$,. Hence 

p(+i = 0, 
Similarly, if 
that 

E&), 1 (+; @ 6) h(d'"." I @k = 8) R(@k = 8) 

) = E [$k I d'..") ] = Pf($& = 1 I d'..." ). 

= 1, then +*k @k = (QJ = 1 - $ k ,  so 

= 1 I d'..") ) 
p(+: = 1. + & )  = E [l - +k I c"..")] 

- - 1 - 
= PT(4, = 0 1 d' ). 

Therefore, p(1, Qk ) < p(0, +k ) if and only if 

~ o t e  that h(qR = 1 I d'-') + Pr(+k = o I CC'...') 
pr(+k = 1 I d'..") ) > Pr(+& = 0 I c('-.T) ). 

= 1, so Pr(+, = 1 I d'-') ) > Pr($, = 0 I d'-") ) if and 
only if Pr(+k = 1 Id'-') ) > 0.5. Furthermore, since 

Pr(+k=l I c"-7)) 
pr( C"".') I @ k = l ) w + , = l )  

E(+, I d'...') ) = F'r(t& = 1 I d'-') ) > 0.5 if and only if 
Pr(c""") I @k = l)*b($k = 1) > 

pr(d'".T) I @k = o)'fi($k = 0). 
The decision process outlined above may be summa- 

rized as the following bitwise version of the Bayesian 
decision algorithm (or B-algorithm) to perform fault 
location: 

4.1 AZgorithm The B-algorithm for fault location: 
Choose the components +:' ... 9; ... +: of 0; as follows: 

For each k = n-1, ..., 0 
(1) if Pr(c('..*') I Qm = l)4'r(+k = 1) > 

(2) if R(c('***'' I +k = l)-F'r(+, = 1) < 

(3) the test is inconclusive if 

pr(c'l-.T) I +& = O)?r(+, = 0) then choose +; = 1, 

pr(c"-") I +k = O).Pr(+, = 0) then choose +; = 0, 

pr(c('**") I +k = l)Pr(+& = 1) 

- - pr(@' ...' 1 I $k = o)mpr($& = 
If a set estimation is desired, the procedures developed 

in the previous subsection can be applied to obtain a 
;OO(l - a)% credible region for CP by substituting 4; for 

ANALYSIS AND DISCUSSION 
4.2 

4.3 

4.4 

Remark. The run-time complexity of the B-algorithm 
is O(n). This use of bitwise analysis gives a dramatic 
improvement over previous results in the literature and 
is a very good result in theory and practice. From the 
theoretical point of view, it reduces the complexity of 
the Bayesian analysis; this complexity is one of the 
main deficiencies of the Bayesian approach. In prac- 
tice, this method outperforms the other methods that 
have been proposed in literature since it does not 
really require any assumptions. The only disadvantage 
incurred is in the generation of the probabilistic 
comparison table. Again, this is a one time computa- 
tion. 
Remark. The comparison-based probabilistic model 
and the Bayesian inference algorithm make the method 
complete in the statistical sense, since the model 
together with the 8-algorithm can accommodate all 
possible random effects. It is practical because the 
computations involved are simple binary operations, 
with linear complexity. The necessary data is directly 
observable during the testing process. 
Remark. Since the loss function is a squared error 
loss, the posterior mean E[$k 1 d'-') I is the Bayes 
rule [2, p.161, result 31. However, because 4; is 
binary, it is reasonable to choose 4; = 1 if 
E[$, Id'...') ] > 0.5 (the same decision rule as step 
1). If the loss function generalized to some kind of 
weighted squared error loss, then the Bayes rule could 
also be obtained [2, p.161, result 41. However, the 
form of the Bayes rule is not as simple as the proce- 
dure proposed above. In addition, since the loss 
function is also the absolute error loss, the median of 
Pr($, I d'...')) also provides a Bayes rule [2, p.162, 
result 51. Again, since +: is binary, this is equivalent 
to the procedure we proposed above. If the loss 
function is generalized to a linear loss, the decision 

50 



4.5 

4.6 

Patterns (sorted) 

count 

rule can be obtained m a similar fashion [2, p.162, 
result 61. So. our proposed procedures are valid for a 
class of the usual loss functions. Furthermore, as @k 
and Cp; are binary, our suggested loss function can 
also be represented by the exclusive OR operation, 
which will save the unit computation time. 
Remark. The procedures we proposed are consistent 
with one's intuition. Besides, the decision rule that 
we have proposed has the important property of 
positive Bayes decision rules, namely admissibility 
[2]. This gives extra confidence in our intuition. 

Remark. The B-algorithm accommodates all possible 
faulty and faultfree systems under test, without any 
increase in complexity when the fault-free state is 
diagnosed, permitting the algorithm to be applied to 
monitor a system periodically. Further, the method is 
able to distinguish truly faulty units from those which 
appear faulty due to the imperfect environment, thus 
eliminating unnecessary hardware replacement or 
reconfiguration before the system recovery process 
performs rollback to a fault-free state. 

CO C,, C ,  C,, C,, C,, 
1 1 1 2 4 1  

An example of locating faults of a system S under 
diagnosis is given as follows: 
4.7 Example. Consider a four-unit system S as shown in 
Figure 2 Suppose T = 10 and the following comparison 

C,, , CO, C,, , C4, . These patterns are sorted and counted 
as follows: 

paUWnS are Observed: C40, C4,. C4, 9 c42 9 c40 9 C,, 

According to our B-algorithm for fault location, all we 
need to do is to sum ~ ( d * - l ~ )  I $k = 1)'h($k = 1) from 
Table I1 and compare it with the corresponding sum of 
~r(c('-.'~) I $k = O)?r($k = 0). Repeat the same step until 
all the bits are done, i.e. k = 0 to 3, in this case. This also 
implies the bitwise computations are carried out only on 
the relevant $k column. Let k = 0 and first compute 
$,= 1, i.e. 
Pr(C(l--'O) I $0 = 1) * Pr ($O = 1) 

= Pr(C0 I $0 =1). Pr(C,, I$, =1). Pr(C3, I $0 =I> .  

w(c40 I $0 =l)I2 * m(c42 I $0 =1)i4 ' 
WC57 190 =I) * Pr(@, = 1) 

= lo-,'.[ 5-6.6-32.134.23],(0.2) 
For the case of Q0 = 0, we have 
~r(dl-l~) I (P, = o)Pr(+, = 0) 

= Pr(C0 I $0 =O) . Pr(C,O I $0 =O) . Pr(C,, I $0 =O). 

cpr(c,, I oo =0)i2 . [PT(% I +, =0)i4 
pT(c57 I@,  =O) . Me,= 0) 

= lo-@*[ 3767.10 1 * 10 1 - 10 12*8044-76]*(0.8) 
Since Pr(c('*-'o) I @ = l).Pr(@, = 1) is obviously 

4; = 0. In the next step, k is incremented by one and the 
process repeats. We conclude from the iterations of the B- 
algorithm that the fault pattem of the system is a* = 

maller than Pr(dl*.-lO) P$ - - 0 ).h($, = 0), we choose 

e;$;$;$; = 0100 = a4. 

5. Conclusions 

By utilizing the simple probabilistic model defined, we 
propose a more practical Bayesian procedure for handling 
fault location. Since it is easier to compare the test results 
among units, our model is comparison-based. The approach 
taken in this paper is more complete than that of many 
authors because we do not need to assume any conditions 
such as permanently faulty units, complete tests, perfect 
environments, or non-malicious situations. It is clear that 
the proposed bitwise Bayes decision rule has good theoreti- 
cal properties and a linear run time complexity. It is also 
easy to understand and operate because the B-algorithm, 
the decision algorithm, is consistent with one's intuition. 
All these benefits make this approach appealing in theory 
and practice. To sum up, the Bayesian decision-theoretic 
approach in Section 4 decomposes the enonnous global 
calculations into simple bitwise calculations. Hence the B- 
algorithm provides an efficient diagnostic process to detect 
faults and their location on distributed system. Because the 
approach is based on the more compkte and practical 
probabilistic model in Section 2, it is more realistic than 
the previous approaches in the literature. 
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Table 1. The likelihood table of Pr(CiIOj)*161, where p = 0.95, q = 0.9, r = 0.75. 
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