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Abstract

Let N local decision makers in a sensor network communicate with their neighbors to reach a decision

consensus. Communication is local, among neighboring sensors only, through noiseless or noisy links.

We study the design of the network topology that optimizes the rate of convergence of the iterative

decision consensus algorithm. We reformulate the topology design problem as a spectral graph design

problem, namely, maximizing the eigenratio γ of two eigenvalues of the graph Laplacian L, a matrix that

is naturally associated with the interconnectivity pattern of the network. This reformulation avoids costly

Monte Carlo simulations and leads to the class of non-bipartite Ramanujan graphs for which we find a

lower bound on γ. For Ramanujan topologies and noiseless links, the local probability of error converges

much faster to the overall global probability of error than for structured graphs, random graphs, or graphs

exhibiting small-world characteristics. With noisy links, we determine the optimal number of iterations

before calling a decision. Finally, we introduce a new class of random graphs that are easy to construct,

can be designed with arbitrary number of sensors, and whose spectral and convergence properties make

them practically equivalent to Ramanujan topologies.

Key words: Sensor networks, consensus algorithm, distributed detection, topology optimization, Ramanu-

jan, Cayley, small-world, random graphs, algebraic connectivity, Laplacian, spectral graph theory.

EDICS: SEN-DIST, SEN-FUSE

The 1st and 3rd authors are with the Dep. ECE, Carnegie Mellon University, Pittsburgh, PA, USA 15213 (e-mail:
{soummyak,moura}@ece.cmu.edu, ph: (412)268-6341, fax: (412)268-3890.) The 2nd author is with EE Dept., King Saud
University, P. O. Box 800, Riyadh, 11412, Saudi Arabia, (dosari@ksu.edu.sa, ph: +966-553367274, fax: + 966-1-4676757.)

Work supported by the DARPA DSO Advanced Computing and Mathematics Program Integrated Sensing and Processing
(ISP) Initiative under ARO grant # DAAD19-02-1-0180 and by NSF under grants # ECS-0225449 and # CNS-0428404.



2

I. INTRODUCTION

The paper studies the problem of designing the topology of a graph network. As a motivational

application we consider the problem of describing the connectivity graph of a sensor network, i.e.,

specifying with which sensors should each sensor in the network communicate. We will show that the

topology of the network has a major impact on the convergence of distributed inference algorithms,

namely, that these algorithms converge much faster for certain connectivity patterns than for others, thus

requiring much less intersensor communication and power expenditure.

The literature on topology design for distributed detection is scarce. Usually, the underlying communi-

cation graph is specified ab initio as a structured graph, e.g., parallel networks where sensors communicate

with a fusion center, [1], [2], [3], [4], or serial networks where communication proceeds sequentially from

a sensor to the next; for these and other similar architectures, see Varshney [5] or [6], [7]. These networks

may not be practical; e.g., a parallel network depends on the integrity of the fusion center.

We published preliminary results on topology design for distributed inference problems in [8], [9].

We restricted the class of topologies to structured graphs, random graphs obtained with the Erdös-

Rényi construction, [10], [11], [12], see also [13], [14], or random constructions that exhibit small-world

characteristics, see Watts-Strogatz [15], see also Kleinberg [16], [17]. We considered tradeoffs among

these networks, their number of links M , and the number of bits b quantizing the state of the network

at each sensor, under a global rate constraint, i.e., Mb = K, K fixed. We adopted as criterion the

convergence of the average probability of error Pe, which required extensive simulation studies to find

the desired network topology. Reference [18] designs Watts-Strogatz topologies in distributed consensus

estimation problems, adopting as criterion the algebraic connectivity λ 2(L) of the graph.

This paper designs good topologies for sensor networks, in particular, with respect to the rate of

convergence of iterative consensus and distributed detection algorithms. We consider the two cases of

noiseless and noisy network links. We assume that the total number M of communication links between

sensors is fixed and that the graph weights are uniform across all network links. This paper shows

that, for both the iterative average-consensus and the distributed detection problems, the topology design

problem is equivalent to the problem of maximizing with respect to the network topology a certain graph

spectral parameter γ . This parameter is the ratio of the algebraic connectivity of the graph over the largest

eigenvalue λN(L) of the graph Laplacian L. The algebraic connectivity of a graph, terminology introduced

by [19], is the second smallest eigenvalue λ2(L) of its discrete Laplacian; see section II, the Appendix,

and reference [20] for the definition of relevant spectral graph concepts. With this reinterpretation, we

show that the class of Ramanujan graphs essentially provides the optimal network topologies, exhibiting
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remarkable convergence properties, orders of magnitude faster than other structured or random small-

world like networks. When the links are noisy, our analysis determines what is the optimal number

of iterations to declare a decision. Finally, we present a new class of random regular graphs whose

performance is very close to the performance of Ramanujan graphs. These graphs can be designed with

arbitrary number of nodes, overcoming the limitation that the available constructions of Ramanujan graphs

are restricted to networks whose number of sensors are limited to a sparse subset of the integers.

We now summarize the paper. Section II and the Appendix recall basic concepts and results from

algebra and spectral graph theory. Section III presents the optimal equal weights consensus algorithm

and establishes its convergence rate in terms of a spectral parameter. Section IV defines formally the

topology design problem, shows that Ramanujan graphs provide essentially the optimal topologies, and

presents explicit algebraic constructions available in the literature for the Ramanujan graphs. Section V

considers distributed inference and shows that the average-consensus algorithm with noiseless links

achieves asymptotically the optimal detection performance—that of a parallel architecture with a fusion

center. This section shows that with noisy communication links there is an optimal maximum number

of iterations to declare a decision. Section VI demonstrates with several experiments the superiority of

the Ramanujan designs over other different alternative topologies, including structured networks, Erdös-

Renýi random graphs, and small-world type topologies. Section VII presents the new class of random

regular Ramanujan like graphs that are easy to design with arbitrary number of sensors and that exhibit

convergence properties close to Ramanujan topologies. Finally, section VIII concludes the paper.

II. ALGEBRAIC PRELIMINARIES

Graph Laplacian The topology of the sensor network is given by an undirected graph G = (V, E),

with nodes vn ∈ V , n ∈ I = {1, ..., N}, and edges the unordered pairs e = (vn, vl) ∈ E , or, simply, e =

(n, l), where vn and vl are called the edge endpoints. The edge e = (n, l) ∈ E whenever sensor vn can

communicate with vl, in which case the vertices vn and vl are adjacent and we write vn ∼ vl.

We assume that the cardinality of E is |E| = M and, when needed, label the edges by m, m =

1, · · · ,M . The terms sensor, node, and vertex are assumed to be equivalent in this paper. A loop is an

edge whose endpoints are the same vertex. Multiple edges are edges with the same pair of endpoints. A

graph is simple if it has no loops or multiple edges. A graph with loops or multiple edges is called a

multigraph. A path is a sequence vn0 , · · · , vnm
such that el = (vnl−1 , vnl

) ∈ E , l = 1, · · · , m, and the

vnl
, l = 0, · · · , m− 1, are all distinct. A graph is connected if there is a path from every sensor vn to

every other sensor vl, n, l = 1, . . . , N . In this paper we assume the graphs to be simple and connected,
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unless otherwise stated.

We can assign to a graph an N ×N adjacency matrix A (where, we recall, N = |V |,) defined by

an,l =

⎧⎨⎩ 1 if (n, l) ∈ E

0 otherwise
(1)

The set of neighbors of node n is Ωn = {l : (n, l) ∈ E} and its degree, deg(n), is the number of its

neighbors, i.e., the cardinality |Ωn|. A graph is k-regular if all vertices have the same degree k.

The degree matrix, D is the N ×N diagonal matrix D = diag [d1,1 · · ·dN,N ] defined by

dn,n = deg(n) (2)

The Laplacian L of the graph, [20], is the N ×N matrix defined by

L = D − A (3)

Spectral properties of graphs. We consider spectral properties of connected regular graphs. Since the

adjacency matrix A is symmetric, all its eigenvalues are real. Arrange the eigenvalues of the adjacency

matrix A as,

k = λ1(A) > λ2(A) ≥ . . . ≥ λN(A) ≥ −k (4)

It can be shown that the multiplicity of the largest eigenvalue λ1(A) = k equals the number of connected

components in the graph. Then, for a connected graph, the multiplicity of the eigenvalue λ1(A) = k is

1, which explains the strict inequality on the left in (4). Also, −k is an eigenvalue of A iff the graph

is bipartite (please refer to the Appendix for the definition of bipartite graphs.) Hence, for non-bipartite

graphs, λN(A) > −k. In this paper, we focus on connected, non-bipartite graphs.

The Laplacian is a symmetric, positive semi-definite matrix, and, consequently, all its eigenvalues are

non-negative. It follows from (4) that the eigenvalues of the Laplacian satisfy

0 = λ1(L) < λ2(L) ≤ ... ≤ λN(L) (5)

The multiplicity of the zero eigenvalue of L equals the number of connected components in the graph,

which explains the strict inequality on the left hand side of (5) for the case of connected graphs. For

k-regular graphs, the eigenvalues of A and L are directly related by

∀n ∈ I : λn(L) = k − λn(A) (6)
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We write the eigendecomposition of the Laplacian L as

L = UΛUT (7)

= [u1 · · ·uN ] diag [λ1(L) · · ·λN(L)] [u1 · · ·uN ]T (8)

where the un, n = 1, · · · , N , are orthonormal and diag [· · · ] is a diagonal matrix. We note that, from

the structure of L, each diagonal entry of D is the corresponding row sum of A, so the eigenvector u1

corresponding to the zero eigenvalue λ1(L) is the (normalized) vector of one’s

u1 =
1√
N

1 =
1√
N

[1 · · ·1]T (9)

III. AVERAGE CONSENSUS ALGORITHM

In this Section, we present the consensus algorithm in Subsection III-A, discuss the case of equal

weights in Subsection III-B, and establish the convergence rate of the algorithm in Subsection III-C.

A. Consensus Algorithm Description

We review briefly the consensus algorithm that computes in a distributed fashion the average of N

quantities rn, n = 1, · · · , N . Assume a sensor network with interconnectivity graph G = (V, E) defined

by a neighborhood system Ω = {Ωn : n ∈ I}, and where Ωn is the set of neighbors of sensor n. Initially,

sensors take measurements r1, . . . rN . It is desired to compute their mean in a distributed fashion,

r =
1
N

N∑
n=1

rn (10)

i.e., by only local communication among neighbors. Define the state at iteration i = 0 at sensor n by

xn(i = 0) = rn, n = 1, · · · , N

Iterative consensus is carried out according to the following linear operation, [21],

xn(i) = Wnnxn(i− 1) +
N∑

l∈Ωn

Wnlxl(i− 1) (11)

where Wnl is a weight associated with edge (n, l), if this edge exists. The weight Wnl = 0, n �= l, when

there is no link associated with it, i.e., if (n, l) /∈ E . The value xn(i) stored at iteration i by sensor n is

the state of vn at i. The consensus (11) can be expressed in matrix form as

xi = Wxi−1 (12)
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where xi is the N × 1 vector of all current states and W = [Wnl] is the matrix of all the weights. The

updating (12) can be written in terms of the initial states as

xi = W ix0 (13)

x0 = [x1(0) · · ·xN (0)]T = [r1 · · · rN ]T (14)

Let the N -dimensional vector 1 = [1 · · ·1]T . Convergence to consensus occurs if

∀n : lim
i→∞

xn(i) = r

lim
i→∞

xi = x = r 1 (15)

lim
i→∞

W i =
11T

N
(16)

B. Link Weights

The convergence speed of the iterative consensus depends on the choice of the link weights, Wnl. In

this paper, we consider only the case of equal weights, i.e., we assign an equal weight α to all network

links. I and L be the N -dimensional identity matrix and the graph Laplacian. The weight matrix becomes

W = I − αL (17)

For a particular network topology, the value of α that maximizes the convergence speed is, [21],

α∗ =
2

λ2(L) + λN(L)
(18)

For proofs of these statements and other weight design techniques, the reader is referred to [21] and [18].

We now consider the eigendecomposition of the weight matrix W . From (17), with the optimal

weight (18), using the eigendecomposition (8) of L, we have that

W = [u1 · · ·uN ] diag [γ1 · · ·γN ] [u1 · · ·uN ]T (19)

=
N∑

n=1

γnunuT
n , (20)

where: un, n = 1, · · · , N , are the orthonormal eigenvectors of L, and à fortiori of W ; and diag [γ1 · · ·γN ]

is the diagonal matrix of the eigenvalues γn of W . These eigenvalues are

γn = 1 − α∗λn(L) (21)

From the spectral properties of the Laplacian of a connected graph, and the choice of α∗, the eigenvalues
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of W satisfy

1 = γ1 > γ2 ≥ · · · ≥ γN (22)

∀n > 1 : |γn| ≤ γ2 < 1 (23)

C. Consensus Algorithm: Convergence Rate

We now study the convergence rate of the consensus algorithm.

Result 1 For any connected graph G, the convergence rate of the consensus algorithm (12) or (13) is

‖xi − x‖ ≤ ‖x0 − x‖γi
2 (24)

where x and x0 are given in (15) and (13) and

γ2 =
1− γ

1 + γ
(25)

γ =
λ2(L)
λN(L)

(26)

Proof: Represent the vector x0 in (14) in terms of the eigenvectors un of L

x0 =
N∑

n=1

dnun (27)

where dn = xT
0 un. From the value of u1 in (9) it follows that

d1 =
√
Nr (28)
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Replacing (20) and (27) in (13) and using (28) and the orthonormality of the eigenvectors of L (and W ,)

we obtain

xi = W i x0

=
N∑

l=1

γi
luluT

l

N∑
n=1

dnun (29)

=
N∑

n,l=1

dnγ
i
luluT

l un

=
N∑

l=1

dl γ
i
l ul

= d1γ
i
1u1 +

N∑
l=2

dl γ
i
l ul

= x +
N∑

l=2

dl γ
i
l ul (30)

where x is given in eqn (15). From these it follows that

‖xi − x‖ =

∥∥∥∥∥
N∑

l=2

dlγ
i
lul

∥∥∥∥∥
≤ ∣∣γi

2

∣∣ ∥∥∥∥∥
N∑

l=2

dlul

∥∥∥∥∥ (31)

= ‖x0 − x‖ γi
2 (32)

To get (31), we used the bounds given by (23). To obtain (32) we used the fact that from (30), for i = 0,

it follows that ∥∥∥∥∥
N∑

l=2

dlγ
i
lul

∥∥∥∥∥ = ‖x0 − x‖ (33)

From (33) it follows that, to obtain the optimal convergence rate, γ2 should be as small as possible. From

the expression for γn in (21), and using the optimal choice for α in (18), we get successively

γ2 = 1 − αλ2(L) (34)

= 1 − 2λ2(L)
λ2(L) + λN(L)

=
λN (L)− λ2(L)
λN (L) + λ2(L)

=
1 − λ2(L)/λN(L)
1 + λ2(L)/λN(L)

(35)
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Thus, the minimum value of γ2 is attained when the ratio

λ2(L)/λN(L) (36)

is maximum, i.e.,

max convergence rate ∼ minγ2 ∼ maxγ = max
λ2(L)
λN(L)

(37)

IV. TOPOLOGY DESIGN: RAMANUJAN GRAPHS

In this section, we consider the problem of designing the topology of a sensor network that maxi-

mizes the rate of convergence of the average consensus algorithm. Using the results of Section III, in

Subsection IV-A, we reformulate the average consensus topology design as a spectral graph topology

design problem by restating it in terms of the design of the topology of the network that maximizes an

eigenratio of two eigenvalues of the graph Laplacian, namely, the graph parameter γ given by (26). We

then consider in Subsection IV-B the class of Ramanujan graphs and show in what sense they are good

topologies. Finally, Subsection IV-C describes algebraic constructions of Ramanujan graphs available in

the literature, see [22].

A. Topology Optimization

We formulate the design of the topology of the sensor network for the average consensus algorithm as

the optimization of the spectral eigenratio parameter γ , see (26). From our discussion in Section III, it

follows that the topology that optimizes the convergence rate of the consensus algorithm can be restated

as the following graph optimization problem:

max
G∈ G

γ = max
G∈ G

λ2(L)
λN(L)

(38)

where G denotes the set of all possible simple connected graphs with N vertices and M edges.

We remark that (38) will be significant because we will be able to use spectral properties of graphs

to propose a class of graphs—the Ramanujan graphs—for which we can present a lower bound on the

spectral parameter γ . This avoids the lengthy and costly Monte Carlo simulations used to evaluate the

performance of other topologies as done, for example, in our previous work, see [8], [9] or in [18].
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B. Ramanujan Graphs

In this section, we consider k-regular graphs. Before introducing the class of Ramanujan graphs, we

discuss several bounds on eigenvalues of graphs. We first state a well-known result from algebraic graph

theory.

Theorem 2 (Alon and Boppana [23], [22]) Let G = GN,k be a k-regular graph on N vertices. Denote

by λG(A), the absolute value of the largest eigenvalue (in absolute value) of the adjacency matrix A of

the graph G, which is distinct from ±k; in other words, λ2
G(A) is the next to largest eigenvalue of A2.

Then

lim inf
N→∞

λG(A) ≥ 2
√
k − 1 (39)

A second result, [23], also shows that, for an infinite family of k-regular graphs Gm, m ∈ {1, 2, · · ·},

for which the number of nodes diverges as m becomes large, the algebraic connectivity λ2(L) of the

graphs is asymptotically bounded by

lim inf
N→∞

λ2(L) ≤ k − 2
√
k − 1 (40)

Note that (40) is a direct upperbound on the limiting behavior of λ 2(L) itself, while from (39) we may

derive an upperbound on the limiting behavior of λ2(A) or of λN(A), depending if λ2(A) ≤ |λN(A)|
or λ2(A) ≥ |λN(A)| in the limit. We consider each of these two cases separately.

1) lim infN→∞ λ2(A) ≤ lim infN→∞ |λN(A)| : lim infN→∞ |λN(A)| ≥ 2
√
k − 1.

Since λN(A) ≤ 0, it follows that for k-regular connected simple graphs

lim inf
N→∞

λN(A) ≤ −2
√
k − 1

From this, we have

lim inf
N→∞

λN(L) ≥ k + 2
√
k − 1 (41)

Combining (41) with (40), we get using standard results from limits of series of real numbers

lim inf
N→∞

γ(N ) = lim inf
N→∞

λ2(L)
λN(L)

≤ k − 2
√
k − 1

k + 2
√

(k − 1)
(42)

Eqn (42) is an asymptotic upper bound on the spectral eigenratio parameter γ = λ2(L)/λN(L) for

the family of non-bipartite graphs for which lim inf λ2(A) ≤ lim inf |λN(A)|.
2) lim infN→∞ λ2(A) ≥ lim infN→∞ |λN(A)| : lim infN→∞ |λN(A)| ≤ 2

√
k − 1.

Now Theorem (2) is inconclusive with respect to lim infN→∞ λN(A). From the fact that −k ≤



11

λN(A) ≤ 0, we can promptly deduce that k ≤ λN(L) ≤ 2k. Combining this with (40), we get

lim inf
N→∞

λ2(L)
λN(L)

≤ k − 2
√
k − 1

k
(43)

which gives an asymptotic upper bound for the eigenratio parameter γ = λ2(L)/λN(L) for the

family of non-bipartite graphs satisfying lim inf λ2(A) ≥ lim inf |λN(A)|.
We now consider the class of Ramanujan graphs.

Definition 3 (Ramanujan Graphs) A graph G = GN,k will be called Ramanujan if

λG(A) ≤ 2
√
k − 1 (44)

Graphs with small λG(A) (often called graphs with large spectral gap in the literature) are called expander

graphs, and the Ramanujan graphs are one of the best explicit expanders known. Note that Theorem 2

and (39) show that, for general graphs, λG(A) is in the limit lower bounded by 2
√
k − 1, while for

Ramanujan graphs λG(A) is, for every finite N , upper bounded by 2
√
k − 1.

From (44), it follows that, for non-bipartite Ramanujan graphs,

λ2(A) ≤ 2
√
k − 1 (45)

λN(A) ≥ −2
√
k − 1 (46)

Equations (45) and (46) together with eqn (6) give, for non-bipartite Ramanujan graphs,

λ2(L) ≥ k − 2
√
k − 1

λN(L) ≤ k + 2
√
k − 1

and, hence, for non-bipartite Ramanujan graphs

γ =
λ2(L)
λN(L)

≥ k − 2
√
k − 1

k + 2
√
k − 1

(47)

This is a key result and shows that for non-bipartite Ramanujan graphs the eigenratio parameter γ is lower

bounded by (47). It will explain in what sense we take Ramanujan graphs to be “optimal” with respect

to the topology design problem stated in Subsection IV-A as we discussed next. To do this, we compare

the lower bound (47) on γ for Ramanujan graphs with the asymptotic upper bounds (42) and (43) on γ

for generic graphs. We consider the two cases separately again.

1) Generic graphs for which lim infN→∞ λ2(A) ≤ lim infN→∞ |λN(A)| . Here, the lower bound
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on (47) and the upper bound on (42) are the same. Since for any value of N , (47) shows that

γ is above the bound, we conclude that, in the limit of large N , the eigenratio parameter γ for

non-bipartite Ramanujan graphs approaches the bound from above. This contrasts with non-bipartite

non-Ramanujan graphs for which in the limit of large N the eigenratio parameter γ stays below

the bound.

2) Generic graphs for which lim infN→∞ λ2(A) ≥ lim infN→∞ |λN(A)| . Now the bound (43) does

not help in asserting that Ramanujan graphs have faster convergence than these generic graphs.

This is because
k − 2

√
k − 1

k + 2
√
k − 1

<
k − 2

√
k − 1

k

i.e., the lower bound (47) for Ramanujan graphs is smaller than the upper bound (43) for generic

graphs. We should note that the ratio of two quantities is usually much more sensitive to variations

in the numerator than to variations of the denominator. Because Ramanujan graphs optimize the

algebraic connectivity of the graph, i.e., λ2(L), we still expect γ to be much larger for Ramanujan

graphs than for these graphs. We show in Section VI this to be true for broad classes of graphs,

including, structured graphs, small-world graphs, and Erdös-Renýi random graphs.

C. Ramanujan graphs: Explicit Algebraic Construction

We now provide explicit constructions of Ramanujan graphs available in the literature. We refer

the reader to the Appendix for the definitions of the various terms used in this section. The explicit

constructions presented next are based on the construction of Cayley graphs. The following paragraph

gives a brief overview of the Cayley graph construction.

Cayley Graphs. The Cayley graph construction gives a simple procedure for constructing k-regular

graphs using group theory. Let X be a finite group with |X | = N , and S a k-element subset of X . For the

graphs used in this paper, we assume that S is a symmetric subset of X , in the sense that s ∈ S implies

s−1 ∈ S. We now construct a graph G = G(X, S) by having the vertex set to be the elements of X , with

(u, v) as an edge if and only if vu−1 ∈ S. It can be easily verified that, for a symmetric subset S, the

graph constructed above is k-regular on |X | vertices. The subset S is often called the set of generators

of the Cayley graph G, over the group X . Explicit constructions of Ramanujan graphs for a fixed k

and varying N , [24], have been described for the cases k − 1 is a prime, [22], [25], or a prime power,

[26]. The Ramanujan graphs used in this paper are obtained using the Lubotzky-Phillips-Sarnak (LPS)

construction, [22]. We describe two constructions of non-bipartite Ramanujan graphs in this section,

[22], and refer to them as LPS-I and LPS-II, respectively.
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LPS-I Construction. We consider two unequal primes p and q, congruent to 1 modulo 4, and further

let the Legendre symbol
(

p
q

)
= 1. The LPS-I graphs are Cayley graphs over the PSL(2,Z/qZ) group

(Projective Special Linear group over the field of integers modulo q.) (Precise definitions and explanations

of these terms are provided in the Appendix.) Hence, in this case, the group X is the PSL(2,Z/qZ) group.

It can be shown that the number of elements in X is given by

|X | = q(q2 − 1)
2

,

see [22]. To get the symmetric subset S of generators, we consider the equation,

a2
0 + a2

1 + a2
2 + a2

3 = p,

where a0, a1, a2, a3 are integers. Let

β = (a0, a1, a2, a3),

be a solution of the above equation. From a formula by Jacobi, [27], there are a total of 8(p + 1)

solutions of this equation, and, out of them, p+ 1 solutions are such that a 0 > 0 and odd, and aj even

for j = 1, 2, 3. Also, let i be an integer satisfying

i2 ≡ −1 mod (q).

For each of these p+ 1 solutions, β, we define the matrix β̃ in PSL(2,Z/qZ) as,

β̃ =

⎛⎝ a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

⎞⎠ (48)

The Appendix shows that these p+ 1 matrices belong to the PSL(2,Z/qZ) group. These p+ 1 matrices

constitute the subset S, and S acts on the PSL(2,Z/qZ) group to produce the p+ 1-regular Ramanujan

graphs on 1
2q(q

2 − 1) vertices. The Ramanujan graphs thus obtained are non-bipartite, see [22]. As an

example of a LPS-I graph, we may choose p = 17 and q = 13. We note that p and q are congruent to 1

modulo 4, and the Legendre symbol
(

17
13

)
= 1. The LPS-I graph with these values of p and q will be a

regular graph with degree k = p+ 1 = 18 and has q(q2−1)
2 = 1092 vertices.

The only problem with the LPS-I graphs is that the number of vertices grows as O(q 3), which limits

the use of such graphs. In the next section the explicit construction of a second-class of Ramanujan

graphs is presented that avoids this difficulty.

LPS-II Construction. The LPS-II graphs are obtained in a slightly different way. Here also, we start
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Pajek

Fig. 1. LPS-II graph with number of vertices N = 42 and degree k = 6.

with two unequal primes p and q congruent to 1 mod 4, such that the Legendre symbol
(

p
q

)
= 1. We

define the set P 1(Fq) = {0, 1, ..., q−1,∞}, called Projective line over Fq, and which is basically the set

of integers modulo q, with an additional “infinite” element inserted in it. It follows that |P 1(Fq)| = q+1.

The LPS-II graphs are produced by the action of the set S of the p+ 1 generators defined above (LPS-

I) on P 1(Fq), in a linear fractional way. More information about linear fractional transformations is

provided in the Appendix. The Ramanujan graphs obtained in this way, are non-bipartite p + 1-regular

graphs on q + 1 vertices [22]. The LPS-II graphs thus obtained, may few loops [28], which does not

pose any problem because their removal does not affect the Laplacian matrix and hence its spectrum in

any way (this is because the Laplacian L = D − A, and a loop at vertex n adds the same term to both

Dnn and Ann, which gets canceled while taking the difference.) The LPS-II offers a larger family of

Ramanujan graphs than LPS-I, because in the former, the number of vertices grows only linearly with

q. As an example of a LPS-II Ramanujan graph, we take p = 5 and q = 41. (It can be verified that

p, q ≡ 1 mod (4) and the Legendre symbol,
(

p
q

)
= 1.) Thus, we have a non-bipartite Ramanujan graph,

which is 6-regular and has 42 vertices. Fig. 1 shows the graph, thus obtained.

V. DISTRIBUTED INFERENCE

In this Section, we apply the average-consensus algorithm to inference in sensor networks, in particular,

to detection. This continues our work in [8], [9] where we compared small-world topologies to Erdös-

Renýi random graphs and structured graphs. Subsection V-A formalizes the problem and Subsection V-B

presents the noise analysis.
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A. Distributed Detection

We study in this Section the simple binary hypothesis test where the state of the environment takes

one of two possible alternatives, H0 (target absent) or H1 (target present). The true state H is monitored

by a network G of N sensors. These collect measurements y = (y1, . . . yN ) that are independent and

identically distributed (i.i.d.) conditioned on the true state H ; their known conditional probability density

is fi(y) = f(y|Hi), i = 0, 1. We first consider a parallel architecture where the sensors communicate to

a single fusion center their local decisions.

Each sensor vn, n = 1, . . . , N , starts by computing the (local) log-likelihood ratio (LLR)

rn = ln
Pr(yn|H1)
Pr(yn|H0)

(49)

of its measurement yn. The local decisions are then transmitted to a fusion center. The central decision

is

� =
1
N

N∑
n=1

rn
Ĥ=1
≷

Ĥ=0

υ (50)

where υ denotes an appropriate threshold derived for example from a Bayes’ criteria that minimizes the

average probability of error Pe.

To be specific, we consider the simple binary hypothesis problem

Hm : yn = μm + ξn, ξn ∼ N (
0, σ2

)
, m = 0, 1 (51)

where, without loss of generality, we let μ1 = −μ0 = μ.

Parallel architecture: fusion center. Under this model, the local likelihoods r n are also Gaussian, i.e.,

Hm : rn ∼ N
(

2μμm

σ2
,
4μ2

σ2

)
(52)

From (50), the test statistic for the parallel architecture fusion center is also Gauss

Hm : � ∼ N
(

2μμm

σ2
,

4μ2

Nσ2

)
(53)

The error performance of the minimum probability of error Pe Bayes’ detector (threshold υ = 0 in (50))

is given by

Pe = erfc�

(
d

2

)
=
∫ +∞

d/2

1√
2π
e−

x2

2 dx (54)
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where the equivalent signal to noise ratio d2 that characterizes the performance is given by, [29],

d =
2μ

√
N

σ
(55)

Distributed detection. We now consider a distributed solution where the sensor nodes reach a global

common decision Ĥ about the true state H based on the measurements collected by all sensors but

through local exchange only of information over the network G. By local exchange, we mean that the

sensor nodes do not have the ability to route their data to parts of the network other than their immediate

neighbors. Such algorithms are of course of practical significance when using power and complexity

constrained sensor nodes since such sensor networks may not be able to handle the high costs associated

with routing or flooding techniques. We apply the average-consensus algorithm described in Section III-

A. This distributed average-consensus detector achieves asymptotically (in the number of iterations) the

same optimal error performance Pe of the parallel architecture given by (54), see [8], [9].

Actually, we consider a more general problem than the average-consensus algorithm in (13), namely, we

assume that the communications among sensors is through noisy channels. Let the network state, i.e., the

likelihood vector, at iteration i be xi ∈ R
N . We modify (13), by taking into account the communication

channel noise in each iteration. The distributed detection average-consensus algorithm is modeled by

xi+1 = Wxi + ni (56)

The weight matrix is as given by (17) using the weight in (18)

W = I − 2
λ2(L) + λN(L)

L (57)

The initial condition x0 that collects the local LLRs rn given in (14), herein repeated,

x0 = [r1 · · ·rN ]T

has statistics

Hm : x0 ∼ N
(

2μμm

σ2
1,Σ0 =

4μ2

σ2
I

)
, m = 0, 1 (58)

The communications noise at iteration i is zero mean Gauss white noise with covariance R given by

ni ∼ N (0, R) (59)

R = diag
[
φ2

1, ..., φ
2
N

]
(60)

The communication channel noise ni is assumed to be independent of the measurement noise ξn, ∀i, n.
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The final decision at each sensor is

xn(i)
Ĥ(n)=1

≷
Ĥ(n)=0

υ

where Ĥ(n) denotes the decision of sensor vn.

B. Noise Analysis

In this Subsection we carry out the statistical analysis of the distributed average-consensus detector.

Theorem 4 The local state xn(i) has mean

Hm : E [xn(i)] =
2μμm

σ2
(61)

where E[·] stands for the expectation operator and μm is either μ1 = μ or μ0 = −μ.

Proof: From the distributed detection (56)

xn(i) =
N∑

j=1

(
W i
)
n,j
rj (62)

Hence,

E [xn(i)] =
2μμm

σ2

N∑
j=1

(
W i
)
n,j

(63)

It follows:

N∑
j=1

(
W i
)
n,j

=
(
W i1

)
n,1

= 1n,1

= 1 (64)

(since 1 is an eigenvector of W with eigenvalue 1, it is also an eigenvector of W i with eigenvalue 1.)

Replacing this result in (63) leads to the Theorem and (61).

We now consider the variance varn(i) of the state xn(i) of the sensor n at iteration i. The following

Theorem provides an upper bound.

Theorem 5 The variance varn(i) of the state xn(i) of the sensor n at iteration i is bounded by

varn(i) ≤ 4μ2

σ2

[
1
N

+ γ2i
2

(
1 − 1

N

)]
+ φ2

max

[
i

N
+

1 − γ2i
2

1 − γ2
2

(
1 − 1

N

)]
(65)

where γ2 is given in (35).
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Proof: Let the covariance of the network state at iteration i be

Σi = covar{xi}

From eqn. (56) and using standard stochastic processes analysis

Σi = W iΣ0W
i +

i−1∑
k=0

W kRW k (66)

Thus the variance at the n-th sensor is given by,

varn(i) =
(
W iΣ0W

i
)
n,n

+
i−1∑
k=0

(
W kRW k

)
n,n

(67)

Let w(k)
j be the columns of W k, j ∈ [1, ..., N ]. Then,

W kRW k =
N∑

j=1

φ2
jw

(k)
j w(k)T

j (68)

It follows (
W kRW k

)
n,n

=
N∑

j=1

φ2
j

(
w

(k)
j,n

)2
(69)

where w(k)
j,n represents the n-th component of the vector w(k)

j . Denote by

φmax = max (φ1, ..., φN)

From eqn. (69), we get

(
W kRW k

)
n,n

≤ φ2
max

N∑
j=1

(
w

(k)
j,n

)2

= φ2
max

(
W 2k

)
n,n

(70)

We now use the eigendecomposition of W in (20). This leads to

W 2k =
N∑

m=1

γ2k
m umuT

m (71)
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from which (
W 2k

)
n,n

=
N∑

m=1

γ2k
m (um,n)2

=
1
N

+
N∑

m=2

γ2k
m (um,n)2

≤ 1
N

+ γ2k
2

N∑
m=2

(um,n)2

=
1
N

+ γ2k
2

(
1 − 1

N

)
(72)

Hence, from eqn. (70), (
W kRW k

)
n,n

≤ φ2
max

(
W 2k

)
n,n

≤ φ2
max

[
1
N

+ γ2k
2

(
1− 1

N

)]
(73)

Through a similar set of manipulations,

(
W iΣ0W

i
)
n,n

=
4μ2

σ2

(
W 2i

)
n,n

≤ 4μ2

σ2

[
1
N

+ γ2i
2

(
1 − 1

N

)]
(74)

Finally from eqn. (67) we obtain,

varn(i) ≤ 4μ2

σ2

[
1
N

+ γ2i
2

(
1 − 1

N

)]
+

i−1∑
k=0

φ2
max

[
1
N

+ γ2k
2

(
1− 1

N

)]

=
4μ2

σ2

[
1
N

+ γ2i
2

(
1 − 1

N

)]
+ φ2

max

i−1∑
k=0

[
1
N

+ γ2k
2

(
1− 1

N

)]

=
4μ2

σ2

[
1
N

+ γ2i
2

(
1 − 1

N

)]
+ φ2

max

[
i

N
+

1 − γ2i
2

1 − γ2
2

(
1 − 1

N

)]
(75)

which gives an upper bound on the variance of the n-th sensor at iteration i and proves Theorem 5.

If the channels are noiseless, we immediately obtain a Corollary to Theorem 5 that bounds the variance

of the state of sensor n at iteration i.

Corollary 6 With noiseless communication channels, the variance of the state of sensor n at iteration i

is bounded by

varn(i) ≤ 4μ2

σ2

[
1
N

+ γ2i
2

(
1 − 1

N

)]
(76)
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We now interpret Theorems 4 and 5, and Corollary 6. Theorem 4 shows that the mean of the local state

is the same as the mean of the global statistic � of the fusion center in the parallel architecture. Then

to compare the local probability of error Pe(i, n) at sensor n and iteration i in the distributed detector

with the probability of error Pe of the fusion center in the parallel architecture we need to compare the

variances of the sufficient statistics in each detector. With noiseless communication channels, we see that

the upper bound in (76) in Corollary 6 converges to We now interpret Theorems 4 and 5, and Corollary 6.

Theorem 4 shows that the mean of the local state is the same as the mean of the global statistic � of

the fusion center in the parallel architecture. Then to compare the local probability of error Pe(i, n) at

sensor n and iteration i in the distributed detector with the probability of error P e of the fusion center

in the parallel architecture we need to compare the variances of the sufficient statistics in each detector.

With noiseless communication channels, we see that the upper bound in (76) in Corollary 6 converges

to
4μ2

σ2

[
1
N

+ γ2i
2

(
1 − 1

N

)]
→ 4μ2

Nσ2

which is the variance of the parallel architecture test statistic (50). This shows that

lim
i→∞

Pe(i, n) = Pe (77)

The rate of convergence is again controlled by

γ2i
2 =

(
1 − 2λ2(L)

λ2(L) + λN(L)

)2i

and maximizing this rate is equivalent to minimizing γ 2, which in turn, see (35), is equivalent to

maximizing the eigenratio parameter γ = λ2(L)/λN(L) like for the average-consensus algorithm.

For noisy channels, it is interesting to note that there is a linear trend φ2
maxi/N that makes varn(i) to

become arbitrarily large as the number of iterations i grows to ∞. We no longer have the convergence

of the probability of error Pe(i, n) as in (77). The average minimum probability of error is still given

by (54), with now the equivalent SNR parameter d2 bounded below by Theorem 5.

C. Optimal number of iterations

With noisy communication channels, the performance of the distributed detector no longer achieves

the performance of the fusion center in a parallel architecture. This is no surprise, since each iteration

corrupts the inter communicated state of the sensor. However, there is an interesting tradeoff between

sensing signal to noise ratio (S-SNR) and the communication noise. Intuitively, the local sensors perceive
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better the global state of the environment as they obtain information through their neighbors from more

remote sensors. However, this new information is counter balanced by the additional noise introduced by

the communication links. This leads to an interesting tradeoff that we now exploit and leads to an optimal

number of iterations to carry out the consensus through noisy channels before a decision is declared by

each sensor.

The upper bound in eqn. (75) is a function of the number of iterations i. We rewrite it, replacing the

integer valued iteration number i by a continuous variable z, as

f(z) =

(
4μ2

Nσ2
+
φ2

max

(
1 − 1

N

)
1 − γ2

2

)
+
(

1− 1
N

)(
4μ2

σ2
− φ2

max

1 − γ2
2

)
γ2z

2 +
φ2

max

N
z (78)

We consider only the case when
4μ2

σ2
>

φ2
max

1 − γ2
2

(79)

This is reasonable. For example, if 4μ2

σ2 > φ2
max, which is the case when the communication noise is

smaller than the equivalent sensing noise power and iterating among sensors can be reasonably expected

to improve upon decisions based solely on the local measurement. Secondly, if γ2, which is bounded

above by 1, is small, then the right-hand-side of (79) is more likely to be satisfied. This means that

topologies like the Ramanujan graphs where γ2 is minimized (which, from (35) means that the eigenratio

parameter γ is maximized) will satisfy better this assumption.

We now state the result on the number of iterations.

Theorem 7 If (79) holds, f(z) has a global minimum at

z∗ =
1

2lnγ2
ln

⎛⎝ φ2
max(

2ln 1
γ2

)
(N − 1)

(
4μ2

σ2 − φ2
max

1−γ2
2

)
⎞⎠ (80)

Proof: When (79) holds, f(z) is convex. Hence there exists a global minimum, say attained at z ∗.

We find z∗ by rooting the first derivative, successively obtaining

df
dz

(z∗) = (2lnγ2)
(

1 − 1
N

)(
4μ2

σ2
− φ2

max

1− γ2
2

)
γ2z∗

2 +
φ2

max

N
= 0 (81)

γ2z∗

2 = − φ2
max

(N − 1) (2lnγ2)
(

4μ2

σ2 − φ2
max

1−γ2
2

) (82)

z∗ =
1

2lnγ2
ln

⎛⎝ φ2
max(

2ln 1
γ2

)
(N − 1)

(
4μ2

σ2 − φ2
max

1−γ2
2

)
⎞⎠ (83)
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From Theorem 7, we conclude that, if z∗ > 0, then the variance upper bound will decrease till i∗ = 
z∗�.

The iterative distributed detection algorithm should be continued till i ∗ if

min (f (
z∗�) , f (�z∗�)) < varn(0) =
4μ2

σ2
(84)

Numerical Examples. We illustrate Theorem 7 with two numerical examples. We consider a network

of N = 1, 000 sensors, μ2/σ2 = 1 (0 db), and γ2 = .7. The initial likelihood variance before fusion is

varn(0) = 4. We first consider φmax = .1 Then, z∗ = 17.6 and varn(17) ≤ f(
z∗�) = .0238 = f(�z∗�).
The variance reduction achieved with iterative distributed detection over the single measurement decision

is varn(0)
varn(i∗)

≥ 168 = 22 dB, a considerable improvement. We now consider a second case where the

communication noise is φmax = .3162. It follows that z∗ = 14.3, and the improvement by iterating till

i∗ = 14 with the distributed detection is varn(0)
varn(14) ≥ 20 = 13 dB.

VI. EXPERIMENTAL RESULTS

This section shows how Ramanujan graph topologies outperform other topologies. We first describe

the graph topologies to be contrasted with the Ramanujan LPS-II constructions described in Section IV.

We start by defining the average degree kavg of a graph G as

kavg =
2|E|
|V |

where |E| = M denotes the number of edges and |V | = N is the number of vertices of the graph. In

this section, we use the symbols and terms k and kavg interchangeably. For, k-regular graphs, it follows

that kavg = k. This means, that, when we work with general graphs, k refers to the average degree, while

with regular graphs, it refers to both the average degree and the degree of each vertex.

A. Structured graphs, Watts-Strogatz Graphs, and Erdös-Renýi Graphs

We compare Ramanujan graphs, which are regular graphs, with regular and non regular graphs. The

symbol k will stand in this Section for the degree of the graph for regular graphs and for the average

degree for non regular graphs. We describe briefly the three classes of graphs used to benchmark the

Ramanujan graphs. Structured graphs usually have high clustering but large average path length. Erdös-

Renýi graphs are random graphs, they have small average path length but low clustering. Small-world

graphs generated with a rewiring probability above a phase transition threshold have both high clustering

and small average path length.

Structured graphs: Regular ring lattice (RRL. This is a highly structured network. The nodes are

numbered sequentially (for simplicity, display them uniformly placed on a ring.) Starting from node # 1,
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connect each node to k/2 nodes to the left and k/2 nodes to the right. The resulting graph is regular

with degree k.

Small world networks: Watts-Strogatz (WS-I). We explain briefly the Watts-Strogatz construction

of a small world network, [15]. It starts from a highly structured regular network where the nodes are

placed uniformly around a circle, with each node connected to its k nearest neighbors. Then, random

rewiring is conducted on all graph links. With probability pw, a link is rewired to a different node chosen

uniformly at random. Notice that the pw parameter controls the “randomness” of the graph in the sense

that pw = 0 corresponds to the original highly structured network while pw = 1 results in a random

network. Self and parallel links are prevented in the rewiring procedure and the number of links is kept

constant, regardless of the value of pw. In [8], distributed detection was studied with two slightly different

versions of the Watts-Strogatz model. In both versions, the rewiring procedure is such that the nodes

are considered one by one in a fixed direction along the circle (clockwise or counter clockwise.) For

each node, the k/2 edges connecting it to the following nodes (in the same direction) are rewired with

probability pw. In the first version of the Watts-Strogatz model, called Watts-Strogatz-I (WS-I) in the

sequel, the edges are kept connected to the current node while their other ends are rewired with probability

pw. In the second version, called Watts-Strogatz-II (WS-II), the particular vertex to be disconnected is

chosen randomly between the two ends of the rewired edges. It was shown in [8] that the WS-I graphs

yield better convergence rates among the different models of small world graphs considered in that paper

(WS-I, WS-II, and the Kleinberg model, [16], [17].) Hence, we restrict attention here to WS-I graphs.

Erdös-Renýi random graphs (ER). In these graphs, we randomly choose Nk
2 edges out of a total

of N(N−1)
2 possible edges. These are not regular graphs, their degree distribution follows a binomial

distribution, which in the limit of large N approaches the Poisson law.

B. Comparison Studies

We present numerical studies that will show the superiority of the Ramanujan graphs (RG) over the

other three classes of graphs: Regular ring lattice (RRL), Watts-Strogatz-I (WS-I), and Erdös-Renýi (ER)

graphs. We carry out three types of comparisons: (1) Convergence speed Sc; (2) The γ parameters for the

RG and each of the other three classes of graphs; (3) The algebraic connectivity λ2(L) for the RG and

each of the other three classes of graphs. In Section V, we considered a distributed detection problem

based on the average-consensus algorithm. Here we present results for the noiseless link case. We define

the convergence time Tc of the distributed detector, as the number of iterations required to reach within

10% of the global probability of error, averaged over all sensor nodes. Rather than using Tc, the results
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are presented in terms of the convergence speed, Sc = 1/Tc. To simplify the comparisons, we subscript

the γ parameter by the corresponding acronym, e.g., γRG to represent the eigenratio of the Ramanujan

graph. We also define the following comparison parameters

ψ(RRL) =
Sc, RG

Sc, RRL
, ν(RRL) =

γRG

γRRL
, and η(RRL) =

λ2,RG(L)
λ2,RRL(L)

(85)

Ramanujan graphs and regular ring lattices. Fig. 2 compares RG with RRL graphs. The panel

on the right plots ψ(RRL), the center panel displays ν(RRL), and the right panel shows η(RRL) when
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Fig. 2. Spectral properties of LPS-II and RRL graphs, k = 18, varying N : Left: Ratio of convergence speed ψ(RRL); Center:
Ratio ν(RRL) of λ2(L)

λN (L)
; Right: Ratio η(RRL) of λ2(L).

the degree k = 18 and the number of nodes N varies. We conclude that the RGs converge 3 orders of

magnitude faster than the RRLs, the γ parameters can be up to 3, 500 times faster, and the algebraic

connectivity for the RGs can be up to 4, 000 times larger than for the RRLs.

Ramanujan graphs and Watts-Strogatz graphs. Fig. 3 contrasts the RG with the WS-I graphs.

Because the WS-I graphs are randomly generated, we fix the number of nodes N = 6038 and the degree

k = 18 and vary on the horizontal axis the rewiring probability 0 ≤ pw ≤ 1. The Figure shows on the

left panel the convergence speed Sc. The top horizontal line is Sc for the RG—it is flat because the

graph is the same regardless of pw. The three lines below correspond to the WS-I topologies. For each

value of pw, we generate 150 WS-I graphs. Of the WS-I three lines, the top line corresponds, at each pw,

to the topologies (among the 150 generated) with maximum convergence rate, the medium line to the

average convergence rate (averaged over the 150 random topologies generated), and the bottom line to

the topologies (among the 150 generated) with worst convergence rate. Similarly, the center and right

panels on Fig. 3 compare the eigenratio parameters γ (center panel) and the algebraic connectivity λ2
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Fig. 3. Spectral properties of LPS-II and WS-I graphs, N = 6038, k = 18, varying pwLeft: Sc; Center: eigenratio γ = λ2(L)
λN (L)

;
Right: algebraic connectivity λ2.

(right panel). For example, the RG improves by 50 % the γ eigenratio over the best WS-I topology (in

this case for pw = .8.)

Ramanujan graphs and Erdös-Renýi graphs. We conclude this section by comparing the LPS-

II graphs with the Erdös-Renýi graphs in Figs. 4 and 4. Fig. 4 shows the results for topologies with

different number of sensors N (plotted in the horizontal axis.) For each value of N , we generated 200

random Erdös-Renýi graphs. In the panels of both Figures, the top line illustrates the results for the

RG, while the three lines below show the results for the Erdös-Renýi graphs—among these three, the

top line is the topology with best convergence rate among the 200 ER topologies, the middle plot is

the averaged convergence rate, averaged over the 200 topologies, and the bottom line corresponds to

the worst topologies. Again, for example, the γ parameter of the RG is about twice as large than the γ

parameter for the ER.

VII. RANDOM REGULAR RAMANUJAN-LIKE GRAPHS

Section IV-C explains the construction of the Ramanujan graphs. These graphs can be constructed only

for certain values of N , which may limit their application in certain practical scenarios. We describe here

briefly biased random graphs that can be constructed with arbitrary number of nodes N and average

degree, and whose performance closely matches that of Ramanujan graphs. Reference [30] argues that,

in general, heterogeneity in the degree distribution reduces the eigenratio γ = λ2(L)
λN (L) . Hence, we try to

construct graphs that are regular in terms of the degree. There exist constructions of random regular

graphs, but these are difficult to implement especially for very large number of vertices, see, e.g., [31],

[32], [33], [34], which are good references on the construction and application of random regular graphs.
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Fig. 4. Spectral properties of LPS-II and ER graphs, k = 18, varying N : Left: Convergence speed S c; Center: eigenratio
γ = λ2(L)

λN (L) ; Right: algebraic connectivity λ2.

Ours is a procedure that is simple to implement and constructs random regular graphs, which we refer

to as Random Regular Ramanujan-Like (R3L) graphs. Suppose, we want to construct a random regular

graph with N vertices and degree k. Our construction starts from a regular graph of degree k, which we

call the seed. The seed can be any regular graph of degree k, for example, the regular ring lattice with

degree k (see Section VI.) We start by randomly choosing (uniformly) a vertex (call it v1.) In the next

step, we randomly choose a neighbor of v1 (call it v2), and we also randomly choose a vertex not adjacent

to v1 (call it v3.) We now choose a neighbor of v3 (call it v4). The next step consists of removing the

edges between v1 and v2, and between v3 and v4. Finally we add edges between v1 and v3 and between

v2 and v4. (Care is taken so that no conflict arises in the process of removing and forming the edges.) It

is quite clear that after this sequence of steps, the degree of each vertex remains the same and hence the

resulting graph remains k-regular. We repeat this sequence of steps a sufficiently large number of times,

which makes the resulting graph to become random. Thus, staring with any k-regular graph, we get a

random regular graph with degree k.

We now present numerical studies of the R3L graphs, which show that these graphs have convergence

properties that are very close to those of LPS-II graphs. Specifically, we focus on the eigenratio parameter

γ = λ2(L)
λN(L)

. Fig. 5 plots the eigenratio γ = λ2(L)
λN (L)

for the RG and the R3L graphs for varying number

of nodes N and degree k = 18. We generate 100 R3L graphs for each value of N . The top three lines

correspond to the RG, the best R3L topologies, and the average value of γ over the 100 R3L graphs.

We observe that the maximum values of γ = λ2(L)
λN(L)

are sometimes higher than those obtained with the

LPS-II graphs. Note also that, on average, the R3L graphs are quite close to the LPS-II graphs in terms
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Fig. 5. LPS-II and R3L graphs, k = 18, varying N : Eigenratio γ = λ2(L)
λN (L)

.

of the γ = λ2(L)
λN (L)

ratio, even for large values of N . This study shows that the R3L graphs are a good

alternative to the LPS-II graphs with the added advantage that they can be generated for arbitrary number

of nodes N and degree k.

VIII. CONCLUSION

The paper studies the impact of network topology on the convergence speed of distributed inference

and average-consensus. We derive that the convergence speed is governed by a graph spectral param-

eter, the eigenratio γ = λ2(L)/λN(L) of the second largest and the largest eigenvalues of the graph

Laplacian. We show that the class of non-bipartite Ramanujan graphs is essentially optimal. Numerical

simulations verify the Ramanujan LPS-II graphs outperform the highly structured graphs, the Erdös-Renýi

random graphs, and graphs exhibiting the small-world property. We considered average-consensus and

distributed detection with noiseless and noisy links. We derived for the distributed inference problem an

analytical upper bound on the likelihood variance. For noiseless links, this bound shows that the local

likelihood variances (and hence the local probability of errors) converge to the global likelihood variance

(global probability of error) at a rate determined by γ . With noisy links, we demonstrate that there is

a maximum, optimal number of iterations before declaring a decision. Finally, we introduced a novel

biased construction of random regular graphs (R3L graphs) and showed by numerical results that their

convergence performance tracks very closely that of the Ramanujan LPS-II graphs. R3L graphs address a

main limitation of Ramanujan graphs that can be constructed only for very restricted number of nodes. In

contrast, R3L graphs are simple to construct and can have an arbitrary number of nodes N and degree k.
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APPENDIX

Definition 8 (Group) : A group X is a non-empty collection of elements, with a binary operation “.”

defined on them, such that the following properties are satisfied:

1) If a, b ∈ X , then a.b ∈ X (closure property.)

2) If a, b, c ∈ X , then a.(b.c) = (a.b).c (associative property.)

3) There exists an element e ∈ X , such that for any element a ∈ X , a.e = e.a = a (identity element.)

4) ∀a ∈ X , there exists a−1 ∈ X , the inverse of a, such that a.a−1 = a−1.a = e (inverse.)

The group X is called abelian if the “.” operation is commutative, that is, for any a, b ∈ X , a.b = b.a.

Definition 9 (Field) : A field F is a non-empty collection of elements, with the following properties:

There exists a binary operation “+” on the elements of F such that,

1) If a, b ∈ F , then a+ b ∈ F .

2) If a, b ∈ F , then a+ b = b+ a.

3) If a, b, c ∈ F , then a+ (b+ c) = (a+ b) + c.

4) There exists an element 0 (zero) ∈ F , such that for any element a ∈ F , a+ 0 = a.

5) If a ∈ F , then there exists an element (−a) ∈ F , such that a+ (−a) = (−a) + a = 0.

There exists another binary operation “.” on the elements of F such that,

1) If a, b ∈ F , then a.b ∈ F .

2) If a, b ∈ F , then a.b = b.a.

3) If a, b, c ∈ F , then a.(b.c) = (a.b).c.

4) There exists a non-zero element 1 (one) ∈ F , such that for any element a ∈ F , a.1 = a.

5) For every non-zero element a ∈ F , there exists an element a−1 ∈ F , such that a.a−1 = 1.

6) If a, b, c ∈ F , then a.(b+ c) = a.b+ a.c.

Congruence. For integers a, b, c, the statement a is congruent to b modulo c, or a ≡ b mod (c) implies

that (a− b) is divisible by c.

Quadratic Residue. For integers a, b, the statement a is a quadratic residue modulo b implies that there

exists an integer c such that c2 ≡ a mod (b).

Definition 10 (Legendre Symbol) : For an integer a and a prime p, the Legendre symbol
(

a
p

)
is

(
a

p

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if p divides a

1 if a is a quadratic residue modulo p

−1 if a is a quadratic non-residue modulo p

(86)
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PSL(2,Z/qZ). For a prime q, the set Z/qZ = {0, 1, .., q − 1} is the field of integers modulo q. To

define the group PSL(2, Z/qZ) (Projective Special Linear Group), first consider the set of 2×2 matrices

over the field Z/qZ, whose determinants are non-zero quadratic residues modulo q. Next, define an

equivalence relation on this set, such that two matrices are in the same equivalence class, if one is a

non-zero scalar multiple of the other. The PSL(2, Z/qZ) group is then the set of all these equivalence

classes. Think of each element of PSL(2, Z/qZ) as a 2×2 matrix over the field Z/qZ, whose determinant

is a non-zero quadratic residue modulo q, and whose second row can be represented as either (0,1) or

(1,a), where a being any element of Z/qZ, [35]. The p+ 1 generators discussed in the paper, belong to

the PSL(2,Z/qZ) group, because their determinants are p mod (q) and by assumption, p is a quadratic

residue modulo q or
(

p
q

)
= 1 for the non-bipartite Ramanujan graphs we use in this paper.

Linear Fractional Transformation. Let P 1(Fq) = {0, 1, ..., q−1,∞} and

⎛⎝ a b

c d

⎞⎠ be a 2×2 matrix.

Then a linear fractional transformation on P 1(Fq) is defined by the mapping,

x �−→ ax+ b

cx+ d
mod (q) (87)

for every element x ∈ P 1(Fq), with the usual assumptions that z
0 = ∞ for z �= 0, and a∞+b

c∞+d = a
c .

Definition 11 (Bipartite graph) : A bipartite graph is a graph in which the vertex set can be partitioned

into two disjoint subsets, such that no two vertices in the same subset are adjacent.
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