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Abstract

Due to shrinking technologies and increasing design sizes,
it is becoming more difficult and expensive to distribute a
global clock signal with low skew throughout a processor
die. Asynchronous processor designs do not suffer from this
problem since they do not have a global clock. However, a
paradigm shift from synchronous to asynchronous is unlikely
to happen in the processor industry in the near future. Hence
the study of Globally Asynchronous Locally Synchronous (or
GALS) systems is relevant. In this paper we use a cycle-
accurate simulation environment to study the impact of asyn-
chrony in a superscalar processor architecture. Our results
show that as expected, going from a synchronous to a GALS
design causes a drop in performance, but elimination of the
global clock does not lead to drastic power reductions. From
a power perspective, GALS designs are inherently less effi-
cient when compared to synchronous architectures. However,
the flexibility offered by the independently controllable local
clocks enables the effective use of other energy conservation
techniques like dynamic voltage scaling. Our results show
that for a 5-clock domain GALS processor, the drop in perfor-
mance ranges between 5-15%, while power consumption is
reduced by 10% on the average. Fine-grained voltage scaling
reduces the gap between fully synchronous and GALS imple-
mentations, allowing for better power efficiency.

1 Introduction

Most conventional microprocessor designs are syn-
chronous in their construction; that is, they have a global
clock signal which provides a common timing reference
for the operation of all the circuitry on the chip. On the
other hand, fully asynchronous designs built using self-timed
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circuits do not have any global timing reference; exam-
ples of this design style are given in Sutherland’s work
on Micropipelines [1]. Globally Asynchronous Locally
Synchronous systems (which we refer to as GALS systems
in this paper) are an intermediate style of design between
these two. GALS systems contain several independent syn-
chronous blocks which operate with their own local clocks
and communicate asynchronously with each other. The main
feature of these systems is the absence of a global timing ref-
erence and the use of several distinct local clocks (or clock
domains), possibly running at different frequencies.

1.1 Motivation

The idea of GALS system design is in itself not new [2].
Interest in GALS design is now growing due to the following
reasons:

� Global clock distribution: Trends of increasing die
sizes and rising transistor counts may soon lead to a
situation in which distributing a high-frequency global
clock signal with low skew throughout a large die is pro-
hibitively expensive in terms of design effort, die area,
and power dissipation. GALS systems eliminate the
need for careful design and fine-tuning of a global clock
distribution network.

� Design reuse: Designers are now seriously exploring
opportunities for reusing IP cores, and system-on-chip
design is gaining popularity. Integrating several cores
on one chip may not always be possible with a single
clock system; different cores may have different clock
requirements and operating frequencies. GALS systems
with standardized asynchronous interfaces will facilitate
design reuse.

� Inertia: While a fully asynchronous design style
promises to solve both the above problems, a complete
migration from synchronous to asynchronous systems is
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not likely to happen in the immediate future; CAD tools
for asynchronous design are mature, but not commer-
cially strong yet.

In the microprocessor industry, global clock distribution
issues (further discussed in section 2) are perhaps the best
motivating factor for the study of GALS systems. However
since products in this arena are highly performance-driven,
we need to evaluate the impact of asynchronous communica-
tion on performance and power. We describe in this paper the
development of a modeling and simulation framework and the
results of some experiments with a hypothetical superscalar
GALS processor design. We have attempted to address the
following issues:

� If we design a microprocessor in a GALS style with mul-
tiple clock domains, how much performance overhead
will it incur over a fully synchronous processor?

� Will the elimination of the global clock network help in
reducing power in a microprocessor, as other works have
claimed?

� How can we exploit the extra flexibility offered by inde-
pendent clock domains in a GALS processor?

In this work, we show that GALS processors are not
necessarily more power efficient than fully synchronous de-
signs, as it has been previously claimed, but they may be-
come so if clock speed and supply voltage are tuned for
each synchronous block. Eventually, fine adaptation can be
extended to support application-driven, multiple-domain dy-
namic clock/voltage scaling.

1.2 Related Work

Sutherland’s paper on Micropipelines [1] contains a good
introduction to asynchronous design. Asynchronous proces-
sor cores have been in development for over a decade now;
for example, the Amulet processor core developed at Manch-
ester, which implements the ARM instruction set, is in its
third generation and is commercially viable and competitive
[3]. GALS systems were studied in detail by Chapiro in his
1984 PhD thesis [2]. His work covers metastability issues
in GALS systems and outlines a stretchable clocking strat-
egy which provides a mechanism for asynchronous commu-
nication. Chelcea and Nowick propose in [4, 5] the use of
FIFOs as a low-latency asynchronous communication mech-
anism between synchronous blocks. Hemani et al. estimated
in [6] the clock power savings in GALS designs compared
to synchronous designs. However, their work targets a regu-
lar ASIC design flow with simpler clocking strategies rather
than the aggressive clock distribution networks used in mi-
croprocessors. Muttersbach et al. have implemented asyn-
chronous wrappers around synchronous blocks [7]; they have

used these wrappers along with asynchronousmemory blocks
to implement an ASIC and have thus proved the feasibility of
GALS design in silicon. However they have not provided any
direct performance comparisons between GALS systems and
synchronous systems. A similar system has been proposed
by Moore et al. in [8]; pausible clocking for GALS systems
has been described by Yun and Dooply in [9]. The work of
Semeraro et al. [10] is the closest to our GALS study. They
show the effect of voltage scaling by using off-line profiling
of the application.

1.3 Organization of this Paper

The rest of this paper is organized as follows:

� In section 2 we discuss global clock distributionmethods
and the challenges it poses, and thus motivate the study
of GALS systems.

� In section 3 we describe some of the issues involved in
GALS processor design.

� In section 4 we outline an architecture for a hypothetical
GALS processor and describe the simulation and mod-
eling setup which we used to study power and perfor-
mance trends in this processor.

� In section 5 we show some results on power and perfor-
mance trends.

� Finally in section 6 we summarize our contributions and
conclude with some future directions for research on
GALS processors.

2 Clock Distribution

2.1 Design Practices

Generating a high frequency clock signal and distributing
it across a large die with low skew is a challenging task de-
manding a lot of design effort, die area and power. Restle
et al. [11] and Bailey and Benschneider [12] give a good
overview of clocking system design for high-performance
processors.

In most processors, a phase lock loop (PLL) generates a
high frequency clock signal from a slower external clock. A
combination of a metal grid and a tree of buffers is used to dis-
tribute the clock throughout the chip. Trees have low latency,
dissipate less power and use less wiring; but they need to be
rerouted whenever the logic is modified even slightly, and
in a custom-designed processor, this requires a lot of effort.
Trees work well if the clock loading is uniform across the
chip area; unfortunately, most microprocessors have widely
varying clock loads. Metal grids provide a regular structure
to facilitate the early design and characterization of the clock
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network. They also minimize local skew by providing more
direct interconnections between clock pins.

Moreover, clocking in most processors today is hierarchi-
cal. Figure 1 shows an example of a hierarchical distribu-
tion network; several major clocks are derived from a global
clock grid, and local clocks are in turn derived from the major
clocks. This approach serves to modularize the overall design
and to minimize the local skew inside a block. It also has the
advantage that clock drivers for each functional block can be
customized to the skew and drive requirements of that block;
thus the drive on the global clock grid need not be designed
for the worst-case clock loading.

PLL

Major
clocksclock

Global Local
clocks

clock
Ext

Figure 1. An example of a hierarchical clock distri-
bution network

2.2 Case Study

Restle et al. have argued in [11] that clock skew arises
mainly due to process variations in the tree of buffers driving
the clock. Since device geometries will continue to shrink
and clock frequencies and die sizes will continue to increase,
global clock skew induced by such process variations can
only get worse. Hence we argue that we will reach a point
where skew will thus eat up a significant proportion of the
cycle time and thus will directly affect performance.

This point may already have been reached. Table 1 shows
a case study of a few processor designs spanning four major
CMOS technology generations which entered the market dur-
ing the last decade. The numbers in the table clearly show that
technology scaling has led to a dramatic increase in design
size and speed. However, since interconnects do not scale as
well as transistor gate lengths do, these numbers indicate that
the complexity of the clock distribution task has increased
even more dramatically; we now have to clock many more
registers with much smaller skew budgets than before.

Designers have handled this increased design complexity
using complicated hierarchical distribution systems like the
one shown in Figure 1. However, even a complex system of
multiple grids and H-trees is not sufficient for today’s Giga-
hertz clocks. For instance, the 800-MHz prototype of the Ita-
nium chip has a projected skew of 110 ps using a hierarchical
distribution scheme with multiple grids and trees. This skew
is almost 10% of the total cycle time. The Itanium design-
ers have added a network of 32 active deskewing circuits [13]

which connect multiple local clock grids together and help in
bringing down the overall skew to 28 ps.

While techniques like active deskewing help to push the
envelope for clocked systems further, they come at a signifi-
cant cost in terms of die area and power dissipation. At some
point, pushing the limits of clock distribution networks will
lead to diminishing marginal returns. At that stage, GALS
design techniques will come in useful.

3 Globally Asynchronous Locally Syn-
chronous Processor Design

In this section we discuss some architectural issues in-
volved in the design of a globally asynchronous locally syn-
chronous processor, with focus on performance and power
evaluation. Since our primary focus is at the architecture
level, we choose to omit several lower-level issues in our
study. Some areas which have been dealt with in detail else-
where are:

� Metastability resolution: The problem of metastable
signals and techniques for metastability resolution using
synchronizers and arbiters are discussed in [14]. Our
approach uses asynchronous FIFOs [4, 5] between clock
domains and this in turn relies on synchronizers.

� Local clock generation: Each clock domain in a GALS
system needs its own local clock generator; ring oscil-
lators have been proposed as a viable clock generation
scheme [2, 7]. We assume that we can use ring oscilla-
tors in each synchronous block in the GALS processor.

� Failure modeling: A system with multiple clock do-
mains is prone to synchronization failures; we do not at-
tempt to model these since their probabilities are minis-
cule (but non-zero) [14] and our work does not target
mission-critical systems.

3.1 Defining Synchronous Blocks

Hemani et al. have described an automated strategy for
defining locally synchronous blocks in a GALS design [6].
Starting from a hierarchical RTL description of the system,
their method uses iterative refinement to get an optimal par-
titioning of the system into a number of synchronous blocks,
using clock power as an objective function for optimization.
In a custom-designed system like a microprocessor, perfor-
mance requirements justify manual intervention in the parti-
tioning phase. Since the primary motivation behind GALS
design is to avoid distributing a common clock signal over
large areas, the strategy for partitioning the design into syn-
chronous blocks will largely be dictated by physical design
aspects. However, since asynchrony can lead to higher laten-
cies, it is crucial to take architecture issues into account when
partitioning the design.
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Design Technology Device count Cycle time Skew Remarks
Alpha 21064 0.8 µm (1992) 1.6M 5 ns 200 ps Single line of drivers for clock grid
Alpha 21164 0.5 µm (1995) 9.3M 3.3 ns 80 ps Two lines of drivers for clock grid
Alpha 21264 0.35 µm (1998) 15.2M 1.7 ns 65 ps 16 distributed lines of drivers
Itanium (with active deskewing) 0.18 µm (2001) 25.4M 1.25 ns 28 ps 32 active deskewing circuits
Itanium (without active deskewing) 0.18 µm (2001) 25.4M 1.25 ns 110 ps Projected skew without deskewing

Table 1. Trends in global clock skew for microprocessor designs across process generations

In the traditional superscalar out-of-order processor model
the instruction flow consists of fetching instructions from the
instruction cache, using the branch predictor for successive
fetch addresses. The register dataflow consists of issuing in-
structions out of the instruction window and forwarding re-
sults to dependent instructions. The memory dataflow con-
sists of issuing loads to the data cache and forwarding data to
dependent instructions. Introducing high latencies in any of
these three crucial flows will have an impact on the proces-
sor’s performance.

The level 1 instruction cache and the branch predictor
taken together are a good candidate for one synchronous
block corresponding to the front-end of the pipeline. In some
architectures, notably in CISC architectures like Intel’s IA-
32, the decode logic occupies a large area and consists of
several pipe stages; in such cases, decode would be a good
candidate for another synchronous block.

Inside the out-of-order execution core, it is difficult to
make generalizations and say which parts of the core may be
decoupled without much overhead and which may not; such
decisions are very specific to the microarchitecture and the in-
struction set of the processor. Area and clock distribution con-
siderations obviously suggest this partitioning to some extent.
For instance in the 21264 Alpha the ‘major clocks’ (tapped
from the global clock and distributed locally) are defined this
way, based mostly on the top-level hierarchy of the design;
they suggest a partitioning system for that specific implemen-
tation. The 21264 has the following major clocks [12]: (1)
instruction fetch and branch predict (2) bus interface unit (3)
integer issue and execution units (4) floating point issue and
execution units (5) load/store unit (6) pad ring. We shall re-
visit this implementation in section 4 where we describe our
proposed GALS architecture.

3.2 Asynchronous Communication Mechanisms

Many methods have been proposed for clocking GALS
systems with stretchable clocks [2, 7, 8]. Such clocking
systems manage asynchronous communication between two
clock domains by stretching one phase of both the clocks
while the handshaking and data transfer takes place. This is
typically done using an arbiter element inside the loop of a
ring oscillator. While this mechanism provides an elegant
and fail-safe method of communication, it also stalls both
the synchronous blocks during the transaction. In a proces-

sor pipeline, transactions occur practically during every cy-
cle. Stretching the clock every cycle would lead to a situation
where the effective clock frequency is determined not by the
clock generator but by the rate of communication with other
synchronous modules.1 This is not desirable, especially in
systems where the frequencies of the different clocks have
been chosen to meet performance and power requirements.

req
data
full

clk1

req
data
empty
clk2
valid

FIFO

Figure 2. Asynchronous FIFO for interfacing two
clock domains

Chelcea and Nowick have presented in [4, 5] a design for
a low-latency token-ring based FIFO which can be used for
asynchronous communication between synchronous blocks.
The interfaces to the FIFO are shown in Figure 2. Their de-
sign uses full and empty signals to indicate the occupancy
of the FIFO. The empty signal is controlled by the producer
of data into the FIFO and is synchronized to the consumer’s
clock; similarly, the full signal is controlled by the consumer
and is synchronized to the producer’s clock. A few modi-
fications are made to the circuit to account for latencies in
synchronization and to prevent deadlock. In addition to pro-
viding high throughput in the steady state, the design has low
latency when compared to other methods we tested. Since the
focus of our work is at a higher level of abstraction, we shall
not go into further details; a complete description of the op-
eration of the circuit is given in [4, 5]. We shall refer back
to this FIFO structure when describing our experiments with
GALS design.

3.3 Multiple Supply Voltages

An interesting possibility with the use of multiple local
clocks with potentially different speeds is the use of multiple

1To an extent, this behavior is rather like the timing behavior of Suther-
land’s Micropipelines, where the rate of forward communication in the
pipeline makes the system self-timed.
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local supply voltages in a dynamic or application-dependent
manner. Since applications vary in their usage of processor
resources, intelligent selection of clock frequencies can give
us significant power savings with minimal impact on perfor-
mance. The simplest example of this is slowing down or shut-
ting off the floating-point units while running integer applica-
tions. Selectively slowing down certain regions of the proces-
sor is more easily achieved in a GALS design than in a syn-
chronous design because different subsystems run on differ-
ent clocks and these clocks can be independently controlled.

If some parts of the core are slowed down, they can be
operated at a lower supply voltage too. In such a system,
the asynchronous communication interfaces between syn-
chronous blocks will need to have level-conversion circuits.
The amount by which we can reduce the voltage depends on
the slowdown of the clock. Since energy consumption is de-
pendent on the square of the supply voltage, reducing the sup-
ply voltage will lead to significant energy benefits.

The relationship between logic delayD and supply voltage
Vdd is given by the following equation [15]:

D ∝
Vdd

(Vdd�Vt)α (1)

where Vt is the threshold voltage of the transistor and α is
a technology-dependent factor. For a 0.35 µm technology,
α is 2; for smaller technologies, the value of α is between
1 and 2. This implies that savings arising out of dynamic
voltage scaling for a given delay value are higher for smaller
technology generations.

4 A GALS Architecture

We have studied a superscalar processor model and have
attempted to build a GALS model which duplicates its
pipeline structure for the most part, so that we can compare
GALS processors with synchronous processors in terms of
power and performance. The architecture that we chose for
our study is a hypothetical processor resembling the 21264
Alpha in some ways.

4.1 The Architecture

After a detailed look at the architecture, we chose to have
five clock domains in the GALS version of the design. Figure
3 shows the pipeline structure of both the synchronous (base)
processor and the GALS processor we designed. The bound-
aries between clock domains in the GALS processor are in-
dicated by dotted lines. In the base (synchronous) model, all
the logic runs off the same clock. In the GALSmodel, various
regions are clocked using different clock signals independent
of each other. The first stage of the pipeline consists of an
instruction cache and branch prediction unit (clock domain
1). The next stages are instruction decode and register re-
name (clock domain 2). There are three issue queues in the

Stage Operation Domains
1 Fetch from I-cache 1
2 Decode 2
3 Register rename, Regfile read 2
4 Dispatch into issue queue 2, 3/4/5
5 Issue to functional unit 3/4/5
6 Execute 3/4/5
7 Wakeup, Writeback 3/4/5
8 Regfile write, Commit 3/4/5, 2

Table 2. Pipeline stages in our processor models

Fetch and decode rate 4 inst/cycle
Integer issue queue size 20
FP issue queue size 16
Memory issue queue size 16
Integer registers 72
FP registers 72
L1 data cache 16KB 4-way

1 cycle latency
L1 instruction cache 16KB direct-mapped

1 cycle latency
L2 unified cache 256KB 4-way

6 cycles latency
ALUs 4 integer, 4 FP

Table 3. Microarchitecture details of our processor
models

design: one for integer instructions (clock domain 3), one for
floating-point instructions (clock domain 4) and one for loads
and stores (clock domain 5). In the GALS processor, the inte-
ger ALUs and the integer issue queue are in the same clock-
ing region. This ensures that dependent instructions within
the integer issue queue can be issued back-to-back as soon
as operands are available. Similarly, floating-point ALUs and
the floating-point issue queue share one clock, and the data-
cache, the level-2 cache and memory issue queue share one
clock.

In the synchronous version, communication between suc-
cessive logic blocks is done using regular pipe stages. In the
present version of the GALS model, asynchronous FIFOs de-
scribed in section 3.2 have been used.

Table 2 gives a summary of the pipeline stages in the pro-
cessor models we developed for our experiments, along with
a listing of the clock domains of the GALS processor which
are involved in each pipe stage. Table 3 describes the microar-
chitecture in some detail.

4.2 A GALS Simulation Framework

Building a cycle-accurate simulator for a single-clock
pipelined system is simple; in C, we only need to call vari-
ous pipe-stage functions in the reverse order of their occur-
rence in the pipeline. However, to simulate a multiple-clock
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Rename

Decode

Rename

Decode

INT
queue

MEM
queue

FP
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D-cacheFU FU FU FU

I-cache Bpred

Synchronous (base) processor GALS processor

INT
queue

MEM
queue

FP
queue

D-cacheFU FU FU FU

I-cache Bpred1

2

3 5 4

(a) (b)

Figure 3. Pipeline of the simulated architecture

system where the different clocks have entirely independent
frequency and phase, we need a more detailed simulation in-
frastructure.

We have written a general-purpose event-driven simulation
engine which can be used to simulate any asynchronous sys-
tem, synchronous (clocked) system, or a system which con-
tains both asynchronous and synchronous components. The
guts of this event-driven simulation engine consist of an event
queue and a global timer. The event queue is implemented as
a singly linked list in C. Each node of the queue contains the
following fields:

� a function to call at each occurrence of the event;

� a parameter to call the function with;

� a time at which the event is scheduled to occur;

� a priority number to determine the order of execution
of events which are scheduled occur at the same time
instant;

� for periodic events, a time period of repetition (for sim-
ulation of clocked systems), and

� a pointer to the next queue item.

To set the system in motion, we need to insert one or
more starting events into the event queue. The queue contains
events sorted in increasing order of their scheduled times.

Hence, processing the event queue for running the simula-
tion is easy; we only need to read successive events from the
head of the queue and execute them by calling the appropriate
execution functions. To simulate clocked systems, we need to
insert one event for each clock domain; for each such event,
we need to specify a time period. When the execution engine
processes such a periodic event, it schedules another instance
of the same event into the queue, thus representing the next
cycle of execution of the clocked system.

Figure 4 (a) shows an example of a system with three clock
domains, each of which has a different clock frequency. To
simulate this system, we need to add three starting events into
the event queue, all of which are periodic, to represent the
three clock domains. Figure 4 (b) shows the C code which
models the system.

4.3 Performance and Power Models

To evaluate the above architecture, we wrote models of
both the synchronous and the GALS processors using the
Simplescalar toolset [16]. Simplescalar provides a compre-
hensive infrastructure for modeling and simulation of mi-
croarchitecture features. To simulate the GALS processor,
we made use of the event-driven simulation engine described
earlier in section 4.2. We have set up five clock domains in
our simulator and in the first set of experiments, had all the
clocks running at the same speed. The starting phase of each
clock was set to a random value at runtime.
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T = 2 ns T = 3 ns

Clock 3
T = 2.5 ns

Clock 1 Clock 2

0 1 2 3 4 5 6 7 8

clock 1

clock 2

clock 3

time (ns)

(a)

init_event_queue ();
add_event (/* start time */ 0.5,

/* function */ &clock1_logic,
/* param */ NULL,
/* period */ 2.0);

add_event (/* start time */ 1.0,
/* function */ &clock2_logic,
/* param */ NULL,
/* period */ 3.0);

add_event (/* start time */ 0.0,
/* function */ &clock3_logic,
/* param */ NULL,
/* period */ 2.5);

process_event_queue ();

(b)

Figure 4. Event-driven GALS system simulation.
(a) An example system. (b) C code for simulating
this system.

We used the Wattch framework [17] to add power models
to our processor simulation. Wattch provides switching ca-
pacitance modeling for structures like ALUs, caches, arrays
and buses in a processor. These are integrated into our base
and GALS simulators to provide energy statistics. To account
for overheads arising from clock-gating and leakage currents,
we modeled unused modules as consuming 10% of their full
power. We also modeled power consumed by the FIFOs used
for communication between domains.

In addition to modeling the switching capacitance of mem-
ories and buses inside the processor, we have also modeled
the switching capacitance of clock grids. For the synchronous

base processor model, we assumed a clock distribution hi-
erarchy resembling that of the 21264 Alpha processor. We
modeled one global clock grid and five local clock grids cor-
responding to the five clock domains discussed in section 3.1.
The areas and metal densities of each clock grid were approx-
imated by the numbers published for the 21264 processor. For
the GALS processor, since there is no global clock, we elim-
inated the switching capacitance of the global clock grid and
retained the five major clock grids, corresponding to the dis-
tribution networks for each of the synchronous blocks.

5 Experimental Results

To assess the performance and power of our proposed
GALS processor design, we tested the base and the GALS
simulators with a set of benchmarks taken from the Spec95
[18] and the Mediabench [19] benchmark suites. We have
performed two sets of experiments:

1. Base versus GALS performance and power analysis with
all synchronous blocks running at the same clock fre-
quency and supply voltage.

2. Base versus a multiple-clock, multiple-voltage GALS
design.

5.1 Power and Performance Analysis

Performance

Not surprisingly, the GALS processor is slowed down by
asynchronous communication and does not perform as well
as the synchronous processor. Figure 5 shows the relative
slowdown of various benchmarks running on the GALS pro-
cessor when compared to the synchronous processor. On an
average, the benchmarks we ran on GALS were slower by
10% when compared to base. As expected, the fpppp bench-
mark had the lowest performance hit. This is due to the ap-
plication’s exceptionally small proportion of branch instruc-
tions; on an average only one in every 67 instructions is a
branch in this benchmark, while most other applications have
one branch for every five to six instructions. This indicates
that the asynchronous FIFO models used in our design have
good throughput in the steady state when there are no branch
mispredictions. This also suggests that branch mispredic-
tions will prove more expensive in the GALS model due to
its longer recovery pipeline.

We have also observed that the performance of the GALS
processor varies with the relative phase of the various clocks,
especially in the case where all the clocks are of the same
frequency. This variation is of the order of 0.5%.

Instruction Latencies

On close examination of other statistics in the processor
pipeline, we can see that the introduction of asynchronous
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Figure 5. Performance of the GALS model relative to
the base model
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communication latencies inside the design has led to various
other overheads which in some cases offset the power gains
due to the absence of global clock. For instance, the slip (the
average time taken by each instruction from the fetch to the
commit stage) increases by 65% on average for all bench-
marks in the GALS processor, as seen in Figure 6. This is
because the addition of asynchronous communication chan-
nels leads to an increase in the effective length of the pipeline.
Figure 7 shows the proportion of this slip time which is spent
in the FIFOs (marked “FIFO” in the graph) versus the pro-
portion of time spent in execution units, issue queues, etc.
(marked “pipeline” in the graph). As we expect, the differ-
ence in slip between the GALS and the base versions is due
in part to the time spent in the FIFOs. However, there is still
an increase in the slip which cannot be accounted for by the
time spent in FIFOs alone; this is caused by the latency in
forwarding results from one queue to another through FIFOs.
Note that this delay is caused by the FIFO latency of forward-
ing results and not by the latency in the instruction flow.

Speculation

This increase in pipeline length in the GALS processor also
leads to higher speculative execution, as shown in Figure 8.
This is most marked for the integer applications we tested,
where the percentage of mis-speculated instructions goes up
from 13.8 percent in the base processor to 16.7 percent in the
GALS processor. Increase in speculation is less for appli-
cations containing many long-latency instructions. Similarly,
we have observed that the average number of in-flight instruc-
tions in the pipeline is higher in the GALS model; so is the
average occupancy of the register allocation tables and issue
queues. For instance the integer register allocation table oc-
cupancy went up from 15 in base to 24 in GALS for the ijpeg
benchmark.

Power

Figure 9 shows the relative total energy and average power
consumption of the GALS processor, normalized to the re-
spective measures of the base processor. In most benchmarks,
the elimination of the global clock has resulted in some sav-
ings in the per-cycle power dissipation. But due to the extra
switching activity inside the core, higher occupancies of the
issue queues and register allocation tables, increased specula-
tion and higher execution times, the total energy needed for
execution is not necessarily lower, but is higher for the GALS
processor in some cases. For the benchmarks we tested, this
increase in energy is 1% on average.

Figure 10 shows the breakdown of the base and GALS
model power consumption into various macro blocks. From
the figure, we can see that power gains arising from elimi-
nation of the global clock are offset by the increased power
consumption of other blocks.
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Figure 9. Energy and power consumption of the
GALS processor normalized to those of the base
processor

5.2 Multiple-Clock, Multiple-Voltage Processors

In a second set of experiments, we tried to determine
which parts of the processor could be slowed down in
an application-dependent manner without affecting perfor-
mance. The technique of multiple supply voltages described
in section 3.3 was used to determine an optimal supply volt-
age for lowest operating power, using equation 1 with a value
of α = 1:6 which is appropriate for today’s 0.13 µm devices.
The voltage thus determined is of course the ideal case; in
practice, there will be an overhead due to DC-DC level con-
version circuits.

Figure 11 shows the results of slowing down some clock
domains in a generic fashion; the fetch clock and memory
clock were slowed down by 10% and the floating point clock
was slowed by 50%. The energy and power benefits are
decent but performance losses are substantial (about 18%).
From this graph, we see that we can apply clock slowdown
only on a selective basis, after studying the application’s char-
acteristics.

� perl: Since there are virtually no floating-point instruc-
tions in this integer benchmark, we slowed down the FP
clock by a factor of 3. The performance drop was 9%
over the base version; the total energy was reduced by
10.8% and the average power by 18%.

� ijpeg: In this case, we have considered simultaneous
slowing down the fetch, floating point and memory
clocks (domains 1, 4 and 5 in Figure 3 (b)). We chose
to study the impact of slowing down the memory clock
on the power and performance of ijpeg since this bench-
mark has a very low proportion of memory accesses. In
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all cases reported in Figure 12, the fetch clock has been
slowed down by 10% and the FP clock by 20%, while
for the memory clock we have considered four cases: no
slowdown (gals-00), slowdown of 10% (gals-10), 20%
(gals-20) and 50% (gals-50). Figure 12 shows that we
can trade off performance for energy savings for this
benchmark. Energy savings vary between 4 and 13%
with a performance drop between 15 and 25% when
compared to the fully synchronous processor.

� gcc: We chose this integer benchmark to apply a slower
clock to the floating-point queue and units. Since the in-
struction bandwidth of this benchmark is also low, we
slowed down the fetch unit by 10%. Figure 13 shows
the results for performance, power and energy, normal-
ized to the base case. The numbers marked “gals-1” are
from the case where the floating-point clock is slower by
50% and the numbers marked “gals-2” are from the case
where it slower by a factor of 3. The graph shows that
gcc can afford to have a slower floating point unit with-
out too much performance hit. Given scaleable voltage
supplies, this technique also provides energy savings of
11% and power savings of 21% with a performance loss
of 13% when compared to the fully synchronous proces-
sor.

To compare the capability of the GALS processor to trade
off power for performance, we have also provided the nor-
malized energy of the base (synchronous) processor when run
at a slower clock (and lower voltage) that would exhibit an
equivalent performance penalty (the column labeled “ideal”
in Figures 12 and 13). It can be seen that by slowing down
the floating-point clock domain, the GALS processor is able
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Figure 11. Results from selective slowdown applied
on three benchmarks

to trade off performance for energy in case of the gcc bench-
mark. Figure 12 shows that slowing down the memory clock
does not lead to a good performance-energy tradeoff for the
ijpeg benchmark. Hence the extent of the tradeoff we can
achieve by slowing down various clock domains is dictated
by the nature of the application.

Overall, our experimental evidence shows that naive
GALS implementations (with all clocks running at the same
frequency) may not necessarily be very energy efficient as
claimed previously. Instead, the increased flexibility of run-
ning local clocks at different speeds (and thus different volt-
ages) offers a viable solution for energy aware computing un-
der the increasing pressure of handling clock skew and distri-
bution issues.

6 Conclusion

Our modeling and simulation setup has given direct com-
parisons of power and performance of GALS systems against
those of synchronous systems. Our experimental evidence
shows that the overhead associated with GALS processors
renders them inefficient; hence eliminating the global clock
is not in itself a solution for low power. However, com-
bined with intelligent fine-tuning of clock frequency and sup-
ply voltage, GALS systems can provide some power benefits.
Clocking smaller areas will mean smaller skew values and
hence faster clocks; we have not modeled such effects in this
work because skew estimates require extensive physical de-
sign. Besides, having independent clock domains eliminates
the need for balanced pipelines and could provide more av-
enues for fine-tuning performance.

Since clock distribution issues may necessitate the prac-
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Figure 12. Impact of selective fetch, memory, and FP
clock slowdown (ijpeg benchmark)

tice of GALS design in the future, studies on performance
enhancement in GALS systems are worthwhile. Further stud-
ies in this direction could involve latency-hiding techniques
like multithreaded execution in hardware.
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