
SAFARI Technical Report No. 2011-004 (August 29, 2011)

Investigating the Viability of Bufferless NoCs
in Modern Chip Multi-processor Systems

Chris Craik Onur Mutlu
craik@cmu.edu onur@cmu.edu

Computer Architecture Lab (CALCM)
Carnegie Mellon University

SAFARI Technical Report No. 2011-004

August 29, 2011

Abstract

Chip Multi-Processors are quickly growing to dozens and potentially hundreds of cores, and as such the design of
the interconnect for on chip resources has become an important field of study. Of the available topologies, tiled mesh
networks are an appealing approach in tiled CMPs, as they are relatively simple and scale fairly well. The area has
seen recent focus on optimizing network on chip routers for performance as well as power and area efficiency. One
major cost of initial designs has been their power and area consumption, and recent research into bufferless routing
has attempted to counter this by entirely removing the buffers in the routers, showing substantial decreases in NoC
energy consumption.

However, this research has shown that at high network loads, the energy benefits of bufferless schemes are vastly
outweighed by performance degradation. When evaluated with pessimistic traffic patterns, the proposed router de-
signs significantly increase network delays in last level cache traffic, and can lower the throughput of the system
significantly.

We evaluate these router designs as one component of the entire memory hierarchy design. They are evaluated
alongside simple cache mapping mechanisms designed to reduce the need for cross-chip network traffic, as well as
packet prioritization mechanisms proposed for high performance.

We conclude, based on our evaluations, that with intelligent, locality-aware mapping of data to on-chip cache
slices, bufferless network performance can get very close to buffered network performance. Locality-aware data
mapping also significantly increases the network power advantage of bufferless routers over buffered ones.

1 Introduction
The past few generations of Chip Multi-Processors(CMPs) have seen great leaps in core count, such as the 100-
core Tilera[29], or the 48-core Single Chip Cloud Computer[13]. As the number of cores on chip grows[23, 1],
the interconnection fabric that connects them has become a significant consumer of power and area. Some of these
designs, such as [9] and [12] have shown the interconnect to be a major consumer of power and area.

The mesh network on chip has been an appealing approach to interconnection of resources[24], largely for its
general simplicity and ease of implementation in a tiled CMP. We focus our evaluations on such a design, specifically
an 8-by-8 mesh of symmetric nodes. As shown in Figure 1, each node contains a core, a private L1 cache, a shared L2
cache slice, and a simple router.

The on chip interconnect serves as the communication layer between tiles. Memory accesses that can’t be served
by the tile on which the application is running are forwarded to remote shared cache slices, and on to memory if
needed.

The network on chip also serves cache coherence requests, forwarding state information in order to keep shared
memory consistent between cores. Network transmissions are on the critical path for accesses that don’t hit in a local
cache, as well as communication between cores, and can thus be critical to system performance.

1



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Figure 1: Tiled Mesh CMP Overview

The routers, though somewhat similar to those used in large scale networks, operate under very different condi-
tions with very different design tradeoffs. They operate at very high frequency with very low latency, and complex
implementation and buffering come at great expense because of on chip constraints. They forward packets of control
and data information in units of flits - the smallest granularity of NoC packet routing.

In this work, we analyze the network on chip as a component of the memory system, and examine how both
buffered and recent bufferless designs affect performance and energy. We begin with an overview of previous buffered
and bufferless routing designs.

2 Background
The network on chip has the collective job of forwarding control and data packets between nodes in the system. Any
access to a remote node for cache or memory state goes over this network. It is then the job of the network on chip
routers to forward packets to connected routers so that packets may be ejected from the network at their destination
node.

In our investigation, we focus on the mesh topology of interconnected routers. In the mesh topology, all nodes are
laid out in a two dimensional grid, and are connected to all neighbors (up to 4). While other topologies have been
investigated, the simple implementation and scalability of the mesh have made it the most popular topology for large
modern CMPs.

2.1 Buffered Virtual Channel Routing
Much of the work on mesh network on chip routing has been based off the idea of virtual channel buffered routers,
originally proposed in [4]. Because contention for a link may occur between two simultaneously arriving flits, a
buffered router stores incoming packets into queues first. Then it may select from the heads of these queues in
selecting outputs. This solves the problem of packets contending for outputs because a buffered router can simply stall
the losers of the arbitration for a contended output port. If an input queue fills up, the router can exert backpressure on
the router feeding it, telling it to stall packets destined to the full input buffer.

Virtual channels are frequently added to buffered routing architectures, in the form of multiple input queues.
Having multiple queues per input limits the problem of Head-of-line blocking, where a packet in the front of the queue
stalling forces all subsequent packets to stall as well. With multiple input queues, even if the first packet in one queue
is stalled (due to backpressure or link contention), packets in other queues can route to other free inputs, and utilize
the outgoing links.

2



SAFARI Technical Report No. 2011-004 (August 29, 2011)

2.2 BLESS
In BLESS[22], the authors suggest using bufferless routing to enable cheaper router design points. As buffers consume
a lot of power and area, removing them from the router is an appealing possibility.

Whereas buffered routing will buffer or stall packets that can’t make progress, bufferless routing has no internal
buffers, and no flow control to create backpressure. Instead, bufferless routing relies on deflection of packets that don’t
make progress. If each packet cannot obtain a desired output port, it is rerouted over an undesired link, or ’deflected.’

Ideally these deflections are rare, because they create additional network traffic and congestion. Since the flits are
never stored in the router, the buffers of the router are removed to save silicon and energy.

The authors point out that several problems in bufferless routing that are very different from those in buffered.
Whereas buffered designs must avoid circular dependency deadlock, bufferless routers do not need to because flits
remain in motion constantly, without backpressure. Bufferless routers can however suffer from flit live-lock - where
flits can be indefinitely deflected. To solve this problem, the authors evaluated several prioritization schemes and
eventually settle upon age based prioritization. This grants a total order of the priorities of flits in the network, but has
the drawback of adding complexity.

The final proposed design includes a sort network to rank flits at a router by age, and then allocates ports in priority
order. Figure 2 shows these components. On the left, flits are sorted by age and by a three stage sort network. The
output of this stage is a sorted order of all incoming flits.

Figure 2: FLIT-BLESS Routing Components

Port allocation, the second component of BLESS-routing, assigns ports to flits in priority order. The first allocator
block gives the oldest flit choice of any desired output link. The second flit is given choice over the remaining, and the
fourth incoming flit (if present) is allocated the last remaining outgoing link. This directional information is passed
finally to the crossbar (not shown) to direct the flits to neighboring routers. We don’t mention the details of injection
and ejection here, except to say that they are largely treated as just another pair of incoming and outgoing ports.

The authors evaluate their router’s performance on an in-house simulator with multi-programmed workloads. They
use a striped mapping of cache blocks to L2 slices, where blocks mapped to a last level cache slice by their least
significant tag bits. They use memory without modeling the queueing of requests.

These design decisions put a significant strain on the network, especially with applications that miss frequently in
the L1. The authors note that their router designs perform poorly in the high load case, when deflection rates ramp up
dramatically.

2.3 CHIPPER
In CHIPPER[7], the authors identify the complexity, and resulting long critical path, make the original BLESS design
difficult to implement. CHIPPER focuses on reducing complexity in order to further motivate the bufferless design
point with reduced energy and area. While the authors also simplify reassembly buffers and provide an implicit token-
based infrastructure for live-lock free deflection routing, that is not relevant to the discussion of bufferless performance
in the high load case.

CHIPPER uses a permutation network composed of four two-input/two-output permuter blocks. Each block makes
strictly local prioritization decisions, acting effectively as a 2x2 deflection router. The input flits are permuted in order

3



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Figure 3: Partial Permutation Network

on the output links, with injection and ejection handled in a separate router stage. In this way, the lengthy priority sort
and port allocation steps are replaced by much simpler operations, and flits are still routed where possible, or otherwise
deflected.

One drawback of the simple permutation network routing is that it’s only partially permuting. Due to the fixed
layout of the available routes, contention for the links prevents certain permutations of the input, and creates deflections
where a standard BLESS router would not. A simple example of this can be seen in the figure, where the top two links
are occupied by flits desiring to travel straight across the router to the top two output links. One flit must be deflected
down into the lower second stage permuter, deflected away from its desired links.

Because deflections occur where they would not in a BLESS router, deflection rate increases and performance is
further sacrificed in the high load case. The paper argues that the high load case is not its focus, and not the only case
of interest. At the very least, the further power savings offered by the simplified router architecture make it a design
point worth considering. Due to space constraints however, we do not present results for CHIPPER-style routers in
our evaluations.

2.4 Data Mapping
As the L2 cache is distributed amongst tiles, it can be used with different mapping mechanisms to advantage different
patterns of access. Strictly private use of the L2 slices favor working sets that fit locally, and are simple - they are a
natural extension of the private L1. Strictly homogeneously shared L2 slices are simple to use as well, but grant better
sharing of data between tiles while sacrificing network latency.

Recent studies have investigated alternate designs[10, 27, 2, 3, 19] in between these extremes to find a good general
solution. These studies, however, have not incorporated this investigation into the selection in another important
memory system parameters, that of on chip network. We will evaluate bufferless routing with different simple data
mapping mechanisms and show that high-load performance can be significantly improved with locality-aware data
mapping. Our focus has been on simple mapping techniques; more sophisticated techniques can lead to even higher
performance.

2.5 Prioritization
Traditionally, each packet and flit in the network is treated equally, no matter its purpose or destination. Recent
studies[5, 6] have shown the affect of in-network prioritization of packets, so that packets that are more important to
system performance are prioritized over others.

4



SAFARI Technical Report No. 2011-004 (August 29, 2011)

We examine the interaction of application-aware prioritization and different router architectures. We show that
while prioritization can work for bufferless routers, its effect is significantly less pronounced than with the buffered
baseline and the effects are further reduced when alongside more efficient mapping.

2.6 Other Related Work
Prior work has investigated different approaches to Bufferless routing in networks on chip. BPS[8] presents a drop-
based bufferless network, that disposes of and resends packets to handle contention. SCARAB[11] builds upon this
work by adding an additional network of circuit switched NACK lines to simplify retransmission. In [14], the authors
propose a combined buffered/bufferless system that switches between the two modes of routing. This enables the net-
work to avoid the inefficiency of bufferless networks in heavy traffic, but to take advantage of its energy savings(except
potentially leakage energy) in the common case. Other work[15, 16] has investigated means of reducing the buffering
requirements with alternate buffered designs. In [20], the authors evaluated buffer bypassing and show that it can
improve energy efficiency of a buffered network, but buffer bypassing cannot for all network settings match leakage
power and area reduction advantages of bufferless network designs. Due to the wide range of alternative designs
proposed, and to space and time constraints, we do not present results for these alternate designs.

3 Evaluation Methodology and Baseline Results
The evaluation methodology used to compare different NoC alternatives greatly affects performance, and thus conclu-
sions to be drawn from experimentation. We describe in detail the system we simulate, and discuss some drawbacks
in simulation methodology that previous evaluations have used.

3.1 System Overview
For our evaluations, we use an in-house cycle-accurate CMP simulator to evaluate different design points. The system
consists of a 8x8 mesh of 64 cores, with a processor, L1 cache, router, and L2 cache slice at each node. There are 4
memory controllers, one at each corner, with DDR3-1866 timing (933 MHz clock)[21] and accurate FRFCFS[25, 17]
scheduling and queueing modelled.

We model the network with a single cycle link delay, coupled with a two cycle router pipeline for all architectures.
All simulations presented herein are warmed up for 50 million instructions, and evaluated over 20 million cycles. We
use 20 million cycles to reduce simulation time and find that our results are representative of much longer intervals on
the order of billions of cycles (verified using a representative subset of workloads).

Our simulations are driven by representative instruction traces, sampled from benchmark applications with Pin-
Points[26]. For single threaded applications with deterministic behavior, recording and playing back the stream of
instructions provides equivalent control and data flow to full simulation with a considerable decrease in simulator
complexity. Including annotations for each memory address and simulating the memory system accurately allow
instruction driven traces to be cycle accurate.

Parameter Setting
System Topology 8x8 mesh, Core and L2 Cache Slice at each node
Core Model Out-of-order x86, 128-entry instruction window
Private L1 Cache 32KB, 4-way associative, 64-byte block size, 16MSHRs
Distributed L2 Cache 1MB, 16-way associative per slice, 16MSHRs
Main Memory 4 MCs, one per corner, DDR3-1866 Timing[21], FRFCFS Scheduling[25, 17]
Coherence Protocol Simple directory, based on SGI Origin[18]
Interconnect Links 1 cycle latency, 8 flits per cache block
Baseline Buffered Router 2-cycle latency, 4VCs/Channel, 8 flits/VC
Aggressive Bufferless Router 2-cycle latency, FLIT-BLESS[22] Sequential Allocating Bufferless Router
Lightweight Bufferless Router 2-cycle latency, Partial Permutation Router[7]

Table 1: System Parameters

5



SAFARI Technical Report No. 2011-004 (August 29, 2011)

3.2 Synthetic NoC Evaluations
Synthetic evaluations give two major benefits over execution and trace driven simulation. First is the decrease in
programming complexity and corresponding increase in simulation speed. The second is simplicity of evaluation,
because sweeping across synthetic design points theoretically offers complete experimentation of the problem space.
For the second of these reasons, we present a synthetic comparison of a bufferless and baseline buffered router. Because
the first is not motivation enough to decrease simulation fidelity, we evaluate with instruction trace driven simulations
in other sections.

Some synthetic evaluations use open-loop requests without a simulated core or instruction window. They show
latency growing to infinity as injection rates increase, as the network at some point cannot keep up with the synthetic
injection rate. However, the closed-loop nature of the memory hierarchy prevents this in a real world system. In our
simulations, we use a self throttling network, i.e. a processor stalls when its outstanding request queue is full and a new
remote request is attempted. This is an important factor, as any real system will not have infinite queueing capabilities.

In a self-throttling system, latencies are quite finite - as our evaluations with 1000 L1 MPKI illustrate. Open-loop
latency curves are sometimes used to compare routers, but in reality are just used as proxies for performance differ-
ences. For this reason, we choose to evaluate synthetic traffic in a closed loop system, and present real performance
results.

In Figure 4 we compare the buffered baseline router against the BLESS router, using synthetic memory requests.
The processor in each node generates a trace of random memory accesses, with each being served by a remote L2
slice. We sweep across different request frequencies, from nodes not accessing remote memory to every instruction
being an off-node request. Network transaction latency, as shown, is the time between L1 MSHR allocation and the
writeback of data into the MSHR, including all time spent in and waiting to enter the network.

Figure 4: Synthetic Latency

At first glance, the lower latency despite deflections in the bufferless network seems illogical. The bufferless
network despite its inherent deflections shows lower latency in all but the most network intensive case. Even if 70%
of instructions are network requests, the latency of bufferless is lower than that of buffered.

This makes sense however, when we consider that while bandwidth of the network is lowered, the number of active
transactions decreases as well. Deflections lower the bandwidth of the network as links are occupied by unproductive
flits. This doesn’t necessarily increase the latency of a single transaction though. In the baseline buffered network,
latencies aren’t necessarily lower - packets are often stalled waiting in virtual channels.

The main difference of the bufferless network is that fewer transactions tend to happen in parallel. In buffered
routers, arbitration has multiple virtual channels per input port to select a packet from, and thus more options to use
the links wisely. With this, the network is able to handle larger numbers of outstanding packets and even if each
individual transaction is slower, the aggregate throughput is still greater.

6



SAFARI Technical Report No. 2011-004 (August 29, 2011)

This is somewhat like two alternate designs for a grocery store checkout. Four clerks with lines of length N are on
the whole always more effective than three clerks with lines of length 2N. From the store owner’s perspective, if each
register has a line, (remember that we’re considering a fairly contended resource) more customers are getting through.
Latency is often a poor proxy for throughput or in the case of NoCs, system performance.

As in a real system, the closed loop of memory requests forces the processor to stall when the network can’t fulfill
requests. Because fewer requests are in the network simultaneously, the latency of each network transaction is in most
cases less than buffered.

In Figure 5, the performance comparison of the experiment, this is shown to be the case. A 10% request rate, or an
L1 miss rate of 100 MPKI is actually quite intense, saturating the bufferless network, but with fewer requests stalled
waiting for network injection to drive up the average latency. The graph of relative network throughput is very similar,
and thus not shown.

Figure 5: Synthetic Performance

3.3 NoCs in the Memory Hierarchy
The network on chip serves an important duty in the memory hierarchy of a CMP. It ferries requests and data across
different nodes, and allows access of remote memory - both on-chip and off. It is thus important that NoCs be evaluated
in context, in a simulated real system.

However, previous evaluations of bufferless networks have sometimes neglected fidelity in the modelling of other
components of the memory hierarchy. BLESS[22] used a simple memory approximation, with no queueing and no in-
network representation of memory controller interfaces. This artificially prevents memory intensive workloads from
stalling one another in DRAM, in turn putting artificial strain on the network. CHIPPER[7] went even further by
removing memory entirely in its evaluation.

Both of these papers had motivation for evaluating a system without memory contention - they evaluated their
proposed designs in a network-intense system to bound the worst case. They showed that there was potential for
lightweight router designs; that there are many workloads for which the baseline buffered NoC was overprovisioned
even with aggressive network usage.

The approach of this work, by contrast, is to look at the common case. We explore the differences between the
proposed routers in a more realistic system, simulating memory controllers and queues.

7



SAFARI Technical Report No. 2011-004 (August 29, 2011)

3.4 Workload Selection
In selecting a set of workloads, we aim to investigate the effect of network design decisions on different network loads.
To help isolate the variety of intensities applications can have in the network, we classified benchmarks as either high
or low network intensity. Benchmarks were classified based on their observed flit traversals per cycle, a metric to show
how much traffic they created in the network into two equal groups. Each benchmark was duplicated across all 64
cores in the system in a classification run to ensure all system resources were taxed realistically. While the metric we
used shows some variation with system and network parameters, its general trend in classification of the benchmarks
remains fairly constant.

We then built five groups of eight workloads each, for a total of forty workloads. Each workload in a group
shared the percentage of high intensity benchmarks, e.g. a 50% intense workload would contain 32 network intense
benchmark instances, and 32 non-network intense benchmarks. Groups were created for 0%, 25%, 50%, 75%, and
100% intensity.

We then populated both the low and high intensity portions of each workload randomly from the available bench-
marks. We expect that, as other studies have demonstrated, the workloads with low relative intensity will not be
strongly affected by network design decisions, as they are not network bound. Nevertheless, we present data from all
five classifications where possible, and averaged elsewhere.

4 Mapping
The mapping of data to last level cache slices in tiled CMPs has been an active research area [10, 19, 2]. The growing
consensus is that mechanisms that dynamically control the placement of data significantly outperform simple private
caches or naive fully shared caches.

4.1 Private
One of the simplest methods for cache mapping is to use a purely local private last level cache. Each time an application
misses in the L1, it searches for the block in the local L2. Because this operation is entirely local, no network
transactions are required unless the request then misses in the local L2.

Private last level caches can suffer from a space overhead of holding data in multiple places. If data is shared
between different threads in an application, it takes up space in each of their caches. This can decrease the number of
unique resident cache lines available on chip at any time. If multiple threads share a large working set, private caches
can increase the last level cache hit rate significantly, reducing throughput.

In addition, private last level caches statically partition cache space evenly between concurrently running threads.
This may be a very bad decision if an L1 resident application effectively doesn’t use its cache slice. Another nearby
application with more data to fit in its local slice might have benefitted greatly from sharing that space. Every thread,
regardless of its reuse pattern and working set size, is given the same amount of last level cache space.

4.2 Globally shared
In a naively striped, globally shared cache, each cache line is stored in a node designated by the last bits in the line
number. This is 6 in the case of our 64 node system. Each contiguous set of 64 lines in memory would be stored with
one line cached on every node in the system. Globally shared caches don’t suffer from unnecessary duplication of
data, as each block can only reside in one set in the entire distributed cache. Space is shared cooperatively between
threads automatically; threads with large working sets use as much cache space as possible, while L1 resident threads
don’t occupy much L2 space.

However, naive CMP shared caches places data without awareness of topological locality. A block of data used
exclusively by the top left core in the mesh is just as likely to reside in its user’s slice as it is in the bottom right. This
locality-unawareness causes most L1 cache misses to require a network transaction.

The latency of these network transactions is non-trivial, and can delay the processor for two reasons. First, the
slice to which a cache line is mapped may be several hops away. Each packet transmission requires time proportional
to this distance even in the best case. Because of this, the best-case latency of the network transaction will scale with
the size of the network.

8



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Benchmark Name Traversals Per Cycle Net Intensity L1MPKI L2MPKI

400.perlbench 0.019849 Low 0.288718 0.099737
454.calculix 0.023249 Low 0.706090 0.050428
481.wrf 0.023345 Low 0.578421 0.000429
447.dealII 0.038359 Low 1.141246 0.093626
crafty.5Bskip.100M 0.081927 Low 3.626324 0.062634
465.tonto 0.097925 Low 3.479114 0.011835
458.sjeng 0.101914 Low 1.861570 0.344768
464.h264ref 0.111647 Low 2.439626 0.428448
435.gromacs 0.161187 Low 5.706131 0.173472
444.namd 0.163496 Low 5.507062 0.067003
shpoint91s 0.188706 Low 5.410433 0.730275
shpoint9ebs 0.189209 Low 5.472909 0.728529
445.gobmk 0.199498 Low 4.299901 0.509944
403.gcc 0.234362 Low 11.389455 0.212362
453.povray 0.258553 Low 12.402468 0.001758
401.bzip2 0.419965 Low 11.487220 0.891355
vpr.60Bskip.100Mcomplete 0.421227 Low 17.706930 0.738427
436.cactusADM 0.464606 Low 7.305476 4.812732
456.hmmer 0.484417 Low 5.300028 2.729838
482.sphinx3 0.553152 High 16.235336 13.155198
471.omnetpp 0.561466 High 17.643306 16.776877
483.xalancbmk 0.569268 High 22.416194 16.545166
433.milc 0.604465 High 13.861983 13.859931
429.mcf 0.628157 High 101.490791 72.263515
ms 1 15 3 0.636264 High 9.972153 2.395367
459.GemsFDTD 0.648010 High 27.217091 27.102799
437.leslie3d 0.683358 High 20.432670 5.244858
tpcc 0.707561 High 28.604974 1.441570
473.astar 0.715480 High 7.403750 5.576512
450.soplex 0.718929 High 34.167689 26.794749
stream.100M 0.723571 High 35.717634 35.716793
xml trace 0.725859 High 31.989659 29.334220
462.libquantum 0.728699 High 32.274022 32.273665
ms 1 15 50 0.757180 High 19.429075 3.886776
470.lbm 0.853376 High 44.903540 27.191799
health.50Mskip.100M 0.854957 High 56.863482 50.829364
art.ref.train match.100M 0.868367 High 79.374168 15.745927
matlab3 0.895579 High 253.311321 112.464095
mcf.24Mskip.100M 0.914853 High 57.529701 5.930129

Table 2: Benchmark Classification

Second, if the network is highly contended, many network transactions may not see best case latency. As many
packets are traversing large distances across the network, they contend for links. Only one flit can traverse a particular
link at once; any other flits are blocked (given buffered routing) or deflected (bufferless routing), adding delays to their
round-trip time. The network overhead of this simple striping mechanism motivates the investigation of locality-aware
mechanisms.

4.3 Sharing Regions
Because striping blocks across all nodes in the network isn’t efficient for large network sizes, we also investigated
smaller regions of striping. Smaller regions benefit from shorter network distances, while still providing the ability
for applications to share space. By striping at a fixed size region, last level cache traffic becomes immune to the

9



SAFARI Technical Report No. 2011-004 (August 29, 2011)

distance-scaling concerns of global striping.
This method applies, in our system, to two different sub-region sizes, 2x2 and 4x4. These can be seen as midpoints

between the 8x8 global striping approach, and private caches (i.e. 1x1 striping). For brevity, however, we only present
data for 2x2 striping, which outperforms 4x4 in our evaluations.

These mapping regions can be achieved one of two ways - 1) different regions cache discrete portions of physical
memory, or 2) regions can exist as separate coherence domains. In 1), the OS allocates pages to each thread striped
across its home region. Discrete regions of the physical address space are mapped to each region, so they are automat-
ically coherent at the L2 level, as with a full striped mapping. In 2), regions can be thought of as separate caches each
able to contain its own copy of a cache block. For this reason, they would require a coherence substrate between them.

We choose method 1) for its simplicity, and depict this visually in Figure 6. Using this page based mechanism,
private caches are simply implemented by allocating from N free lists, one per node.

Th tradeoff between private and globally shared caches is highlighted in these intermediate approaches. Smaller
sharing grids offer less communication and less latency on a hit, but don’t exploit heterogeneous access patterns.
Smaller sharing regions can reduce hit rate if threads/applications that don’t well utilize their full local L2 cache space
can’t share that space to other cores.

Figure 6: Mapping of Physical Address Space to L2 Cache Slices

4.4 OS Level Page Allocation
OS-driven cache mapping was proposed in [3], where the operating system would allocate physical pages to an appli-
cation based upon the cache mapping of those pages. The operating system keeps a separate free page list of pages
per node, where each page’s physical address maps to the shared L2 space at the node. When allocating a region of
memory for a node, the OS uses the free page list associated with nearby nodes, ensuring that some data is placed in
shared space in nearby nodes.

This method benefits from simplicity, in that it doesn’t require any more hardware than that of neighborhood
sharing. However, the page-granularity allocations don’t necessarily track with the regional usage. We found difficulty
in evaluating this method in our simulations, as the time granularity we were using - millions of cycles - is not enough
to capture full application allocation behavior. We provide this method for comparison, though its results should not
be seen as best case.

4.5 Dynamic Spill Receive
Many of the previous mechanisms allow applications to share L2 space, but don’t provide any means for partitioning it.
The replacement policy is, in a sense, entirely in control of the shared space, and which application has what portion.

10



SAFARI Technical Report No. 2011-004 (August 29, 2011)

While the OS Level Page Mapping approach favors local placement of data, it still places applications equally. It is
still ignorant of the differences in cache utility different applications may have.

In [27], the authors propose Dynamic Spill Receive (DSR) as a method for distributing data amongst shared caches.
The mechanism is based on the idea of spiller and receiver caches. Some applications don’t fit in their private slices,
and would prefer to spill entries to other caches. Other applications don’t need their full local slices, and could improve
system performance by receiving the spills of others. Caches that spill store their evicted blocks in a receiver cache.
Spiller caches, because of this, will pollute the remote caches, but do so with blocks that are likely to receive hits later.

The paper details a mechanism that decides whether each individual L2 cache slice should be a spiller or receiver.
DSR does this by using specially mapped regions of the L2 cache that are statically allocated as spillers, and others as
receivers. These are called the training sets. Each cache keeps track of which of these regions - the spiller or receiver
regions - has a higher hit rate. Whichever has the higher hit rate determines the choice between spilling or receiving
for the rest of the cache. This is similar to set dueling as seen in other caching mechanisms[28], often for selecting a
replacement policy best suited to a particular workload.

The described implementation of DSR was designed for a set of caches sharing a bus to main memory. Cache
blocks that are spilled from one cache are randomly received by any available receiving cache. This means that a
spiller application could have its blocks in any other cache in the system. The shared system bus then made retrieving
a spilled block simple, since a broadcast for the block was just a single bus operation, which would have been required
in going to memory anyway.

4.6 Mesh Dynamic Spill Receive
In order to adapt this mechanism to a mesh network, we modified the method of selecting a receiver and finding a
spilled cache line greatly. Because broadcasts are costly both in terms of latency and network utilization, it is very
inefficient to have a broadcast for every miss in a spiller cache. By modifying the storing and searching policy, we
were able to greatly simplify the task of selecting a receiver node to store a block and to search through receivers.

First, we partitioned the network into regions, based on the simplifying assumption that imbalance between the
regions in utility would be outweighed by the benefits of the short intra-region distances. We evaluated region sizes
of 2x2, 4x4, and 8x8, the full network. Unlike in the bus-based system, where querying memory and all receivers can
be done simultaneously without additional complexity or communication cost, we optimized our design for shorter
communication paths.

We found empirically that 2x2 sub-regions were large enough to usually have a receiver node under-utilizing its
L2 cache. The major benefit of the 2x2 region was the shortening of critical path latencies. In our implementation,
a miss in a spiller cache must query a receiver cache before requesting the data from memory. While we could have
implemented a parallel request to memory and a receiver, it was our feeling that the additional complexity would
be prohibitive, and results were promising without this additional optimization. As one block maximum could be
considered a receiver for a spiller’s block, it adds one network hop to a single L2 cache slice for the evictions and
accesses of a spiller, illustrated in Figure 7.

We then made the decision that a spiller cache should only have to query one receiver for a given block to determine
if the block is still on-chip. We greatly simplify the problem of communication with this assumption, but must
additionally provide methods of predictably mapping a block to a given receiver, and balancing load between receivers.

We kept a cache of the receiver/spiller state of each region member in each cache, so that a given spiller node could
know with reasonable accuracy which of the other caches in the region were receivers. The spiller, when evicting a
block, would then iterate through the block number, trying to match a subsequence of the bits to a receiver’s member
ID. This process is illustrated in Figure 8. This mapping of block number to receiver is also applied when searching
for a block on a local L2 miss. The ramifications in coherence design are out of the scope of this report, though they
can be summarized by saying that the blocks stored in remote caches are always clean with respect to the rest of the
memory hierarchy. Writebacks happen upon spilling a line, so that the line may be evicted silently by a receiver.

4.7 Mapping Comparison
Mapping has two major effects in the system which shape its effect on performance. First, it affects the network
intensity of a workload by defining the distance travelled when sharing. Second, it defining the sharing patterns of
applications and thus affects L2 hit ratios. In Figures 9 and 10, we show the effects of mapping on workload IPC.
The mapping mechanisms show the same general trends with either baseline buffered or Bless routers. As mentioned

11



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Figure 7: Path of Memory Access for DSR Nodes

previously, the workloads are sorted in groups of eight, with the leftmost being least network intensive, and the right
being the most. Aggregate performance data is shown in Figure 11. The 0% point in this figure corresponds to the
baseline buffered router, with striped mapping. All other points are the average IPC improvements of other evaluated
schemes compared to baseline buffered routers with striped mapping across all workloads.

The naive striped mapping offers the worst performance, falling at least 7.7% in performance behind the other
mechanisms in buffered. In the bufferless network, with its lower network throughput, the effect is more pronounced
with the striped mapping falling 13.6% below the next lowest performer. We present the average network utilization,
which we define as the average portion of active links, in Figure 12.

The cross-chip requests inherent in striped mapping require much larger numbers of traversals. This increase
in traffic strains the network, running it at much closer to maximum capacity than any other mapping, a problem
exacerbated by the deflections of the Bless router. The gap between the routers is widest here because the Bless
network’s deflections are worse in congested networks. It is worth noting that although the networks appear to be
running far from maximum utilization, this does not account for heterogeneity in link utilization. We have observed
that the central links in both the buffered and bufferless networks are significantly more congested than the average.
As shown in Figure 13, the L2 hit ratio in the striped case is better than most others, but this does not overcome the
network as a bottleneck.

The private mapping has very similar performance in both the Buffered and Bless, largely due to two things. First
its aggregate hit ratio is worse than any other mapping, shown in Figure 13. This comes from the lack of sharing as
discussed previously in this section. The low hit rate, in turn, causes the private mapped system to experience more
memory access and queueing delays. The other major component to the similarity in performance is the lack of remote
L2 accesses. Even though many requests must traverse the network to access a memory controller, the memory access
delays far outweigh the networking delays, and the requests spend a smaller portion of time in the network, congesting
it less than in other mechanisms. No requests that hit in the L2 utilize the network at all. The result of this low network
utilization is that the routers are very lightly loaded, and not nearly the bottleneck they are with other mappings. The
Bless network comes within 0.3% of the performance of the Buffered network with the private L2 cache mapping.

2x2 region mapping performs well, but shows significant differences between buffered and bufferless networks.

12



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Figure 8: Selection of a Receiver Node

Though the network utilization rates are shown to be significantly lower than the striped mapping, they are still highest
amongst the remaining mapping scheme. On top of this, our region mapping scheme puts a much heavier use on the
links used for intra-region communication. Deflection rates show that although the network utilization is roughly half
of the striped mapping, the deflection in the bufferless implementation is much closer. Because the network intensity on
these intra-region links is high, the bufferless router suffers 2.5% performance loss compared to the buffered baseline.

The OS Page Spilling mechanism provides lower performance in our evaluations than most other mechanisms,
including the private mapping. We believe that this may arise from a discrepancy between the aggressiveness of
the memory and network compared to the implementation and system devised in [3], as well as the duration of our
simulations. Unfortunately, the tens of millions of cycles we use in our simulations are not enough to show real, long
term allocation behavior in an application. We omit the OS Page Spilling results in further sections of our study for
this reason.

DSR provides the best performance in both the buffered and bufferless cases, showing a larger performance im-
provement relative to striped mapping in the bufferless case. In buffered, its network utilization is almost exactly
as low as that of private mapping, 13.4%. In the bufferless network, the network utilization is higher than private,
but does not suffer as much in the Aggregate L2 Hit Ratio. Though spillers often need to query region members for
blocks, the increase in L2 Hit Ratio that this affords compensates for the additional traffic. The DSR mapping provides
13.1% improvement with a buffered network, and 10.3% improvement with a Bless network compared to the baseline
Buffered with Striped mapping. Thus, with DSR mapping, the performance gap between the bufferless and buffered
network are significantly smaller than that with a naive striped mapping. We conclude that intelligent data mapping
strategies in caches and memory controllers can lead to the network to become less of a bottleneck and can more easily
enable cheaper, lower-throughput network implementations.

For the next sections, we continue our evaluations with three mapping mechanisms. We include the striped map-
ping to serve as a baseline, as it is the mapping used by much of previous work. We include the newly proposed DSR
mapping as it performs the best of all evaluated mappings. We also include the 2x2 region mapping, which performs
second best on the baseline Buffered network.

From the reduction in network strain afforded by the more efficient mapping mechanisms, we have shown the
performance improvement of both the Buffered and Bufferless systems. With the baseline striped mapping, the sys-
tem with the Bless network was running at 94.0% the performance of the Buffered system. With the best mapping
mechanism applied, and even though the system with the Buffered network improved greatly, that gap narrowed. The
Bless router, with DSR in 2x2 regions mapping performs at 97.5% the performance of the Buffered router using the
same mapping. The DSR mapping reduces the network strain which eases the job of both routers, and allows the Bless

13



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Figure 9: Mapping Effect on Per-Node IPC in Buffered Network

Figure 10: Mapping Effect on Per-Node IPC in Bufferless Network

router to perform very close to the buffered router. We conclude that the performance of bufferless routers become
very competitive with that of buffered routers with intelligent data mapping mechanisms.

5 Prioritization
Because the links in a network are a contended resource, routers must make decisions about which packet traverses
which link.

When multiple packets in a router contend in a given cycle, the router chooses which packet to prefer, or prioritize.
In buffered routers, this is most often done through round-robin assignment of packets to output ports. Each input
buffer takes a turn at reserving the crossbar in sequence. All input buffers and packets are treated equally by this
arbitration, even though imbalance in the output and input queueing and blocking may occur.

Prioritization is the use of preference in packet/flit arbitration. Simple prioritization mechanisms would be similar
to Oldest first - prioritizing the packet that has been in the network longest, or Closest First - preferring the packets
that are closest to their destination. These simple modifications to packet routing can have major effects on network
performance. Different types of packets may be treated differently, or certain applications can be prioritized over

14



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Figure 11: Mapping Performance (Normalized to Buffered Striped)

Figure 12: Mapping Network Utilization

others.

5.1 Bufferless Arbitration
Bufferless deflection networks suffer from a potential failure known as Livelock. While buffered routers must be
designed to avoid deadlock through circular backpressure dependencies, bufferless routers don’t exert backpressure,
and instead allow packets to greedily move about the network where space is available. The problem lies in the fact
that packets may be deflected, and move in a direction that is counter productive. In a heavily contended bufferless
network, these deflections can lead to high variance in latency. Whereas round robin coupled with backpressure
guarantees that each packet will eventually get the opportunity to move, bufferless routing must provide other ways to
make this guarantee.

In BLESS, the authors experiment with different prioritization mechanisms such as Oldest First, Closest First,
Furthest First, and others. One of the reasons that the authors finally decided upon Oldest First was that it guaranteed
a total priority ordering of all packets in the network. On the entire network scale, the highest priority packet would
be naturally directed quickly to its desired point of ejection. At the same time, each packet would eventually become
the oldest, as each packet older would be prioritized, and leave the network. The authors used this inductive proof to
guarantee that Livelock was impossible in the Bless network.

15



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Figure 13: Mapping Aggregate L2 Hit Ratio

The other arbitration/prioritization mechanisms tried suffered from adding too much variance to arrival times,
and ended up not offering performance improvements. CHIPPER attempted to go a different route, sacrificing the
costly sorting and arbitration logic to provide minimalist Livelock freedom with Golden Packet. Performance suffered
further, however, as the latency distribution narrowing effects of age-based arbitration were gone.

5.2 Prioritization for Performance
Recently, mechanisms have been proposed for network prioritization with the goal of improving system performance[5,
6]. In network port arbitration, different packets can be treated differently to try and increase the overall throughput
of the system. Memory (or network) level parallelism inherent in modern systems means delays for different requests
may affect execution time differently.

The delay of some request by a cycle may not stall it’s application for a cycle, as it may not be on the critical path.
Similarly, prioritizing a packet to make it arrive faster will only benefit the system if it was going to stall the processor.
It is simple to know in a simulator which packet is stalling the processor, but in the real world CMPs are naturally
distributed systems. Knowing the optimal packet prioritization is difficult because it depends strongly on workload
and benchmark behaviors, as well as cache, memory, and network state. As a general rule though, known latency
sensitive packets that are likely to directly affect the execution time of an application should be prioritized.

5.3 Application Awareness
In [5], the authors propose Stall Time Criticality (STC), where individual applications are prioritized based on the
utility they get from the network. Packets that are most likely to stall their core if delayed are prioritized foremost.
This has the affect of deprioritizing intensive, memory-parallel applications. Those applications that most frequently
stall on a given memory request are given free reign on the network bandwidth. Because they, in effect, no longer
contend with intense applications, their packets move through the network faster, stalling less frequently.

In their evaluation, the authors of [5] evaluate one network configuration. It has buffered, virtual channel routers
as in our baseline, as well as a striped L2 cache.

We built a version of the STC prioritization mechanism in our simulator that works with Bufferless as well as
Buffered routers. This requires swapping out the Oldest First ranking logic for STC based ranking, but does not
require anything beyond the Buffered implementation to work in a Bless router. We use 8 application ranks, with 8
injection buffers as the original evaluation did.

5.4 Prioritization Comparison
In Figure 14, we present the performance results of our evaluation of STC in both Buffered and Bless routers, with the
baseline Striped mapping. We do this to validate our implementation against that of the original STC proposal. We

16



SAFARI Technical Report No. 2011-004 (August 29, 2011)

observe, however, that our system sees less benefit from the STC ranking mechanism than the results reported in [5],
only 2.3% in Buffered and 4.4% in Bless. The performance aggregate values are shown in Figure 15.

Figure 14: Prioritization in Buffered and Bufferless Networks

Figure 15: Overall Performance of Prioritization

In the 50% network intense workloads, these numbers increase to 6.9% and 4.7%, but are still lower than expected.
We believe that this is largely a factor of workload selection and system and memory configuration. It can be seen
in Figure 16 that STC does decrease the network intensity of workloads on average, which is part of what gives it
the increased performance. This comes from prioritizing the applications with infrequent, critical requests, effectively
throttling back the more intensive traffic composed of less-critical packets.

6 Combined Evaluation with Mapping and Prioritization
In Figure 17, we present performance results of the system with network prioritization, comparing the effects of router
design and mapping. Each of the systems shown uses the STC implementation discussed in the last section, with
different mappings. The results are given as percent improvement over the baseline system - buffered Routing with
naive L2 cache Striping.

17



SAFARI Technical Report No. 2011-004 (August 29, 2011)

Figure 16: Effect of Prioritization on Network Utilization

The DSR mapping produced the best results again, now alongside STC prioritization. The two mechanisms com-
plimented each other poorly in the buffered network, where the 13.1% gain of DSR is complemented only slightly
by STC to a 13.3% improvement over baseline. The bufferless network similarly shows negligible improvement by
the combination of the two methods. The DSR mapping alone gives the bufferless network a 10.3% increase over the
buffered, Striped baseline. With STC as well, it only rises to 10.4%. This does not strongly motivate the use of STC
for this system, since it comes with additional hardware costs such as ranking logic and injection port separation. The
reduction of network traffic and congestion from the new mapping mechanism gives STC few opportunities to push
critical packets ahead of others, and thus doesn’t allow it to contribute greatly to performance. The rest of our results
are from evaluations without STC, as we found that the negligible benefits did not overcome the additional complexity
required.

Figure 17: Performance of Mapping Mechanisms on Top of STC Prioritization

6.1 Power and Energy Efficiency
To compare the alternate designs on the merits of energy efficiency, we use the power and area modeling infrastructure
from [7]. This infrastructure uses ORION[30] to provide data for the baseline buffered system, and custom RTL
(Verilog) models of the Bless router. We use event counters in our simulator for traversals, buffer loads and stores,
and similar relevant network events. We use values from these counters along with estimations of per-event energy

18



SAFARI Technical Report No. 2011-004 (August 29, 2011)

consumption from our models to generate the final power numbers.

Figure 18: System Power Consumption

Figure 18 shows the power consumption of the six final configurations. When confined to the baseline Striped
mapping, we see a 34.2% decrease in network power from the Bless router. This is fairly close to the 40% power
reduction presented in [22]. When DSR mapping is used with both routers, that power gap increases to a 56.6%
decrease in power consumption from the bufferless system.

This is because DSR reduces the network load by requires fewer communications, and fewer hops per transaction
on average. While this significantly reduces the dynamic power consumed in both the buffered and Bless cases, the
Static power is unaffected. Static power consumption is reduced by 80% in the Bless design through removal of
buffers, and thus defines the minimum power consumption to be much lower. We conclude that Bufferless routing
becomes significantly more effective in reducing network power when locality-aware data mapping mechanisms are
used.

7 Conclusion
In this work, we have presented an evaluation of L2 Cache mapping mechanisms, NoC prioritization, and the tradeoffs
involved between buffered and bufferless routing. We described an extension to the Dynamic Spill Receive mechanism
[27] for mesh networks on chip, and found that this simple extension allowed for 13.1% improvements to performance
in buffered networks and 10.3% in bufferless, compared to a baseline buffered network with naive striped data mapping
of cache blocks to cache slices. We also showed that our adaptation of DSR enables the bufferless router to reduce
network power consumption by 56.6% compared to a buffered router, greater than what can be achieved with the naive
striped mapping. Evaluating prioritization alongside mapping showed that the decreased network intensity left little
opportunity for the evaluated prioritization mechanism to improve performance.

Our key conclusions are as follows:
1. With intelligent, locality aware mapping of data to on-chip cache slices, bufferless network performance can get

very close to buffered network performance. This is because locality aware data mapping reduces network utilization,
making lower-thoughput networks potentially more effective, and reduces the negative effects deflections can have on
performance in bufferless networks.

2. Intelligent, locality aware data mapping also significantly increases the network power advantage of bufferless
routers over buffered ones, for the same reasons as above.

3. Intelligent packet prioritization mechanisms can improve the performance of both buffered and bufferless net-
works, but their benefit is not as pronounced when intelligent locality-aware data mapping is employed because con-
tention reduces with such mapping.

19



SAFARI Technical Report No. 2011-004 (August 29, 2011)

8 Acknowledgements
We gratefully acknowledge members of the SAFARI research group, in particular Chris Fallin, Rachata Ausavarung-
nirun, and Kevin Chang, for many insightful discussions on this and related work. We also acknowledge the financial
and equipment support of Gigascale Systems Research Center, NSF, AMD, Intel, and CMU CyLab.

References
[1] S. Borkar. Thousand core chips: a technology perspective. In Proceedings of the 44th annual Design Automation Conference,

DAC ’07, New York, NY, USA, 2007. ACM.

[2] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. International Symposium on Computer Architecture,
0:264–276, 2006.

[3] S. Cho and L. Jin. Managing distributed, shared l2 caches through os-level page allocation. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 39, pages 455–468, Washington, DC, USA, 2006. IEEE
Computer Society.

[4] W. J. Dally. Virtual-channel flow control. In Proceedings of the 17th annual International Symposium on Computer Architec-
ture, ISCA ’90, pages 60–68, New York, NY, USA, 1990. ACM.

[5] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Application-aware prioritization mechanisms for on-chip networks. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, New York, NY,
USA, 2009. ACM.

[6] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Aergia: exploiting packet latency slack in on-chip networks. In Proceedings
of the 37th annual international symposium on Computer architecture, ISCA ’10, New York, NY, USA, 2010. ACM.

[7] C. Fallin, C. Craik, and O. Mutlu. CHIPPER: A low-complexity bufferless deflection router. In High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on, February 2011.

[8] C. Gomez, M. Gomez, P. Lopez, and J. Duato. Reducing packet dropping in a bufferless noc. In E. Luque, T. Margalef, and
D. Benitez, editors, Euro-Par 2008 Parallel Processing, Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2008.

[9] P. Gratz, C. Kim, R. Mcdonald, S. W. Keckler, and D. Burger. Implementation and evaluation of on-chip network architectures.
In in Proc. Int. Conf. Comput. Des, 2006.

[10] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive nuca: near-optimal block placement and replication in
distributed caches. In Proceedings of the 36th Annual International Symposium on Computer Architecture, ISCA ’09, pages
184–195, New York, NY, USA, 2009. ACM.

[11] M. Hayenga, N. E. Jerger, and M. Lipasti. Scarab: a single cycle adaptive routing and bufferless network. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, New York, NY, USA, 2009. ACM.

[12] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-ghz mesh interconnect for a teraflops processor. IEEE Micro,
27, September 2007.

[13] Intel Corporation. The single-chip cloud computer. 2010.

[14] S. A. R. Jafri, Y.-J. Hong, M. Thottethodi, and T. N. Vijaykumar. Adaptive flow control for robust performance and energy. In
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, Washington,
DC, USA, 2010. IEEE Computer Society.

[15] J. Kim. Low-cost router microarchitecture for on-chip networks. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages 255–266, New York, NY, USA, 2009. ACM.

[16] A. K. Kodi, A. Sarathy, and A. Louri. ideal: Inter-router dual-function energy and area-efficient links for network-on-chip
(noc) architectures. In Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA ’08, pages
241–250, Washington, DC, USA, 2008. IEEE Computer Society.

[17] W. K.Zuravleff and T. Robinson. Controller for a synchronous dram that maximizes throughput by allowing memory requests
and commands to be issued out of order, May 1997.

[18] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA Highly Scalable Server. In Proceedings of the 24th annual Interna-
tional Symposium on Computer Architecture, ISCA, New York, NY, USA, 1997. ACM.

[19] H. Lee, S. Cho, and B. Childers. Cloudcache: Expanding and shrinking private caches. In High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on, 2011.

20



SAFARI Technical Report No. 2011-004 (August 29, 2011)

[20] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis. Evaluating bufferless flow control for on-chip networks.
volume 0, pages 9–16, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[21] Micron. DDR3 SDRAM MT41J256M Data Sheet. [Online]. Available: http://www.micron.com/get-
document/?documentId=425&file=1Gb DDR3 SDRAM.pdf.

[22] T. Moscibroda and O. Mutlu. A Case for Bufferless Routing in On-Chip Networks. In Proceedings of the 36th annual
International Symposium on Computer Architecture, ISCA-36, New York, NY, USA, June 2009. ACM.

[23] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a single-chip multiprocessor. In Pro-
ceedings of the seventh international conference on Architectural support for programming languages and operating systems,
ASPLOS-VII, pages 2–11, New York, NY, USA, 1996. ACM.

[24] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W. Keckler, and L.-S. Peh. Research challenges for on-chip intercon-
nection networks. IEEE Micro, 27, September 2007.

[25] J. D. Owens, P. Mattson, U. J. Kapasi, W. J. Dally, and S. Rixner. Memory access scheduling. volume 0, page 128, Los
Alamitos, CA, USA, 2000. IEEE Computer Society.

[26] H. Patil, R. Cohn, M. Charney, R. Kapoor, and A. Sun. Pinpointing representative portions of large intel itanium programs
with dynamic instrumentation. In In International Symposium on Microarchitecture, pages 81–92. IEEE Computer Society,
2004.

[27] M. Qureshi. Adaptive spill-receive for robust high-performance caching in cmps. In High Performance Computer Architec-
ture, 2009. HPCA 2009. IEEE 15th International Symposium on, feb. 2009.

[28] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive insertion policies for high performance caching. In
Proceedings of the 34th annual International Symposium on Computer Architecture, ISCA ’07, New York, NY, USA, 2007.
ACM.

[29] Tilera Corporation. Tile Processor Architecture Overview, 2009.

[30] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power-performance simulator for interconnection networks. Microar-
chitecture, IEEE/ACM International Symposium on, 0:294, 2002.

21


