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Nanopore Sequencing

o Comprehensively analyze the multiple steps and the associated state-of-

the-art tools in genome assembly pipelines using nanopore sequence data

in terms of accuracy, performance, memory usage, and scalability.

o Reveal bottlenecks and trade-offs that different combinations of tools

lead to.

o Provide guidelines for both practitioners, such that they can determine

the appropriate tools and tool combinations that can satisfy their goals,

and tool developers, such that they can make design choices to improve

current and future tools.

Nanopore sequencing is an emerging and a promising single-molecule

DNA sequencing technology.

Nanopore is a nano-scale hole. In

nanopore sequencers, an ionic current
passes through the nanopores. When

the DNA strand passes through the

nanopore, the sequencer measures the

change in current. This change is used to identify the bases in the

strand with the help of different electrochemical structures of the

different bases.
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Metrichor + Canu
– –

– – 44:12:31 5.76 1 98.05 99.92

Metrichor + Minimap + Miniasm 2:15 12.30 00:01:09 1.96 1 87.71 94.85

Metrichor + GraphMap + Miniasm 6:14 56.58 00:01:05 1.82 2 86.22 96.95

Nanonet + Canu
17:52:42 1.89

– – 11:32:40 5.27 1 97.92 99.97

Nanonet + Minimap + Miniasm 1:13 9.45 00:00:33 0.69 1 85.50 92.76

Nanonet + GraphMap + Miniasm 3:18 29.16 00:00:32 0.65 1 85.36 91.16

Scrappie + Canu
03:11:41 13.36

– – 33:47:41 5.75 1 98.46 99.90

Scrappie + Minimap + Miniasm 2:52 12.40 00:01:29 1.98 8 86.94 90.04

Scrappie + GraphMap + Miniasm 7:26 38.31 00:01:23 1.87 1 86.78 89.86

Nanocall + Canu
47:04:53 37.73

– – 01:35:23 3.77 86 93.33 28.93

Nanocall + Minimap + Miniasm 1:15 12.19 00:00:20 0.47 5 80.52 42.92

Nanocall + GraphMap + Miniasm 5:14 56.78 00:00:16 0.30 3 80.51 41.32

DeepNano + Canu
23:54:34 8.38

– – 01:15:48 3.61 106 92.75 99.16

DeepNano + Minimap + Miniasm 1:50 11.71 00:01:03 1.31 1 82.38 65.00

DeepNano + GraphMap + Miniasm 5:18 54.64 00:00:58 1.10 1 82.39 64.92

OBSERVATION 6: There is a trade-off between accuracy and 
performance when deciding on the appropriate tool for the assembly 

step. Canu provides higher accuracy than Miniasm, with the help of 

the error-correction step that is present in its own pipeline. However, 

Canu is much more computationally intensive and greatly slower (i.e., 

by 1096.3x) than Miniasm. 

Miniasm is suitable for fast initial analysis, and the quality of its 

assembly can be increased with an additional polishing step.

OBSERVATION 8: Both Nanopolish and Racon significantly increase 
the accuracy of the draft assemblies. However, Nanopolish is 

computationally much more intensive and greatly slower than Racon.
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Advantages Challenges
o Does not require nucleotide labeling

for detection during sequencing,

o Relies on the electronic or chemical

structure of the different nucleotides

for identification,

o Allows generating very long reads,

and

o Provides portability, low cost, and

high throughput.

o One major drawback: high error rates
o Nanopore sequence analysis tools need to:

§ overcome high error rates, and

§ take better advantage of the technology

o Faster tools are critically needed to:

§ take better advantage of the real-time
data production capability of MinION,

and

§ enable fast, real-time data analysis

Our Goal Nanopore Genome Assembly Pipeline 

Results and Analysis
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Minimap vs. GraphMap @big-mem 

Minimap GraphMap
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OBSERVATION 1: The choice of the 

tool for the basecalling step plays an 
important role to overcome the high 
error rates of nanopore sequencing 

technology. Basecalling with RNNs 
(e.g., Metrichor, Nanonet, Scrappie) 

provides higher accuracy and higher 
speed than basecalling with HMMs.
Also, the newest basecaller of ONT, 

Scrappie, has the potential to 

overcome the homopolymer 
basecalling problem.

OBSERVATION 2: Scrappie and 

Nanocall have a linear increase in 
memory usage when number of 

threads increases. In contrast, 

Nanonet has a constant memory 
usage for all evaluated thread units.

OBSERVATION 3: When the number 

of threads exceeds the number of 

physical cores, the simultaneous 
multithreading (SMT) overhead 

prevents continued linear speedup of 

Nanonet, Scrappie and Nanocall.

OBSERVATION 4: Using 

minimizers instead of all k-

mers, as done by Minimap, 

does not affect the overall 
accuracy of the first three 

steps of the pipeline. 

OBSERVATION 5: By storing 

minimizers, Minimap has a 

much lower memory usage 
and thus much higher 

performance than GraphMap.

OBSERVATION 7: The choice of BWA-MEM and Minimap for the read 

mapping step does not affect the accuracy of the polishing step. 

However, BWA-MEM is computationally more expensive than 

Minimap.

For more results, analysis and recommendations, please refer to:  
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