
Nanopore Sequencing Technology and Tools for Genome Assembly:
Computational Analysis of the Current State, Bottlenecks and Future Directions

Damla Senol Cali1, Jeremie S. Kim1,3, Saugata Ghose1, Can Alkan2 and Onur Mutlu3,1

Nanopore Sequencing

o Comprehensively analyze the multiple steps and the associated state-of-

the-art tools in genome assembly pipelines using nanopore sequence data

in terms of accuracy, performance, memory usage, and scalability.

o Reveal bottlenecks and trade-offs that different combinations of tools

lead to.

o Provide guidelines for both practitioners, such that they can determine

the appropriate tools and tool combinations that can satisfy their goals,

and tool developers, such that they can make design choices to improve

current and future tools.

Nanopore sequencing is an emerging and a promising single-molecule

DNA sequencing technology.

Nanopore is a nano-scale hole. In

nanopore sequencers, an ionic current
passes through the nanopores. When

the DNA strand passes through the

nanopore, the sequencer measures the

change in current. This change is used to identify the bases in the

strand with the help of different electrochemical structures of the

different bases.

Step 1
Wall Clock

Time (h:m:s)

Step 1
Memory

Usage (GB)

Step 2
Wall Clock

Time (h:m:s)

Step 2
Memory

Usage (GB)

Step 3
Wall Clock

Time (h:m:s)

Step 3
Memory

Usage (GB)

Number of
Contigs

Identity
(%)

Coverage
(%)

Metrichor + Canu
– –

– – 44:12:31 5.76 1 98.05 99.92

Metrichor + Minimap + Miniasm 2:15 12.30 00:01:09 1.96 1 87.71 94.85

Metrichor + GraphMap + Miniasm 6:14 56.58 00:01:05 1.82 2 86.22 96.95

Nanonet + Canu
17:52:42 1.89

– – 11:32:40 5.27 1 97.92 99.97

Nanonet + Minimap + Miniasm 1:13 9.45 00:00:33 0.69 1 85.50 92.76

Nanonet + GraphMap + Miniasm 3:18 29.16 00:00:32 0.65 1 85.36 91.16

Scrappie + Canu
03:11:41 13.36

– – 33:47:41 5.75 1 98.46 99.90

Scrappie + Minimap + Miniasm 2:52 12.40 00:01:29 1.98 8 86.94 90.04

Scrappie + GraphMap + Miniasm 7:26 38.31 00:01:23 1.87 1 86.78 89.86

Nanocall + Canu
47:04:53 37.73

– – 01:35:23 3.77 86 93.33 28.93

Nanocall + Minimap + Miniasm 1:15 12.19 00:00:20 0.47 5 80.52 42.92

Nanocall + GraphMap + Miniasm 5:14 56.78 00:00:16 0.30 3 80.51 41.32

DeepNano + Canu
23:54:34 8.38

– – 01:15:48 3.61 106 92.75 99.16

DeepNano + Minimap + Miniasm 1:50 11.71 00:01:03 1.31 1 82.38 65.00

DeepNano + GraphMap + Miniasm 5:18 54.64 00:00:58 1.10 1 82.39 64.92

OBSERVATION 6: There is a trade-off between accuracy and
performance when deciding on the appropriate tool for the assembly

step. Canu provides higher accuracy than Miniasm, with the help of

the error-correction step that is present in its own pipeline. However,

Canu is much more computationally intensive and greatly slower (i.e.,

by 1096.3x) than Miniasm.

Miniasm is suitable for fast initial analysis, and the quality of its

assembly can be increased with an additional polishing step.

OBSERVATION 8: Both Nanopolish and Racon significantly increase
the accuracy of the draft assemblies. However, Nanopolish is

computationally much more intensive and greatly slower than Racon.

1 Carnegie Mellon University, Pittsburgh, PA, USA 2 Bilkent University, Ankara, Turkey 3 ETH Zürich, Zürich, Switzerland

Advantages Challenges
o Does not require nucleotide labeling

for detection during sequencing,

o Relies on the electronic or chemical

structure of the different nucleotides

for identification,

o Allows generating very long reads,

and

o Provides portability, low cost, and

high throughput.

o One major drawback: high error rates
o Nanopore sequence analysis tools need to:

§ overcome high error rates, and

§ take better advantage of the technology

o Faster tools are critically needed to:

§ take better advantage of the real-time
data production capability of MinION,

and

§ enable fast, real-time data analysis

Our Goal Nanopore Genome Assembly Pipeline

Results and Analysis

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8

W
al

l C
lo

ck
 T

im
e

(s
ec

)

Number of Threads

Nanocall vs. Nanonet vs. Scrappie @desktop

nanocall nanonet scrappie

0

2

4

6

8

10

12

14

16

0 2 4 6 8

P
ea

k
M

em
o

ry
 U

sa
g

e
(G

B
)

Number of Threads

Nanocall vs. Nanonet vs. Scrappie @desktop

nanocall nanonet scrappie

0

1

2

3

4

5

0 2 4 6 8

P
ar

al
le

l S
pe

ed
up

Number of Threads

Nanocall vs. Nanonet vs. Scrappie @desktop

nanocall nanonet scrappie

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8

W
al

l C
lo

ck
 T

im
e

(s
ec

)

Number of Threads

Nanocall vs. Nanonet vs. Scrappie @desktop

Nanocall Nanonet Scrappie

0

2

4

6

8

10

12

14

0 20 40 60 80

P
ar

al
le

l S
pe

ed
up

Number of Threads

Minimap vs. GraphMap @big-mem

Minimap GraphMap

0

10

20

30

40

50

60

0 20 40 60 80

Pe
ak

 M
em

or
y

U
sa

ge
 (G

B
)

Number of Threads

Minimap vs. GraphMap@big-mem

minimap graphmap

4.6x

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80

W
al

l C
lo

ck
 T

im
e

(s
ec

)

Number of Threads

Minimap vs. GraphMap @big-mem

minimap graphmap

2.5x

OBSERVATION 1: The choice of the

tool for the basecalling step plays an
important role to overcome the high
error rates of nanopore sequencing

technology. Basecalling with RNNs
(e.g., Metrichor, Nanonet, Scrappie)

provides higher accuracy and higher
speed than basecalling with HMMs.
Also, the newest basecaller of ONT,

Scrappie, has the potential to

overcome the homopolymer
basecalling problem.

OBSERVATION 2: Scrappie and

Nanocall have a linear increase in
memory usage when number of

threads increases. In contrast,

Nanonet has a constant memory
usage for all evaluated thread units.

OBSERVATION 3: When the number

of threads exceeds the number of

physical cores, the simultaneous
multithreading (SMT) overhead

prevents continued linear speedup of

Nanonet, Scrappie and Nanocall.

OBSERVATION 4: Using

minimizers instead of all k-

mers, as done by Minimap,

does not affect the overall
accuracy of the first three

steps of the pipeline.

OBSERVATION 5: By storing

minimizers, Minimap has a

much lower memory usage
and thus much higher

performance than GraphMap.

OBSERVATION 7: The choice of BWA-MEM and Minimap for the read

mapping step does not affect the accuracy of the polishing step.

However, BWA-MEM is computationally more expensive than

Minimap.

For more results, analysis and recommendations, please refer to:

BiB version arXiv version

Contact: Damla Senol Cali,

dsenol@andrew.cmu.edu

