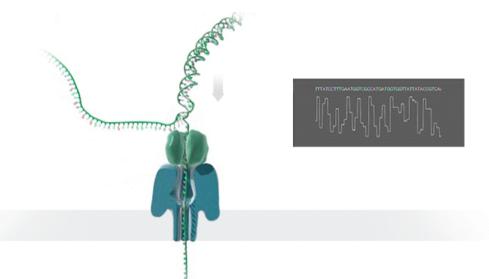
Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions

Damla Senol Cali¹, Jeremie S. Kim^{1,3}, Saugata Ghose¹, Can Alkan² and Onur Mutlu^{3,1}

¹Carnegie Mellon University, Pittsburgh, PA, USA ² Bilkent University, Ankara, Turkey ³ ETH Zürich, Zürich, Switzerland



Nanopore Sequencing

Nanopore sequencing is an emerging and a promising single-molecule DNA sequencing technology.

Nanopore is a nano-scale hole. In nanopore sequencers, an ionic current passes through the nanopores. When the DNA strand passes through the nanopore, the sequencer measures the

change in current. This change is used to identify the bases in the

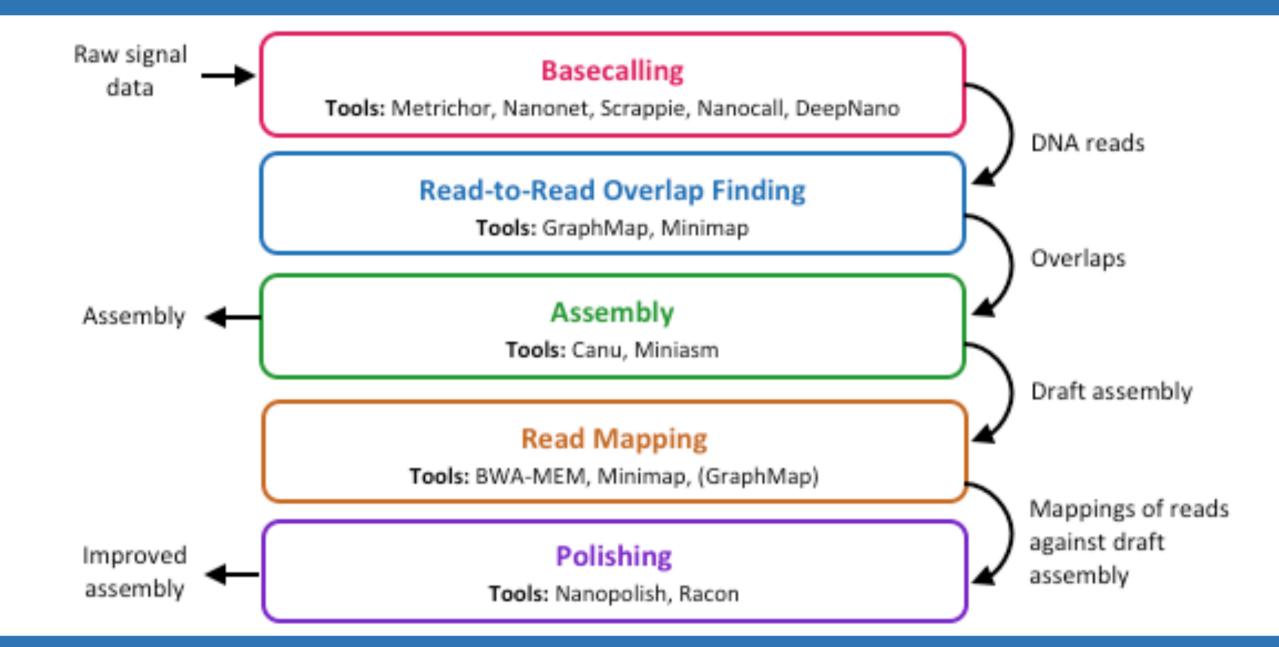
Advantages

- Does *not* require nucleotide labeling for detection during sequencing,
- Relies on the electronic or chemical structure of the different nucleotides for identification,
- Allows generating very long reads, and
- Provides portability, low cost, and

Challenges

- One major drawback: high error rates
- Nanopore sequence analysis tools need to:
 - overcome high error rates, and
 - take better advantage of the technology
- Faster tools are critically needed to:
 - take better advantage of the real-time data production capability of MinION, and

strand with the help of **different electrochemical structures** of the different bases.

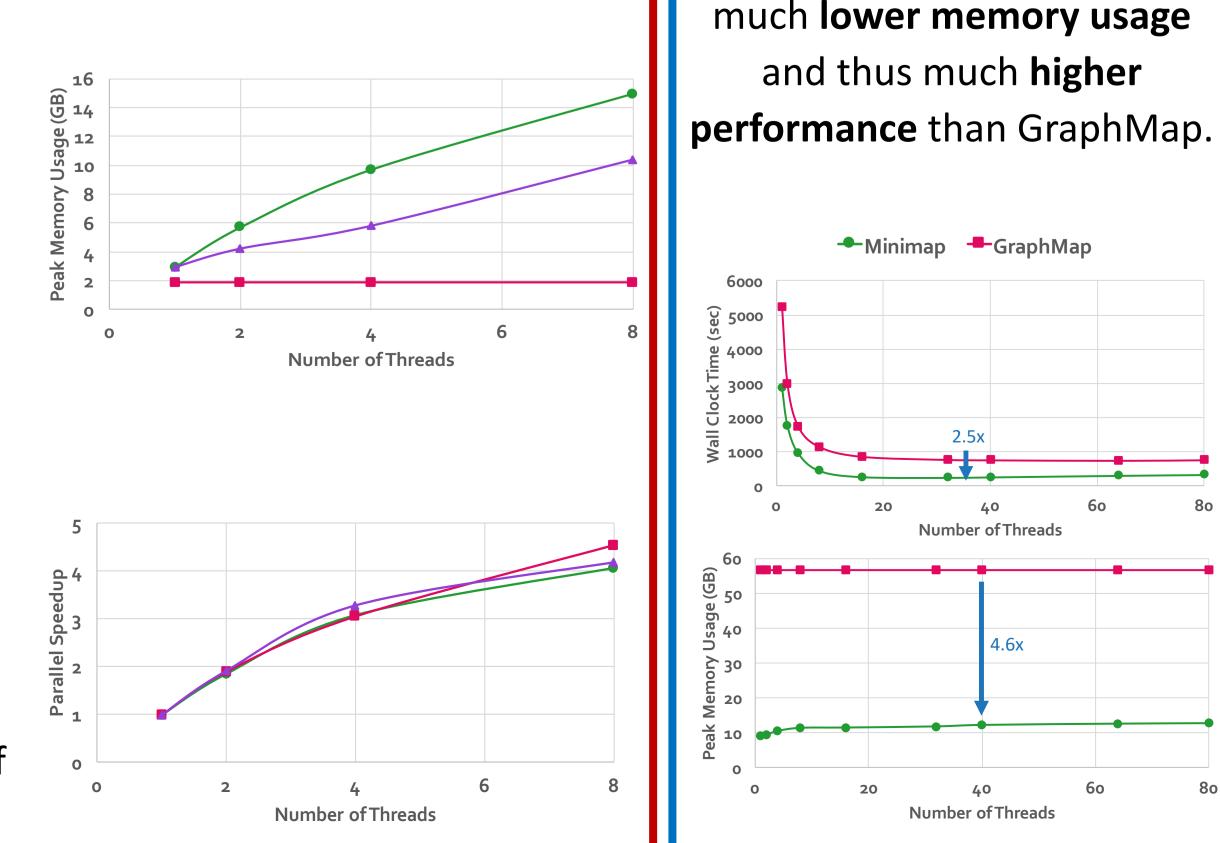

high throughput.

enable fast, real-time data analysis

Our Goal

- Comprehensively analyze the multiple steps and the associated state-ofthe-art tools in genome assembly pipelines using nanopore sequence data in terms of accuracy, performance, memory usage, and scalability.
- Reveal bottlenecks and trade-offs that different combinations of tools lead to.
- Provide guidelines for both practitioners, such that they can determine the appropriate tools and tool combinations that can satisfy their goals, and tool developers, such that they can make design choices to improve current and future tools.

Nanopore Genome Assembly Pipeline


Results and Analysis

	Step 1 Wall Clock	Step 1	Step 2	Step 2	Step 3	Step 3	Number of	Identity	Coverage
		Memory	Wall Clock	all Clock Memory Wall Clo	Wall Clock	Memory Contigs	(%)	(%)	
	Time (h:m:s)	Usage (GB)	Time (h:m:s)	Usage (GB)	Time (h:m:s)	Usage (GB)	00110185	(70)	(70)
Metrichor + Canu			_	—	44:12:31	5.76	1	98.05	99.92
Metrichor + Minimap + Miniasm			2:15	12.30	00:01:09	1.96	1	87.71	94.85
Metrichor + GraphMap + Miniasm			6:14	56.58	00:01:05	1.82	2	86.22	96.95
Nanonet + Canu	17:52:42	1.89	_	_	11:32:40	5.27	1	97.92	99.97
Nanonet + Minimap + Miniasm			1:13	9.45	00:00:33	0.69	1	85.50	92.76
Nanonet + GraphMap + Miniasm			3:18	29.16	00:00:32	0.65	1	85.36	91.16
Scrappie + Canu	03:11:41	13.36	_	—	33:47:41	5.75	1	98.46	99.90
Scrappie + Minimap + Miniasm			2:52	12.40	00:01:29	1.98	8	86.94	90.04
Scrappie + GraphMap + Miniasm			7:26	38.31	00:01:23	1.87	1	86.78	89.86
Nanocall + Canu	47:04:53	37.73	—	—	01:35:23	3.77	86	93.33	28.93
Nanocall + Minimap + Miniasm			1:15	12.19	00:00:20	0.47	5	80.52	42.92
Nanocall + GraphMap + Miniasm			5:14	56.78	00:00:16	0.30	3	80.51	41.32
DeepNano + Canu	23:54:34	8.38	—	—	01:15:48	3.61	106	92.75	99.16
DeepNano + Minimap + Miniasm			1:50	11.71	00:01:03	1.31	1	82.38	65.00
DeepNano + GraphMap + Miniasm			5:18	54.64	00:00:58	1.10	1	82.39	64.92
OBSERVATION 1: The choice of the	NanocallNanonetScrappie		OBSERVA	TION 4: Using	OBSE	OBSERVATION 6: There is a trade-off between accuracy and			
tool for the basecalling step plays an			minimizers	minimizers instead of all k- performance when deciding on the appropriate tool for the assembly					
important role to overcome the high	35000 30000 25000 20000 15000 5000 0 0 2 2 4 6 8 Number of Threads		mers, as done by Minimap, step. Canu provides higher accuracy than Miniasm, with the help of						
				ffect the overa		the error-correction step that is present in its own pipeline. However,			
lechnology. Basecalling with kinins 🛛 🖓			accuracy of the first three			Canu is much more computationally intensive and greatly slower (i.e.,			
			steps of the pipeline. OBSERVATION 5: By storing			by 1096.3x) than Miniasm. Miniasm is suitable for fast initial analysis , and the quality of its assembly can be increased with an additional polishing step.			
provides higher accuracy and higher ^{\$}									
speed than basecalling with HMMs.					ng 🚺 Minias				
Also, the newest basecaller of ONT,				, Minimap has					
Scrappio bas the notantial to				,				-	

Scrappie, has the potential to overcome the homopolymer basecalling problem.

OBSERVATION 2: Scrappie and Nanocall have a linear increase in memory usage when number of threads increases. In contrast, Nanonet has a constant memory usage for all evaluated thread units.

OBSERVATION 3: When the number of threads exceeds the number of physical cores, **the simultaneous multithreading (SMT) overhead** prevents continued linear speedup of Nanonet, Scrappie and Nanocall.

OBSERVATION 7: The choice of BWA-MEM and Minimap for the read mapping step does *not* affect **the accuracy of the polishing step**. However, BWA-MEM is **computationally more expensive** than Minimap.

OBSERVATION 8: Both Nanopolish and Racon significantly increase the accuracy of the draft assemblies. However, Nanopolish is computationally much more intensive and greatly slower than Racon.

For more results, analysis and recommendations, please refer to:

briefings in Bioinformatics, 2018, 1–18 doi: 10.1093/bib/bby017 Review Article

BiB version

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

OXFORD

Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan and Onur Mutlu

Contact: Damla Senol Cali, dsenol@andrew.cmu.edu