
Nanopore Sequencing Technology and Tools:
Computational Analysis of the Current State, Bottlenecks and Future Directions

Damla Senol1, Jeremie Kim1,3, Saugata Ghose1, Can Alkan2 and Onur Mutlu3,1

Nanopore Sequencing

Pipeline and Current Tools Problem & Our Goal
Problem
The tools used for nanopore sequence analysis are of critical
importance in order to increase the accuracy of the whole pipeline to
take better advantage of long reads, and increase the speed of the
whole pipeline to enable real-time data analysis.

Our Goal
o Comprehensively analyze current publicly available tools in the

whole pipeline for nanopore sequence analysis, with a focus on
understanding their advantages, disadvantages, and performance
bottlenecks.

o Provide guidelines for determining the appropriate tools for each
step of the pipeline.

Results and Analysis

Genome Sequencing Long Read Analysis
Genome sequencing is the process of
determining the order of the DNA
sequence in an organism’s genome.

Large DNA molecule

Small DNA fragments

Reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT

Long reads
o Sequences with thousands of bases
o Sequences with higher error rates
o Suitable for de novo assembly

De novo assembly is the method of
o Merging the reads in order to

construct the original sequence
o Without the aid of a reference genome

Assembly quality can be improved by
using longer reads, since they can cover
long repetitive regions.

Nanopore sequencing is an emerging DNA
sequencing technology.
o Long read length
o Portable and low cost
o Produces data in real-time

Nanopore sequencers rely solely on the
electrochemical structure of the different
nucleotides for identification and measure the
change in the ionic current as long strands of DNA
(ssDNA) pass through the nano-scale protein pores.

Step 1
Wall Clock

Time (h:m:s)

Step 1
Memory

Usage (GB)

Step 2
Wall Clock

Time (h:m:s)

Step 2
Memory

Usage (GB)

Step 3
Wall Clock

Time (h:m:s)

Step 3
Memory

Usage (GB)

Number of
Contigs

Identity
(%)

Coverage
(%)

Metrichor + Canu
– –

– – 44:12:31 5.76 1 98.04 99.31
Metrichor + Minimap + Miniasm 2:15 12.30 1:19 1.96 1 85.00 94.85

Metrichor + Graphmap + Miniasm 6:14 56.58 1:05 1.82 2 85.24 96.95
Nanonet + Canu

17:52:42 1.89
– – 11:32:40 5.27 1 97.92 98.71

Nanonet + Minimap + Miniasm 1:13 9.45 33 0.69 1 85.50 93.72
Nanonet + Graphmap + Miniasm 3:18 29.16 32 0.65 1 85.36 92.05

Nanocall + Canu
47:04:53 37.73

– – – – – – –
Nanocall + Minimap + Miniasm 1:15 12.19 20 0.47 5 80.53 96.80

Nanocall + Graphmap + Miniasm 5:14 56.78 16 0.30 3 80.52 95.43
Deepnano + Canu

23:54:34 8.38
– – 1:15:48 3.61 106 92.63 154.07

Deepnano + Minimap + Miniasm 1:50 11.71 1:03 1.31 1 82.37 91.62
Deepnano + Graphmap + Miniasm 5:18 54.64 58 1.10 1 82.39 91.60
OBSERVATION 1: Basecalling with

Recurrent Neural Networks performs
better than basecalling with Hidden
Markov Models in terms of accuracy,

speed, and memory usage. However, it
has scalability limitations due to data

sharing between threads.
OBSERVATION 2: Sharing the

computation of a read between parallel
threads provides a constant and low

memory usage, but data sharing
between multiple sockets degrades the

parallel speedup when number of
threads reaches higher values.

OBSERVATION 3: Storing minimizers instead of all k-mers does not affect the accuracy of
the whole pipeline. However, Minimap has a lower memory usage and higher speed
than GraphMap, since computation is decreased by shrinking the size of the dataset

that needs to be considered.

OBSERVATION 4: Canu, an assembler with
error correction, produces high-quality

assemblies but is slow compared to Miniasm,
an assembler without error correction.

Miniasm is suitable for fast initial analysis,
and the quality of its assembly can be

increased with an additional polishing step.

OBSERVATION 5: Nanopolish is compatible
only with reads basecalled by Metrichor.

Polishing the draft assembly generated with
Canu takes 5h52m and increases the accuracy

from 98.04% to 99.46%.
Polishing the draft assembly generated with
Miniasm takes 5d2h54m and increases the

accuracy from 85.00% to 92.31%.

Basecalling
Tools: Metrichor, Nanocall, Nanonet, DeepNano

Read-to-Read Overlap Finding
Tools: Minimap, GraphMap

Assembly
Tools:Canu, Miniasm

Read Mapping
Tools: BWA-MEM

Polishing
Tools: Nanopolish

Raw signal
data

Improved
assembly

DNA reads

Overlaps

Draft
assembly

Reads vs. draft
assembly
mappings

Assembly

1 Carnegie Mellon University, Pittsburgh, PA, USA 2 Bilkent University, Ankara, Turkey 3 ETH Zürich, Zürich, Switzerland

0

20000

40000

60000

80000

0 10 20 30 40

W
al

l C
lo

ck

Ti
m

e
(s

ec
)

Number of Threads

Nanocall (HMM) vs. Nanonet (RNN)

nanocall nanonet

3.1x

3.0x

0

20

40

60

80

0 10 20 30 40

P
ea

k
M

em
o

ry

U
sa

g
e

(G
B

)

Number of Threads

Nanocall (HMM) vs. Nanonet (RNN)

nanocall nanonet

0

10

20

30

40

0 10 20 30 40

P
ar

al
le

l S
p

ee
d

u
p

Number of Threads

Nanocall (HMM) vs. Nanonet (RNN)

nanocall nanonet

1.2x

0

20000

40000

60000

80000

0 10 20 30 40

W
al

l C
lo

ck

Ti
m

e
(s

ec
)

Number of Threads

Nanocall (HMM) vs. Nanonet (RNN)

nanocall nanonet

3.1x

3.0x

