
Accelerating Approximate Pattern Matching
with Processing-In-Memory (PIM) and

Single-Instruction Multiple-Data (SIMD)
Programming

Damla Senol Cal i1

Zülal Bingöl2, Jeremie S. Kim1,3,
Rachata Ausavarungnirun1, Saugata Ghose1,

Can Alkan2 and Onur Mutlu3,1

1 2 3

Poster SEQ-15
Problem:
o Bitap algorithm can perform string matching with

fast and simple bitwise operations.
o Due to the von Neumann architecture, memory

bus between the CPU and the memory is the
bottleneck of the high-throughput parallel bitap
computations.

Goals:
1) Overcoming memory bus bottleneck of

approximate string matching by performing
processing-in-memory to exploit the high
internal bandwidth available inside new and
emerging memory technologies, and

2) Using SIMD programming with Xeon Phi to take
advantage of the high amount of bit parallelism
available in the bitap algorithm.

Accelerating Approximate Pattern Matching with Processing-In-Memory (PIM)
and Single-Instruction Multiple-Data (SIMD) Programming

Damla Senol Cali1, Zülal Bingöl2, Jeremie S. Kim1,3, Rachata Ausavarungnirun1, Saugata Ghose1,
Can Alkan2 and Onur Mutlu3,1

1 Carnegie Mellon University, Pittsburgh, PA, USA 2 Bilkent University, Ankara, Turkey 3 ETH Zürich, Zürich, Switzerland

Processing-in-MemoryBitap Algorithm

Acceleration of Bitap with PIM

Results - PIM

Bitap algorithm (i.e., Shift-Or algorithm, or Baeza-

Yates-Gonnet algorithm) [1] can perform exact string

matching with fast and simple bitwise operations.
Wu and Manber extended the algorithm [2] in order

to perform approximate string matching.

§ Step 1 – Preprocessing: For each character in the

alphabet (i.e., A,C,G,T), generate a pattern

bitmask that stores information about the

presence of the corresponding character in the

pattern.

§ Step 2 – Searching: Compare all characters of the

text with the pattern by using the preprocessed

bitmasks, a set of bitvectors that hold the status

of the partial matches and the bitwise operations.

[1] Baeza-Yates, Ricardo, and Gaston H. Gonnet. "A new approach to text

searching." Communications of the ACM 35.10 (1992): 74-82.

[2] Wu, Sun, and Udi Manber. "Fast text search allowing errors."

Communications of the ACM 35.10 (1992): 83-91.

Package Substrate

Interposer

PHY PHY

TSV
MicrobumpHBM DRAM Die

Logic Die
. . .

Processor (GPU/CPU/SoC) Die

. . .

3D-Stacked DRAM

o Recent technology that tightly couples memory
and logic vertically with very high bandwidth
connectors.

o Numerous Through Silicon Vias (TSVs)

connecting layers, enable higher bandwidth and

lower latency and energy consumption.

o Customizable logic layer enables fast, massively
parallel operations on large sets of data, and

provides the ability to run these operations near
memory to alleviate the memory bottleneck.

Problem & Our Goal
Problem:
o The operations used during bitap can be performed in

parallel, but high-throughput parallel bitap
computation requires a large amount of memory
bandwidth that is currently unavailable to the
processor.

o Read mapping is an application of approximate string

matching problem, and thus can benefit from existing

techniques used to optimize general-purpose string

matching.

Our Goal:
o Overcoming memory bottleneck of bitap by performing

processing-in-memory to exploit the high internal
bandwidth available inside new and emerging memory

technologies.

o Using SIMD programming to take advantage of the high
amount of parallelism available in the bitap algorithm.

NOTES:
o 7k+2 bitwise operations are completed sequentially for

the computation of a single character in a bin. However,

multiple characters from different bins are computed in
parallel with the help of multiple logic modules (i.e.,

PIM accelerators) in the logic layer.

o If D is the number of iterations to complete the

computation of one memory row, D*(7k+2) is the total

number of bitwise ops per row, where D = (max # of

accelerators) / (actual # of accelerators)

o Assuming a row size of 8 Kilobytes (65,536 bits) and a cache line size of 64

bytes (512 bits), there are 128 cache lines in a single row. Thus, Memory
Latency (ML) = row miss latency + 127*(row hit latency) ~ 914 cycles. ML is

constant (i.e., independent of # of accelerators).

Acceleration of Bitap with SIMD
NOTES:
o Intel Xeon Phi coprocessor has vector processing unit which utilizes Advanced Vector Extensions

(AVX) with an instruction set to perform effective SIMD operations.

o Our current architecture is Knights Corner and it enables usage of 512-bit vectors performing 8

double precision or 16 single precision operations per single cycle.

o The recent system runs natively on a single MIC device and the read length must be at most 128
characters.

1) Get 4 pairs of reads and reference segments, prepare bitmasks of each read and assemble
them into a vector.

p1
p2
p3
p4

t1
t2
t3
t4

... ...

Reads Reference Segments
p1 :

p2 :

p3 :

p4 :

_512b < B[A], B[C], B[G], B[T] >

_512b < _128b, _128b, _128b, _128b >

_512b < ... , ... , ... , ... >

_512b < ... , ... , ... , ... >

*Adjustment ops.:
Since the system

represents entries

with 128 bits and

only 64-bit shift

operation is

supported by the

instruction set,

carry bit

operations must

be performed.

2) Initialize status vectors, start iterating over 4 reference segments simultaneously. While
iterating, assign the respective bitvectors of the reads as active and assemble them into a

vector. Perform the bitwise operations to get R[0].

G A
t2 t3 t4

>> + OR + adjustment ops.*

R[0]

p1

p2

p3

p4

G C
t1

_512b < p1 (B[G]) , p2(B[C]) , p3 (B[G]) , p4 (B[A]) >

3) Integrate the result R[0] with insertion, deletion and substitution
status vectors. Deactivate 128b portion of R[0]...R[d] if the respective t

ends. Then, perform checking operations on the portion.

insertion

deletion

substitution

R[0]

R[0] & insertion & deletion & substitution

Check LSB of respective portion

If LSB of R[d] is ‘0’, then the

edit distance between read

and reference segment is d .

o We perform the tests with read and reference segment

pairs with 100bp long each. The total number of tested

mappings is 3,000,000.

1) Generate the pattern bitmasks, initialize
the status bitvectors, and store them within

the logic layer

B[A] = 011 R[0] = 111
B[C] = 101 R[1] = 111
B[G] = 110
B[T] = 111

Semantics of 0 and 1 are reversed from their conventional meanings throughout the bitap computation.
Ø 0 means match, 1 means mismatch

Text: AACTGAAACTATCCCGACGTA Pattern: ACG Number of allowed errors (k): 1

2) Split the text into overlapping bins and
store each bin vertically within memory

A A C T G A A A C T A T C C C G A C G T A …

bin1

bin2

bin3

A
A
C
T
G
A
A
A
C
T

A
C
T
A
T
C
C
C
G
A

C
C
G
A
C
G
T

Memory

Row0

Row1

Row2

Row3
.
.
.
.
.

Row8
Row9

…
…
…
…
…
…
…
…
…
…

3) Fetch one memory row and send each
character (2-bit) to a separate logic module

in the logic layer
A A CRow0 …

Logic
Layer

Module1 Module2 Module3

Module4 Modulen
…

4) Perform the computation within the logic module

4-to-1
MUX

B[A]
B[C]
B[G]
B[T]

2-bit
character

Bitmask of
current character

<<oldR[0] OR R[0]

For d = 1 … k:

<<oldR[d] OR
match

oldR[d-1]
insertion

AND

<<
substitution

deletion
R[d-1] <<

R[d]

5) Check the most significant bit of R[0], R[1], … , R[k]. If
MSB of R[d] is 0, then there is a match between the text

and the pattern with edit distance = d.

 -

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

1 2 4 8 16 32 64 128

N
um

be
r

of
 D

R
A

M
 c

yc
le

s

D (#iterations to finish the computation of one DRAM row)

Number of DRAM cycles vs. D

k=0

k=2

k=4

k=6

k=8

k=10

Results - SIMD

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nu
m

be
r o

f F
al

se
ly

 R
ej

ec
te

d
M

ap
pi

ng
s

Edit Distance (k)

Number of Falsely Rejected Mappings vs. Edit Distance (k)

Bitap-SIMD
Edlib [3]

Future Work

o For the human

chromosome 1 as

the text and a read

with 64bp as the

pattern, Bitap-PIM

provides 3.35x end-
to-end speedup
over Edlib [3], on

average.

[3] Šošić, Martin, and Mile Šikić. “Edlib: A C/C ++ Library for Fast, Exact Sequence Alignment Using Edit

Distance.” Bioinformatics 33.9 (2017): 1394–1395.

Bitap-PIM:
o Improving the logic module in the logic layer in

order to decrease the number of operations

performed within a DRAM cycle.

o Providing a backtracing extension in order to

generate CIGAR strings.

o Comparing Bitap-PIM the with state-of-the-art

read mappers for both short and long reads.

Bitap-SIMD:
o Extending the current system to work in

offload mode for exploiting 4 MIC devices

simultaneously.

o Optimizing the expensive adjustment

operations (i.e., carry bit operations) to

improve the performance of Bitap-SIMD.

CPU MemoryLow capacity
memory bus

