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o Bitap algorithm can perform string matching with
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fast and simple bitwise operations.
o Due to the von Neumann architecture, memory i s mm oo

matching with fast and simple bitwise operations.! parallel, but high-throughput parallel  bitap |
Wu and Manber extended the algorithm [2] in order!  computation requires a large amount of memory |

bus between the CPU and the memory is the “wimmmew.,. s o =7 =0 00
bottleneck of the high-throughput parallel bitap

bitmask that stores _information _about (he‘ matching problem, and thus can benefit from existing |o Recent technology that tightly couples memory
presence of the corresponding character in the] techniques used to optimize general-purpose string| and logic vertically with very high bandwidth
pattern. | matching. | connectors.

= Step 2 — Searching: Compare all characters of the| Our Goal: {o Numerous Through Silicon  Vias  (TsVs)

text with the pattern by using the preprocessed o Overcoming memory bottleneck of bitap by performing | connecting layers, enable higher bandwidth and

computations.

bitmasks, a set of bitvectors that hold the status!
of the partial matches and the bitwise operations. ‘
18] Baeza-Yotes,Rcrdo,and Gaston H.Gomnet. " new approach 0 text]
et Commitons o e AW 50 1953 7452
(21 Wy, Sun, and U ¢ text search allowing errors.”
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processing-in-memory to exploit the high internal | !
bandwidth available inside new and emerging memory ‘Q
technologies.

o Using SIMD programming to take advantage of the high |
amount of parallelism available in the bitap algorithm. ‘

lower latency and energy consumption.
Customizable logic layer enables fast, massively
parallel operations on large sets of data, and
provides the ability to run these operations near
memory to alleviate the memory bottleneck.

Acceleratlon of Bitap with PIM Acceleration of Bitap with SIMD
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© Our current architecture is Knights Corner and it enables usage of 512-bit vectors performing 8
double precision or 16 single precision operations per single cycle.
© The recent system runs natively on a single MIC device and the read length must be at most 128
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1) Overcoming memory bus bottleneck 1
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3) Fetch one memory row and send each | NOTES: with 128 bits and
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emerging memory technologies, and
2) Using SIMD programming with Xeon Phi to take

Results - PIM Resulta - SIMD

 Assuming a row size of 8 Kiobytes (65,536 bits) and a cache line size of 64 | o We perform the tests with read and reference segment | Bitap-PIM:
bytes (512 bits), there are 128 cache lines in a single row. Thus, Memory | pairs with 100bp long each. The total number of tested | o Improving the logic module in the logic layer in
Latency (ML) = row miss latency + 127*(row hit latency) ~ 914 cycles. ML1s |  mappings i 3,000,00. order to decrease the number of operations
i of
constant .., independent of # of accelerators). performed within a DRAM cycle
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e operations (e, carry bit operations) to
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. umberf o cries 0 e ! o Providing a backtracing extension in order to
H H . AL | generate CIGAR strings.

the v 2 resa | Ta i o Comparing Bitap-PIM the with state-of-the-art

with 64bp 35 the | S v | re3d mappers for ot short and ong reads.

patier, Bitap-PIM | T e | Bitap-SIMD:
provides 3.35x end- | 5, | o Extending the current system to work in
H H e H wend speedup | 3y | offload mode for exploiting 4 MIC devices
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