SAFARI

Accelerating Approximate Pattern Matching
with Processing-In-Memory (PIM) and
Single-Instruction Multiple-Data (SIMD)
Programming

Damla Senol Cali?

Zulal Bingol?, Jeremie S. Kim?:3,
Rachata Ausavarungnirun!, Saugata Ghose?,
Can Alkan? and Onur Mutlu3-1

1 . 2 (o .3 -
CarnegieMellon ° ((§))Bilkent University ~ ETHz(irich

Poster SEQ-15

Problem:

Accelerating Approximate Pattern Matching with Processing-In-Memory (PIM)
and Single-Instruction Multiple-Data (SIMD) Programming

Damla Senol Calil, Ziilal Bingél?, Jeremie S. Kim'3, Rachata Ausavarungnirun’, Saugata Ghose!,
Can Alkan? and Onur Mutlu®!
1 Carnegie Mellon University, Pittsburgh, PA, USA ? Bilkent University, Ankara, Turkey ? ETH Ziirich, Zitrich, Switzerland

o Bitap algorithm can perform string matching with
CarnegieMellon ETH ziirich Bilkent University ~ SAFARI

fast and simple bitwise operations.
o Due to the von Neumann architecture, memory i s mm oo

matching with fast and simple bitwise operations.! parallel, but high-throughput parallel bitap |
Wu and Manber extended the algorithm [2] in order! computation requires a large amount of memory |

bus between the CPU and the memory is the “wimmmew.,. s o =7 =0 00
bottleneck of the high-throughput parallel bitap

bitmask that stores _information _about (he‘ matching problem, and thus can benefit from existing |o Recent technology that tightly couples memory
presence of the corresponding character in the] techniques used to optimize general-purpose string| and logic vertically with very high bandwidth
pattern. | matching. | connectors.

= Step 2 — Searching: Compare all characters of the| Our Goal: {o Numerous Through Silicon Vias (TsVs)

text with the pattern by using the preprocessed o Overcoming memory bottleneck of bitap by performing | connecting layers, enable higher bandwidth and

computations.

bitmasks, a set of bitvectors that hold the status!
of the partial matches and the bitwise operations. ‘
18] Baeza-Yotes,Rcrdo,and Gaston H.Gomnet. " new approach 0 text]
et Commitons o e AW 50 1953 7452
(21 Wy, Sun, and U ¢ text search allowing errors.”
Cnenistormel o Ao 530 1508 BBt |

processing-in-memory to exploit the high internal | !
bandwidth available inside new and emerging memory ‘Q
technologies.

o Using SIMD programming to take advantage of the high |
amount of parallelism available in the bitap algorithm. ‘

lower latency and energy consumption.
Customizable logic layer enables fast, massively
parallel operations on large sets of data, and
provides the ability to run these operations near
memory to alleviate the memory bottleneck.

Acceleratlon of Bitap with PIM Acceleration of Bitap with SIMD

Sematisof 0 and 1 NOTES:

Memory e " raaacs vmberot towet s e prcesng it nn

CPU

—— Low capacity —>
<«— memory bus e

© Our current architecture is Knights Corner and it enables usage of 512-bit vectors performing 8
double precision or 16 single precision operations per single cycle.
© The recent system runs natively on a single MIC device and the read length must be at most 128

oals oo B S e
. L} p4: Sl2b<. >

AACTGAARCTATCCEGACGTA...

= B : 7 ; S
(] i e
o - H vector. Perform the bitwise operations to get R[0].

Ll a le sl u
PRI S

o &
.
”;ﬂ»;sm PLBIGI), p2(BICI) 3 (BIGI pA (BIAL)> ——

1) Overcoming memory bus bottleneck 1
approximate string matching by performing | . ==

Alo)

»

= e
. . . o TN 3) Integrate the result R[0] with insertion, deletion and substitution | *Adjustment ops.:
. MSB of
rocessing-in-memor to exploit the high —— e

3) Fetch one memory row and send each | NOTES: with 128 bits and
caracir pytey o anly 6.t it
o o e . I meions
. A e charsctrs fomdifeent s e compte ckton | o1& srion. eeon& sstutin supported by the
. parallel with the help of multiple logic modules (i.e., ‘substitution ‘ instruction set,
interna andwidt avallaple Insige new an o e T g
. 11D the mumber of ‘eraons to complete the | e L operatons must
o [Computatn o one ey o D)o ol | sl ot o

) | el b oo e 0« 8 e

(v WE) retor (aca of scceermt

emerging memory technologies, and
2) Using SIMD programming with Xeon Phi to take

Results - PIM Resulta - SIMD

 Assuming a row size of 8 Kiobytes (65,536 bits) and a cache line size of 64 | o We perform the tests with read and reference segment | Bitap-PIM:
bytes (512 bits), there are 128 cache lines in a single row. Thus, Memory | pairs with 100bp long each. The total number of tested | o Improving the logic module in the logic layer in
Latency (ML) = row miss latency + 127*(row hit latency) ~ 914 cycles. ML1s | mappings i 3,000,00. order to decrease the number of operations
i of
constant .., independent of # of accelerators). performed within a DRAM cycle

! canomnce)
e operations (e, carry bit operations) to
b ISR i, i S A AT oy for s, o e A U 9 improve the performane of Bitap-SIMD,

. umberf o cries 0 e ! o Providing a backtracing extension in order to
H H . AL | generate CIGAR strings.

the v 2 resa | Ta i o Comparing Bitap-PIM the with state-of-the-art

with 64bp 35 the | S v | re3d mappers for ot short and ong reads.

patier, Bitap-PIM | T e | Bitap-SIMD:
provides 3.35x end- | 5, | o Extending the current system to work in
H H e H wend speedup | 3y | offload mode for exploiting 4 MIC devices
avallable In the oitap algoritnm e B 1 L e

* average. P oetasesersemunnus | o Optimizing the expensive adjustment

