
23.1

LargeScale Placement by Grid-Warping
Zhong Xiu, James D. Ma, Suzanne M. Fowler**, Rob A. Rutenbar
Dept. of ECE, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213 USA

"Intel Corp., Chandler, Arizona, 85224, USA
{zxiu,jdma,rutenbar}@ece.cmu.edu suzanne.m.fowler@intel.com

Abstract
Grid-warping is a new placement algorithm based on a strikingly
simple idea: rather than move the gates to optimize their location,
we elastically deform a model of the 2-0 chip surface on which the
gates have been roughly placed, "stretching" it until the gates a-
range themselves to our liking. Put simply: we move the grid, not
the gutes. Deforming the elastic grid is a surprisingly simple, low-
dimensional nonlinear optimization, and augments a traditional
quadratic formulation. A preliminary implementation, WARPI, is
already competitive with most recently published placers, e.g.,
placements that average 4% better wirelength, 40% faster than
GORDIAN-L-DOMINO.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids-placement and routing.
G.4 [Mathematical Software]: Algorithm Design and Analysis

General Terms
Algorithms, Design

Keywords
Algorithms, Placement

1. Introduction
Circuit placement remains a critical step in the physical realization
of any large design. Iterative improvement methods such as anneal-
ing [I] dominated in the 1980s. yielding to either quadraticianalyt-
ical methods [2]-[6] or mincut methods 171 in the 1990s. The last
few years have seen an especially vigorous competition to evolve
efficient analytical methods (e.g., [5,6,8,9]) to handle larger
netlists, produce better wirelengths or better timing, or run faster.
Debates hetween and linear wirelength estimation, hetween flat and
hierarchical placement strategies, and among altematives for em-
bedding timing optimization, continue with equal vigor. Despite
roughly two decades of impressive progress, the problem remains
an important one to focus on. Much ofthe final performancesize,
yield, cost, speed-f a modem IC implementation is determined
by its placement.

In this paper we describe a novel placement algorithm. We start
with the well-known quadratic point-placement formulation, and
improve the layout via recursive subdivision, hut most similarities

Permission to make digital or hard copies afall or part afthis work for per-
sonal or cla~sroom use is granted without fee provided that copies are not
made or distributed for profit 01 commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires pnor specific
permission andior a fee.
DAC2004, June 7-11,2004, San Diego, CA, USA.
Copyright 2004 ACM 1-58113-828-8104/0006 ... B5.00

to prior methods end here. Our idea is strikingly simple: rather than
move the gates to optimize their location, we elastically deform a
model ofthe 2-D chip surface on which the gates have heen quickly
and coarsely placed [I 1,141. Put simply: we move the grid, not the
gates. Rather than move each point individually, we "stretch" the
underlying sheet until the points arrange themselves to our liking.
This strategy has three advintages: (1) deforming the elastic sheet
is a surprisingly simple, 1ow:dimensional optimization problem; (2)
freed ofthe need to rely on matrix solves as the sole engine ofplace-
ment evolution, we can add optimization using powerful nonlinear
methods, and choose any well-behaved objective function we like,
for example, a combination of local congestion and exact half-pe-
rimeter wirelength; (3) this very big design problem is transformed
from a very high-dimensional optimization task into a very large
numerical cost function with a small number of degrees of freedom
that determine the deformation of the placement grid. We call this
placement by grid-warping.

As we shall see in the remainder of the paper, augmenting the tra-
ditional high-dimensional linearized solution step with a low-di-
mensional nonlinear improvement s t e p a l b e i t one with an
expensive-to-calculate objective function-h" out to be an at-
tractive addition to make. However, the warped placement model
creates some novel placement behaviors we must confront. For ex-
ample, in most placers, the key problem is how not to incorrectly
separate gates that wish to be close. In the warping model, this is
less of a problem than determining how to make gates separate,
since adjacent gates intrinsically stay close as the local surface de-
forms. In the sequel, we show how to solve these problems with a
mix of new geometric optimization steps, and reuse of some exist-
ing heuristics from analytical placers. The overall StNCture of the
placer is a quadratic analytical initial step serving to create a quick
coarse placement in each (suh)region, followed by an improvement
loop comprising the nonlinear numerical solution of a warping
problem, followed by partitioning and recursion.

The rest of this paper is organized as follows: In Section 2, we give
a brief qualitative motivation and description of how grid-warping
works. In Section 3, we formulate in detail all the steps ofthe grid-
warping placement algorithm. In Section 4, we offer detailed com-
parisons with several published placement algorithms to demon-
strate the potential of our approach. Finally, Section 5 contains
some concluding remarks and the directions of future work.

2. Grid-Warping: Motivation and Approach
Let us assume that we start with a conventional quadratic analytical
placement [2,3,6], in which each gate to be placed is represented as
a dimensionless point connected to a set of appropriately weighted
2-point wires. Overall squared Euclidean wirelength is the ohjec-
tive we minimize. (We shall describe more precisely our formula-
tion in the following section.) This placement is, in some

35 1

mailto:zxiu,jdma,rutenbar}@ece.cmu.edu
mailto:suzanne.m.fowler@intel.com

(a) (b) (C)

FIGURE 1. Basic warping concept. (a) An initial quadratic placement. (b)
The placement grid itself is deformed, and each cell takes ‘ownership” of
a new set of initially placed gates. (c) Deformation back lo the original
grid ”warps” the gales into new locations.
mathematical sense, “optimal” with respect to wirelength. Unfom-
nately, however, cell sizes are not considered explicitly, overlaps
are rampant, and 80% of the total gate area may be placed densely
in a few hot spots comprising only 20% of the chip image.

This is the departure point for all subsequent efforts to make prac-
tical analytical placement techniques. How we formulate this le-
galization problem distinguishes prior efforts, and determines the
overall success of each algorithm. Historically, several options
have been suggested. One can use spatial recursion, and locate a
balancing bisecting cut [2, 31 or quadrisecting cut [6], then recur-
sively place each subregion. This requires confinement of the gates
in each partitioned region; this can he accomplished by computing
new pseudo-pin locations on region boundaries [2,6] for strict con-
finement, or adding center-of-gravity constraints for a looser con-

as to spread out the placed gates in some optimal way. The gates,
however, never move independently: they are each “spots” on the U-

derlying elastic grid we use to model space. We deform this space di-
rectly, the placement mass moves as an indirect consequence.

Given just this simple overview, we can immediately see several
important properties of grid-warping:

8 Lowdimensional: The problem we optimize is how to deform
the control points on the gnd. Thus, the number of degrees of h e -
dom of this optimization task is both small, and rather loosely cou-
pled to the size of the netlist. hdeed, we can use the exact same
formulation for 1,000 gates or 100,000 gates.

8 Flexibly nonlinear: Given that the size of the nonlinear prob-
lem is modest, we have significant engineering choice in the
form of the geometric warping transformations, and the overall
objective function. In particular, since we are not restricted to a
quadratic form (either classical [3, 61 or generalized [8,9]) we
can directly optimize mehics regarded as mathematically d iE-
cult, for example, exact half-perimeter wirelength.

8 Expensive objective function: The grid warping itself is a prob-
lem with a modest number of variables. However, each step of the
nonlinear warping optimization must recalculate the objective
function, which requires a full, flat evaluation of, for example, the
global wirelength and local congestion. The essential tradeoff of
grid-warping is to rely on the solution of a “small” nonlinear prob-
lem which has a “large” cost function that may he evaluated many
times. As we shall see, this turns out to he an amactive trade05

finement [3]. Another approach is to modify the objective or

to add repulsion forces dependent on the local placement density [SI
to a standard quadratic formulation. A different approach exploits
ideas from multilevel algorithms, recursively aggregatinddisaggre-
gating the gates and handling gate overlaps directly, in a more gen-
era1 formulation similar to quadratic programming [8,9].

All these approaches use quadratic wirelength, or a linearized ap-

constraint formulation to address overlaps directly, One option is 8 Locality preserving: A critical problem in most place= is how
not to separate gates that want to be nearby, while enforcing
legalization constraints. Our “spots on an elastic sheet” model
is intrinsically quite good on this metric, since it is the space
itself that deforms, and gates cannot move independently. Of
course, this is both a blessing and a curse. We often need the
gates to move independently, to decongest a local hot spot, and
this tums out to be a oarticular challenee in the desien of the

proximation thereof [IO], and all except [8,9] use a large matrix
salve as the essential engine for placement progress in each recur-
sive or iterative solution step. Moreover, in all these approaches, the
gates are the principal actors in the optimization: their (XJ) loca-
tions are the degrees of freedom we seek to optimize.

In contrast, in our approach it is the space on which the gates have
been quadratically initially placed that is the focus of optimization.
Figure 1 illustrates the hasic idea. It is easiest to conceptualize ‘karp-
ing” as a uniform grid above the placement surface, with each gnd in-
tersection defining a control point. Warping elastically moves these
control points to approximate some continuum deformation of the

~ -
geometric warping transformations.

To expand briefly on this last point, the illustration of Figure 1 is a
good conceptual model of grid-warping, but proves to he a poor mcd-
el for the actual warping transformations. The need for nearby gates
to be able to separate more independently is a significant problem in
this model, one we solve in the following section. Nevertheless, the
idea of a sheet of ‘ b i t ” cells deforming to “acquire” new sets of
gates, then “dragging” them hack to their original home location, is a
good mental model for the main idea of grid-warping.

3. Grid-Waroing: Detailed Formulation

those gates hack to its original location. Roughly speaking, the grid
deforms, grabs the elastic placement sheet, and stretches it as it re-
h v n s to its undeformed state. Thus, there are two essential operations:
warping determines how the original grid deforms; inverse warping
determines how each (XJ) gate location in the original placement is
transformed back into a new location.

3.1 Quadratic Initial Placement
To put the initial “spots on the elastic sheet”, we use a standard qua-
dratic analytical placement formulation. A circuit netlist is represent-
ed for as a weighted hyper-graph, with m = lhw vertices
corresponding to gates and n = liyl hyper-edges corresponding to

352

others remain movable. Each net n is a set of pins and has a weight
wr For each gate i, two variables (xi, yi) represent the x- and y-coor-
dinates, respectively, ofthe center ofthe cell. As usual, a net connect-
ingkgatesyields aclique inthe graph. A weight factor I&-1) isused
to prevent large nets from dominating the objective function.

We place to minimize squared Euclidean wirelength, so the distance

between two connected gates i and j is (x i ~ x j) .+ (yi - y j) . The

twodimensional problem is decomposed into independent horizontal
and vertical placements, each minimizes the classical quadratic form:

2 2

(1)
l r r z x A x + b x+cons tan t

where A is a symmetric and positive definite m x m matrix representing
weighted connectivity, b is an mdimensional vector representing tixed
pad locations, and x (ory) is an m-dimensional vector representing the
coordinates to be solved for. This has the familiar optimal solution

x = A-lb, obtainable via pre-conditioned Conjugate Gradients

A common optimization here is linear reweighting [IO] to better ap-
proximate a linear, rather than quadratic wirelength. This requires a se-
quence of additional linear solves (typically < 5). These extra solves are
a consequence of the fact that the quadratic wirelength form, and its lin-
ear solution, are among the few optimization formulations that can
scale to large placement problems. Grid-warping has no such limita-
tion: we move space itselfwith a nonlinear model, and optimize balf-
perimeter wlrelength explicitly. Hence, we do no linear reweighting.
Our quadratic placement serves as the initial placement of the “spots on
the sheet” for the subsequent warping improvement step.

3.2 Grid Warping with a Slicing-Style Unit Grid
The illustration of Figure I is a good starting point for how to for-
mulate effective warping, but as we discovered, it has some signif-
icant limitations [I I]. Let us first describe the advantages of this
approach. The idea is to impose a regular unit grid on the surface of
the placement, and regard the (x,y) intersections of the gridlines in-
side the placement, and at its periphery, as movable control points.
Our goal is to arrange these control points under some suitable ob-
jective function so that an inverse warping transformation will
“pull” an appropriate set of gates back to each original unit cell’s
location, and arrange these gates suitably inside each unit cell.

We can immediately use ideas from quadratic placement to formu-
late this problem: regard each control point as a movable object, and
each edge between control points as a quadratic spring. Optimiza-
tion re-weights each spring, thus changing the placement of the
control points after a standard quadratic placement solve. Thus, an
outer nonlinear optimization loop adjusts the weights on the edges,
while an inner quadratic loop solves for the locations of the control
points after each weight perturbation, and computes the appropriate
gate location changes under some as-yet-to-he-described warping
transformation. This problem is easy to formulate, and has attrac-
tive complexity: a kxkunit grid has Z(k+ 1) control points to be
solved for, driven by changes in the weights on 2k(k + 1) edges. A
4x4 grid, for example, creates a 40-variable nonlinear optimization.

Another extremely atuactive feature of this formulation is that the
placement surface is g u m t e e d to be partitioned into a set of equiva-
lence classes--deformed unit grid ce l l s tha t a~ each a convex quad-
rilataal (or, at worss a degenerate hiangle [I l l ; see Figure2).
Transformation from one convex quadrilatenl to anothes is a well-stud-
ied problem in computer graphics [I31 and we can exploit any of sev-
eral existing options for the required inverse warping transformation.

2

FIGURE 2. Example warping from uniform 4x4 unit grid

...............

................................

FIGURE 3. Uniform warping grid poorly handles the eccentric, off-axis
placement mass; adjacent gates cannot easily shear in opposite directions.

What, then, is the problem? The problem, surprisingly, is that this
formulation of the elastic grid is “too” continuous. It is extremely
difficult for two points place& close together to move in opposite di-
rections. This is essential for the unfortunately common case in
Figure 3, where the initial placement mass is a highly eccentric el-
lipse with its major axis at a large angle to the coordinate axes.
Nearby gates may warp into adjacent unit cells, but be required to
move in opposite directions. This uniform 4-connected mesh model
is poor at supporting such “shearing” motions during placement.
Implementations based solely on such a grid model perform poorly
on wirelength [I 11.
There is a simple and elegant modification to the basic unit grid that
rectifies the problem. We impose now a 2‘,2‘grid, but regard the
grid lines as a set of conventional slicing cuts, as from a slicing tree
[12]. Figure 4 shows the idea, with slight dislocations of the grid
edges added to explicitly highlight the slicing structure. More im-
portantly, given a fixed horizontalivertical ordering for the cuts
(i.e., first cut topto-bottom), it is also simple to allow the slices to
be arbitrary oblique cuts, as in Figure 4(b). We need exactly 2 vari-
ables to describe each cut-line, and these can be specified as relative
hctional-valued distances in [0,1] along the edges of the parent re-
gion being sliced. Orthogonal cuts yield rectangular regions, ob-
lique cuts yield quadrilateral regions, and we again divide the space
into an equivalence partition of convex quadrilaterals. The 2 x2
case, with exactly 6 optimization variables, appears in Figure 4(c).
The 2kx2k slicieg-style unit grid requires 2(4 ~ 1) variables.
Thus, the 4x4 grid requires only 30 variables whose values are to
be optimized. We shall solve for these with a novel nonlinear for-
mulation, described in the next two sections.

k

FIGURE 4. SIC ngsry e warp ng gno formdabon [a) 4x4 m I gno (a, 4x4
gno after warp ng (CJ Opbmizatlon vanaales .abe eo for 2x2 s .ung gna

353

3.3 Grid Warping Unit-Cell Transformation
Our next task is actually to warp the space, thereby allowing each
unit cell in the grid to move to overlap and “acquire” a new set of
gates. Warping is physically a three-step process: first, we change
the location of each cutline in the slicing-style unit grid, allowing
each unit cell to deform and overlap different gates; second, we map
all the gates newly overlapped hack to a new location inside the un-
deformed original unit cell; third, we recalculate an objective that
measures how well the gates have rearranged themselves. Thus, the
next problem is the geomeny of how one Unit cell is warped.

Our solution is shown in Figure 5. The computer graphics literature
is rich with examples ofways to transform between a convex quad-
rilateral and a unit square, e.g., [l3]. We obtained the best results
with an inverse bilinear transform [14]. Bilinear mapping [I31 is a
simple, proportional geometric transform, commonly defined as a
mapping of a square into a quadrilateral. The forward transform
preserves lines which are horizontal or vertical in the source square,
and preserves equispaced points along such lines. We actually need
the inverse bilinear mapping to map back from our warped unit cell
to the uniform grid. The inverse mapping can be derived by solving
two simple quadratic equations, as in Figure 5.

One implementation detail worth noting is how we efficiently de-
termine which gates are ”acquired by each warped cell, as optimi-
zation deforms each unit grid. Given that we expect a large number
of gates, and a large number of evaluations of our overall objective
function, this must be done very efficiently. We use a modified
scanline algorithm (151 to associate each placed gate with the
unique warped unit cell that overlaps it. The edges of the warped
cells determine the boundaries of each unique warping transfonna-
tion; we treat them as the edges of a polygon, labeled so that we can
always tell “inside” and “outside”. We could use a conventional
scanline and add each individual gate location, as well as the
warped unit cell edges, to the algorithm, and advance the scanline
gate by gate. This is, however, much too inefficient, especially
since we have many gates, hut a relatively small number of grid
edges. Hence, we partition the placement into yet another grid we
refer to as the source grid. We now use a block-oriented scanline
which advances row-by-row up the grid, and visits the gates grid by
grid, left to right across the columns [14]. The basic idea is that
many of these source grid cells will be completely contained in one
warped unit cell, and so we know we can apply the same inverse bi-
linear transform to each gate. Only a relatively small number of
source grid cells will actually cross the edge of a warped cell, and

Inverse
Bilinear
Transform

Soke for (U,”): Dls + Ev + F = 0

vhere A’=o/-bc B = e x - o ~ h - d & c f - b g C=gxsy+ch-dg
D = og-a E = ex-qy+clhcfe+J+bg F = Jx-bytbh-df

A d + Bu + C= 0

and ~=x,-x,I-xo,+x,, e=y,-y,,-y,, +yo
b = -1, + xID f = y (0 + Y,a

g=-y + e = ‘XI(+xn ’ DI Yo,
d = x , h =yW

FIGURE 5. Transfoming an “acquired” gate at (x,y) in a warped unit cell
backto location (u,v) inside the original unit cell via inverse bilineartransfom.

so only those cells require the detailed process of disceming exactly
which side of the cutline edge they belong to, and thus which in-
verse bilinear transform to apply to map each gate back to some
original unit grid.

3.4 Warping Objective Function and Optimizer Engine
We now know how to represent the placement space as a slicing-
style unit grid, and that this grid can he deformed by specifying the
values of a modest number of variables (e.g., 6 for a 2x2 grid, 30 for
a 4x4 grid, etc.). We now need to choose an objective function to
optimize, and a nonlinear solution method.

For the solver itself, we use a classical Brent-Powell engine, in the
style of [16]. The choice is motivated by the fact that our problems
are small, and we lack derivatives or, indeed, guarantees of conti-
nuity of any objective function, given the discrete nature of the
warping process. A small change in the variables specifying the lo-
catiodorientation of each slicing cutline can change the shape and
location of the deformed quadrilateral of each warped unit cell,
which in turn can add or remove any number of discrete gates from
this cell. A derivative-kee optimizer is a good choice here, and we
find the basic Brent-Powell formulation performs well, even though
it is only a local optimizer. We start the optimization with each cut-
line variable set to value 0.5, i.e., with a perfectly uniform grid of
unit cells. The engine converges to a good nearby local optimum,
usually making several thousand calls to the objective function.

For the objective function, we use a weighted linear combination of
wirelength and congestion. Here, we can see again one of the ad-
vantages of using a nonlinear optimization to evolve the placement:
we can use any well-behaved functional form here:

(2)
We use half-perimeter for the wirelengh, and a penalty function for-
mulation for the congestion that reuses the source grid mentioned
earlier. Each source cell i j contributes a penalty C,j based on
whether the number of gates mapped to its region exceeds a speci-
fied capacity (the total number of gates m divided by the number of
S O U I C ~ cells lq ; call this K). Let mg be the number of gates in cell
ij, then:

Cost = Wirelength + W x Congestionpenalty

2
c, (m,-K) if mij E [o. 85K,o. 95K] U [I. 05K,i. 15~$’3) I 2 M+(mij - K) otherwise

C..=

Regions with far too many, or too few gates, always incur a large
baseline penalty (M) which grows as demand differs from capacity.
However, as we near the capacity, the penalty is moderated, and
within 5% of the correct capacity, it vanishes. Warping deforms
space so that, aft& each gate is mapped to its new location, each
unit grid has roughly the same number of gates in it, while striving
to ensure the wirelength is not too compromised.

3.5 Decomposition and Recursion
Grid-warping still relies on recursive decomposition, since we need
to keep the size of the warping grid small enough for quick nonlin-
ear optimization. Thus, each cell in the slicing-style unit grid be-
comes a new problem for placement by grid-warping. We lypically
use either a 2x2 or a 4x4 slicing-style unit grid for warping.

This means that we need to formulate a way to confine the cells in-
side each decomposed region, so that we can again run an initial
quadratic placement to begin warping each subregion. To do this,

354

Pre-
Warping

FIGURE 6. Pre-warping he initial quadratic placement with a 20x20
nonunifon gridding.

we propagate pins from other gates in external regions to the bound-
ary of the region being optimized, using the method from [6].
Roughly speaking, we propagate each extemal gate to the closest
point on the boundary of the rectangular region we are optimizing,
and proceed forward with optimizing the gates in each region, con-
nected now to new pins on its boundary.

We also borrow one other technique from prior methods the use of
mincut partitioning to disambiguate gates placed v n y close to OUT
cutlines [3]. We use the hMetis engine [7] in regions ranging from
10.25% ofthe dimension of the unit cell. Note that 2x2 grid-warping
is essentially a quadrisecting cut, albeit one with the twin novelties of
cutlines at arbitrary angles, and no requirement that all the cuts meet
at a common central point. An advantage of warping is that we free
the quadrisection (or even higher-dimensional cut) step from the ar-
tificial consttaint that each cut is axis parallel. Quadratic placement
certainly does not arrange gate clusters so that they form perfect axis-
parallel rectangular blocks, and we see no reason to assume that the
recursive balancing cuts need to he similarly restricted.

3.6 Geometric Pre-Conditioning: The Pre-Warping Step
The algorithm as defined so far is complete, but not optimal. Exper-
iments showed that the success of warping is extremely dependent
on the density of the initial quadratic placement: a placement with
very dense hot-spots and large empty regions is quite difficult to
warp to achieve a more uniform distribution of gates across the chip
surface. This is, in fact, another reason why we avoid linear re-
weighting, which tends to cluster gates during initial placement
even more densely than a pure quadratic metric.

Our solution is a special geometric pie-conditioning step we call
pre-warping [I I]. The idea is simple: we compute a non-uniform
gridding such that each grid row and column has the same number
of gates, and use this to spread the gates more uniformly, and later
rely on warping to repair any artifacts we introduce.

To build a non-uniform F'xP grid, the placement surface is swept
twice. First, it is swept from left to right, calculating the width of
each grid column as the distance swept until the next UP of the total
gate area has been seen. For example, if this grid is 20 x 20, each
step sweeps a sorted list ofthe gates until the next 1/20th of the gate
area has been seen. This process is repeated, except now sweeping

(a) Quadratic place (b) Pre-warp (c) Early warp

FIGURE 0. Progress of warping as measured by cost function
components in Powell outer oplimizaEon loop for ibm06 benchmark using
a 2x2 warping grid. Warping makes 5468 total calls to the cost function.

FIGURE 9. Example placement snapshot afler recursive decompositions.

from top to bottom. The result is the nonuniform grid shown in
Figure 6(lett). We then simply linearly stretch each IOW and col-
umn of this nonuniform grid, and the gates therein, to make it uni-
form, as in Figure 6(right). This is fast, and surprisingly effective.

4. Experimental Results
We have implemented these ideas into a prototype placer called
W m l . With all the steps of our algorithm defined, we first show
a few isolated WARPI examples to give a better sense ofjust how
grid-warping works. Figure I shows several snapshots of the
progress of top-level warping for the ibm06 benchmark from [17],
using a 4x4 warping grid. Figure 8 shows the cost function as the
nonlinear optimization mns at top-level for the same benchmark us-
ing a 2x2 grid. As we can see, warping arranges the gates in a more
uniform way (better congestion) while minimally degrading the
wirelength. This proves to be a good tradeoff, and sets up the recur-
sive decomposition to repeat the process in each warped unit cell.
Figure 9 shows the placement after a few recursion steps.

Table 1 shows detailed quantitative comparisons hetween WARPI
and several state-of-the-art published placers. We use the ISPD
benchmarks fiom [I71 (ranging h m roughly 10,000 to 200,000
gates) with 10% total white-space, uniform cell sizes, no routing
channels, and random pad locations. We run on a 1.6Ghz L m ma-
chine. Following [8], we also use DOMINO [4] for final legalization
after warping placement. Although we regard WARP1 as a still pre-
liminary implementation of an immature algorithm, our results are al-
ready entirely competitive with several more mahue placement
engines. In particular, WARPI averages 4% less wirelength than
GORDIAI-L-DOMNO [3,4] running in its maximum quality mode
(with several reweighting steps [IO]), and runs roughly 40% faster.

I) Mid-warp (e)% warp (r) Final warp gndedges

FIGURE 7. Progress through grid-warping flow for top-level for the ibm06 benchmark, using an 8x8 pre-warp grid, and a 4x4 unit slicing grid for warping.

355

As expected, we do a hit better against CAPO [IE], though we are
slower than this very fast mincut engine; similarly, we do slightly less
well than DRAGON’S annealingplacer [19], thoughroughly4X fast-
er. Comparisons with mPL2 are still in progress, but we note that
their most recent version [9] produces wirelengths about 2% better
than GORLXAN-L-DOMINO on a set of benchmarks that differ only
slightly (e.g., pad locations and channel spacings [20]). Another
promising obselvation is that, unlike other placers, W m l results are
consistently superior to GORDIAN on every benchmark in the 1SPD98
suite, without use ofany linear reweighting [IO]. We hope th is bodes
well for our ongoing effolts to improve the algorithm. We regard this
as an extremely satisfactory outcome for a new placement algorithm
which is still the subject of ongoing research.

5. Conclusions
Grid-warping is a new placement algorithm based on a simple idea:
rather than move the gates to optimize their location, we elastically
deform a model of the 2-D chip surface on which the gates have been
roughly placed, “stretching” it until the gates arrange themselves to
our liking. Deforming the elastic grid is a simple, low-dimensional
nonlinear optimization, and augments a traditional quadratic formu-
lation. A preliminary implementation, WARPI, is already competi-
tive with most recently published placers, e.g., 4% better wirelength,
40% faster than GORDIAN-L-DOMINO. We believe there is significant
potential in the fundamental “warping” concept for further improve-
ment. We are currently examining options for incorporating timing,
net-based congestion estimators and fixed pre-placement of macrob-
locks.

Acknowledgments
We thank Frank Johannes of the Technical Univnsity of Munich for
access to G~FXIIAN and DOMINO; Jason Cong of UCLA for discussions
about versions of the ISPD benchmarks, and Juergen Kohl of IBM for
illuminating discussions about quadratic placement. This work was
supported in part by an Intel graduate fellowship, the Semiconductor
Research Corporation, and the Pittsburgh Digital Greenhouse.

IBM16 3.72e7 7698.99 3.90e7
IBM17 4.96~7 7739.09 5.15e7
IBM18 3.73e7 8570.13 3.92e7
Ratio 1.00 1.00 1.04

References

9611.4 3.93e7 2234.98 3.66e7 16493.09
10798.3 5.14e7 2349.72 4.87e7 32464.90
14274.9 3.89e7 2536.15 3.60e7 28618.87

1.41 1.05 0.38 0.96 4.17

S . Kirkpatrick, C. D. Gelan Jr., and M. P. Vecchi, “Optimization by
simulated annealhg,” Science, vol. 220, no. 4598, 13 May 1983.
R. S . Tsay, E. Kuh, C. P Hsu, “PROUD: A sea-of-gates placement
algorithm,”lEEEDesign & Terl of Compurers, ~01.5, Dec. 1988.
Kleinhans, G Sigl, F. Jahannes, and K. Atttreich, “Gordian: VLSI
placement by quadratic programming and slicing optimization,” IEEE
Trnns. CAD, vol. IO, ”0.3, March 1991
K. Dall, E M. Johannes, K. 1. Aneich, “Iterative placement improve-
ment by network flow methods,” Pmc. IEEE Trans. CAD, vol. 13, no.
IO, Oct 1994.
H. Eisenmann, F. M. Johannes, ”Generic global placement and floor-
planning,”PmcACM/IEEEDAC, June 1998.
J. Vygen, “Algorithms for lqe-scale flat placement,” Pmc ACM/IEEE
DAC, June 1998.
G -is, R A p a l , Y K w , S. Sheh,“Multilevel hypergraph par-
titibning: A~l icat ionshVLSld~i~”PmcAC~EEED, lC. Junc 1997.
T. F. Cian-i. Cong, T. Kang, I. R . S h e r , “Multilevel optimization for
be-scale circuit placement.,” Pme. ACMEEE ICCAD, Nov. 2wO.
T. E Chm, J. Cong, T. Kon& J. R S b h a , K Sre, “An enhanced multilevel
algorithm fornrcUitpl-en<”pmC ACMEEEICCAD, Nov. 2003
G Sigl, K. Doll, F. M. laha”, “Analytical placement: A linear or a
quadratic objective function?” Pmc ACM/EEE DAC, June 1991.
S. M. Folwer, Plocemenl by Grid WaTing. Masteh Thesis, ECE, Cam-
cgie Mellon University, 2001.
R. H. J. M. Olten, “Eficient floorplan optimization,” Pmc. IEEE
ICCD, 1983.
P. S . Heckben, Fundamenlals of Terhm Mapping ondlmmage Warping,
Master’s Thesis, EECS, U.C. Berkeley, UCB/CSD-89/516, 1989.
2. Xu, VLSI Componenl Placement by Grid Wmping. Mastds Thesis,
ECE, Camegie Mellon University, 2003.
M. de Berg, M. van Kreveld, M. Over”, 0. Schwdopf, Computcr-
Ilona1 Geomeny: Algorithm and Applicorionr. Springer-Verlag, 1997.
W. H. Press, el al.. Numerical Recipcr in C: The A n of Scientific Com-
puling, Cambridge University Press, 1992.
C. 1. Alpert, ‘The ISPD98 circuit benchmark suite,” Pmc. ACMISPD,
April 1998.
A. Caldwell, A. Kahng, 1. Markov, “Can recursive bisection alone pro-
duce mutable placements?” Pmc. ACM/ZEEE DAC, June 2000.
M. Wang, X. Yang, M. S-fiadeh, ”Dragon 2WO: Fast standard-cell
placement for large circuits,” Pmc. ACM/lEEE ICCAD, Nov. 2000.
J. Cong, UCLA, private communication, Nov. 2003.

TABLE 1. Placement resulk wmparing Warp1 with Gordian, Capo, and Dragon.

356

