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Abstract 
Grid-warping is a new placement algorithm based on a strikingly 
simple idea: rather than move the gates to optimize their location, 
we elastically deform a model of the 2-0 chip surface on which the 
gates have been roughly placed, "stretching" it until the gates a- 
range themselves to our liking. Put simply: we move the grid, not 
the gutes. Deforming the elastic grid is a surprisingly simple, low- 
dimensional nonlinear optimization, and augments a traditional 
quadratic formulation. A preliminary implementation, WARPI, is 
already competitive with most recently published placers, e.g., 
placements that average 4% better wirelength, 40% faster than 
GORDIAN-L-DOMINO. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids-placement and routing. 
G.4 [Mathematical Software]: Algorithm Design and Analysis 

General Terms 
Algorithms, Design 

Keywords 
Algorithms, Placement 

1. Introduction 
Circuit placement remains a critical step in the physical realization 
of any large design. Iterative improvement methods such as anneal- 
ing [I] dominated in the 1980s. yielding to either quadraticianalyt- 
ical methods [2]-[6] or mincut methods 171 in the 1990s. The last 
few years have seen an especially vigorous competition to evolve 
efficient analytical methods (e.g., [5,6,8,9]) to handle larger 
netlists, produce better wirelengths or better timing, or run faster. 
Debates hetween and linear wirelength estimation, hetween flat and 
hierarchical placement strategies, and among altematives for em- 
bedding timing optimization, continue with equal vigor. Despite 
roughly two decades of impressive progress, the problem remains 
an important one to focus on. Much ofthe final performancesize, 
yield, cost, speed-f a modem IC implementation is determined 
by its placement. 

In this paper we describe a novel placement algorithm. We start 
with the well-known quadratic point-placement formulation, and 
improve the layout via recursive subdivision, hut most similarities 
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to prior methods end here. Our idea is strikingly simple: rather than 
move the gates to optimize their location, we elastically deform a 
model ofthe 2-D chip surface on which the gates have heen quickly 
and coarsely placed [I 1,141. Put simply: we move the grid, not the 
gates. Rather than move each point individually, we "stretch" the 
underlying sheet until the points arrange themselves to our liking. 
This strategy has three advintages: (1) deforming the elastic sheet 
is a surprisingly simple, 1ow:dimensional optimization problem; (2) 
freed ofthe need to rely on matrix solves as the sole engine ofplace- 
ment evolution, we can add optimization using powerful nonlinear 
methods, and choose any well-behaved objective function we like, 
for example, a combination of local congestion and exact half-pe- 
rimeter wirelength; (3) this very big design problem is transformed 
from a very high-dimensional optimization task into a very large 
numerical cost function with a small number of degrees of freedom 
that determine the deformation of the placement grid. We call this 
placement by grid-warping. 

As we shall see in the remainder of the paper, augmenting the tra- 
ditional high-dimensional linearized solution step with a low-di- 
mensional nonlinear improvement s t e p a l b e i t  one with an 
expensive-to-calculate objective function-h" out to be an at- 
tractive addition to make. However, the warped placement model 
creates some novel placement behaviors we must confront. For ex- 
ample, in most placers, the key problem is how not to incorrectly 
separate gates that wish to be close. In the warping model, this is 
less of a problem than determining how to make gates separate, 
since adjacent gates intrinsically stay close as the local surface de- 
forms. In the sequel, we show how to solve these problems with a 
mix of new geometric optimization steps, and reuse of some exist- 
ing heuristics from analytical placers. The overall StNCture of the 
placer is a quadratic analytical initial step serving to create a quick 
coarse placement in each (suh)region, followed by an improvement 
loop comprising the nonlinear numerical solution of a warping 
problem, followed by partitioning and recursion. 

The rest of this paper is organized as follows: In Section 2, we give 
a brief qualitative motivation and description of how grid-warping 
works. In Section 3, we formulate in detail all the steps ofthe grid- 
warping placement algorithm. In Section 4, we offer detailed com- 
parisons with several published placement algorithms to demon- 
strate the potential of our approach. Finally, Section 5 contains 
some concluding remarks and the directions of future work. 

2. Grid-Warping: Motivation and Approach 
Let us assume that we start with a conventional quadratic analytical 
placement [2,3,6], in which each gate to be placed is represented as 
a dimensionless point connected to a set of appropriately weighted 
2-point wires. Overall squared Euclidean wirelength is the ohjec- 
tive we minimize. (We shall describe more precisely our formula- 
tion in the following section.) This placement is, in some 
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(a) (b) (C) 

FIGURE 1. Basic warping concept. (a) An initial quadratic placement. (b) 
The placement grid itself is deformed, and each cell takes ‘ownership” of 
a new set of initially placed gates. (c) Deformation back lo the original 
grid ”warps” the gales into new locations. 
mathematical sense, “optimal” with respect to wirelength. Unfom- 
nately, however, cell sizes are not considered explicitly, overlaps 
are rampant, and 80% of the total gate area may be placed densely 
in a few hot spots comprising only 20% of the chip image. 

This is the departure point for all subsequent efforts to make prac- 
tical analytical placement techniques. How we formulate this le- 
galization problem distinguishes prior efforts, and determines the 
overall success of each algorithm. Historically, several options 
have been suggested. One can use spatial recursion, and locate a 
balancing bisecting cut [2, 31 or quadrisecting cut [6], then recur- 
sively place each subregion. This requires confinement of the gates 
in each partitioned region; this can he accomplished by computing 
new pseudo-pin locations on region boundaries [2,6] for strict con- 
finement, or adding center-of-gravity constraints for a looser con- 

as to spread out the placed gates in some optimal way. The gates, 
however, never move independently: they are each “spots” on the U- 

derlying elastic grid we use to model space. We deform this space di- 
rectly, the placement mass moves as an indirect consequence. 

Given just this simple overview, we can immediately see several 
important properties of grid-warping: 

8 Lowdimensional: The problem we optimize is how to deform 
the control points on the gnd. Thus, the number of degrees of h e -  
dom of this optimization task is both small, and rather loosely cou- 
pled to the size of the netlist. hdeed, we can use the exact same 
formulation for 1,000 gates or 100,000 gates. 

8 Flexibly nonlinear: Given that the size of the nonlinear prob- 
lem is modest, we have significant engineering choice in the 
form of the geometric warping transformations, and the overall 
objective function. In particular, since we are not restricted to a 
quadratic form (either classical [3, 61 or generalized [8,9]) we 
can directly optimize mehics regarded as mathematically d iE-  
cult, for example, exact half-perimeter wirelength. 

8 Expensive objective function: The grid warping itself is a prob- 
lem with a modest number of variables. However, each step of the 
nonlinear warping optimization must recalculate the objective 
function, which requires a full, flat evaluation of, for example, the 
global wirelength and local congestion. The essential tradeoff of 
grid-warping is to rely on the solution of a “small” nonlinear prob- 
lem which has a “large” cost function that may he evaluated many 
times. As we shall see, this turns out to he an amactive trade05 

finement [3]. Another approach is to modify the objective or 

to add repulsion forces dependent on the local placement density [SI 
to a standard quadratic formulation. A different approach exploits 
ideas from multilevel algorithms, recursively aggregatinddisaggre- 
gating the gates and handling gate overlaps directly, in a more gen- 
era1 formulation similar to quadratic programming [8,9]. 

All these approaches use quadratic wirelength, or a linearized ap- 

constraint formulation to address overlaps directly, One option is 8 Locality preserving: A critical problem in most place= is how 
not to separate gates that want to be nearby, while enforcing 
legalization constraints. Our “spots on an elastic sheet” model 
is intrinsically quite good on this metric, since it is the space 
itself that deforms, and gates cannot move independently. Of 
course, this is both a blessing and a curse. We often need the 
gates to move independently, to decongest a local hot spot, and 
this tums out to be a oarticular challenee in the desien of the 

proximation thereof [IO], and all except [8,9] use a large matrix 
salve as the essential engine for placement progress in each recur- 
sive or iterative solution step. Moreover, in all these approaches, the 
gates are the principal actors in the optimization: their (XJ) loca- 
tions are the degrees of freedom we seek to optimize. 

In contrast, in our approach it is the space on which the gates have 
been quadratically initially placed that is the focus of optimization. 
Figure 1 illustrates the hasic idea. It is easiest to conceptualize ‘karp- 
ing” as a uniform grid above the placement surface, with each gnd in- 
tersection defining a control point. Warping elastically moves these 
control points to approximate some continuum deformation of the 

~ - 
geometric warping transformations. 

To expand briefly on this last point, the illustration of Figure 1 is a 
good conceptual model of grid-warping, but proves to he a poor mcd- 
el for the actual warping transformations. The need for nearby gates 
to be able to separate more independently is a significant problem in 
this model, one we solve in the following section. Nevertheless, the 
idea of a sheet of ‘ b i t ”  cells deforming to “acquire” new sets of 
gates, then “dragging” them hack to their original home location, is a 
good mental model for the main idea of grid-warping. 

3. Grid-Waroing: Detailed Formulation 

those gates hack to its original location. Roughly speaking, the grid 
deforms, grabs the elastic placement sheet, and stretches it as it re- 
h v n s  to its undeformed state. Thus, there are two essential operations: 
warping determines how the original grid deforms; inverse warping 
determines how each (XJ )  gate location in the original placement is 
transformed back into a new location. 

3.1 Quadratic Initial Placement 
To put the initial “spots on the elastic sheet”, we use a standard qua- 
dratic analytical placement formulation. A circuit netlist is represent- 
ed for as a weighted hyper-graph, with m = lhw vertices 
corresponding to gates and n = liyl hyper-edges corresponding to 
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others remain movable. Each net n is a set of pins and has a weight 
wr For each gate i, two variables (xi, yi) represent the x- and y-coor- 
dinates, respectively, ofthe center ofthe cell. As usual, a net connect- 
ingkgatesyields aclique inthe graph. A weight factor I&-1) isused 
to prevent large nets from dominating the objective function. 

We place to minimize squared Euclidean wirelength, so the distance 

between two connected gates i and j is ( x i  ~ x j )  .+ (yi - y j )  . The 

twodimensional problem is decomposed into independent horizontal 
and vertical placements, each minimizes the classical quadratic form: 

2 2 

(1) 
l r  r z x  A x + b  x+cons tan t  

where A is a symmetric and positive definite m x m matrix representing 
weighted connectivity, b is an mdimensional vector representing tixed 
pad locations, and x (ory) is an m-dimensional vector representing the 
coordinates to be solved for. This has the familiar optimal solution 

x = A-lb,  obtainable via pre-conditioned Conjugate Gradients 

A common optimization here is linear reweighting [IO] to better ap- 
proximate a linear, rather than quadratic wirelength. This requires a se- 
quence of additional linear solves (typically < 5).  These extra solves are 
a consequence of the fact that the quadratic wirelength form, and its lin- 
ear solution, are among the few optimization formulations that can 
scale to large placement problems. Grid-warping has no such limita- 
tion: we move space itselfwith a nonlinear model, and optimize balf- 
perimeter wlrelength explicitly. Hence, we do no linear reweighting. 
Our quadratic placement serves as the initial placement of the “spots on 
the sheet” for the subsequent warping improvement step. 

3.2 Grid Warping with a Slicing-Style Unit Grid 
The illustration of Figure I is a good starting point for how to for- 
mulate effective warping, but as we discovered, it has some signif- 
icant limitations [I  I]. Let us first describe the advantages of this 
approach. The idea is to impose a regular unit grid on the surface of 
the placement, and regard the (x,y) intersections of the gridlines in- 
side the placement, and at its periphery, as movable control points. 
Our goal is to arrange these control points under some suitable ob- 
jective function so that an inverse warping transformation will 
“pull” an appropriate set of gates back to each original unit cell’s 
location, and arrange these gates suitably inside each unit cell. 

We can immediately use ideas from quadratic placement to formu- 
late this problem: regard each control point as a movable object, and 
each edge between control points as a quadratic spring. Optimiza- 
tion re-weights each spring, thus changing the placement of the 
control points after a standard quadratic placement solve. Thus, an 
outer nonlinear optimization loop adjusts the weights on the edges, 
while an inner quadratic loop solves for the locations of the control 
points after each weight perturbation, and computes the appropriate 
gate location changes under some as-yet-to-he-described warping 
transformation. This problem is easy to formulate, and has attrac- 
tive complexity: a kxkunit grid has Z(k+ 1) control points to be 
solved for, driven by changes in the weights on 2k(k + 1 )  edges. A 
4x4 grid, for example, creates a 40-variable nonlinear optimization. 

Another extremely atuactive feature of this formulation is that the 
placement surface is g u m t e e d  to be partitioned into a set of equiva- 
lence classes--deformed unit grid ce l l s tha t  a~ each a convex quad- 
rilataal (or, at worss a degenerate hiangle [I l l ;  see Figure2). 
Transformation from one convex quadrilatenl to anothes is a well-stud- 
ied problem in computer graphics [I31 and we can exploit any of sev- 
eral existing options for the required inverse warping transformation. 

2 

FIGURE 2. Example warping from uniform 4x4 unit grid 

............... 

................................ 

FIGURE 3. Uniform warping grid poorly handles the eccentric, off-axis 
placement mass; adjacent gates cannot easily shear in opposite directions. 

What, then, is the problem? The problem, surprisingly, is that this 
formulation of the elastic grid is “too” continuous. It is extremely 
difficult for two points place& close together to move in opposite di- 
rections. This is essential for the unfortunately common case in 
Figure 3, where the initial placement mass is a highly eccentric el- 
lipse with its major axis at a large angle to the coordinate axes. 
Nearby gates may warp into adjacent unit cells, but be required to 
move in opposite directions. This uniform 4-connected mesh model 
is poor at supporting such “shearing” motions during placement. 
Implementations based solely on such a grid model perform poorly 
on wirelength [ I  11. 
There is a simple and elegant modification to the basic unit grid that 
rectifies the problem. We impose now a 2‘,2‘grid, but regard the 
grid lines as a set of conventional slicing cuts, as from a slicing tree 
[12].  Figure 4 shows the idea, with slight dislocations of the grid 
edges added to explicitly highlight the slicing structure. More im- 
portantly, given a fixed horizontalivertical ordering for the cuts 
(i.e., first cut topto-bottom), it is also simple to allow the slices to 
be arbitrary oblique cuts, as in Figure 4(b). We need exactly 2 vari- 
ables to describe each cut-line, and these can be specified as relative 
hctional-valued distances in [0,1] along the edges of the parent re- 
gion being sliced. Orthogonal cuts yield rectangular regions, ob- 
lique cuts yield quadrilateral regions, and we again divide the space 
into an equivalence partition of convex quadrilaterals. The 2 x2 
case, with exactly 6 optimization variables, appears in Figure 4(c). 
The 2kx2k slicieg-style unit grid requires 2(4 ~ 1 )  variables. 
Thus, the 4x4  grid requires only 30 variables whose values are to 
be optimized. We shall solve for these with a novel nonlinear for- 
mulation, described in the next two sections. 

k 

FIGURE 4. SIC ngsry e warp ng gno formdabon [a) 4x4 m I gno (a, 4x4 
gno after warp ng (CJ Opbmizatlon vanaales .abe eo for 2x2 s .ung gna 
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3.3 Grid Warping Unit-Cell Transformation 
Our next task is actually to warp the space, thereby allowing each 
unit cell in the grid to move to overlap and “acquire” a new set of 
gates. Warping is physically a three-step process: first, we change 
the location of each cutline in the slicing-style unit grid, allowing 
each unit cell to deform and overlap different gates; second, we map 
all the gates newly overlapped hack to a new location inside the un- 
deformed original unit cell; third, we recalculate an objective that 
measures how well the gates have rearranged themselves. Thus, the 
next problem is the geomeny of how one Unit cell is warped. 

Our solution is shown in Figure 5. The computer graphics literature 
is rich with examples ofways to transform between a convex quad- 
rilateral and a unit square, e.g., [l3]. We obtained the best results 
with an inverse bilinear transform [14]. Bilinear mapping [I31 is a 
simple, proportional geometric transform, commonly defined as a 
mapping of a square into a quadrilateral. The forward transform 
preserves lines which are horizontal or vertical in the source square, 
and preserves equispaced points along such lines. We actually need 
the inverse bilinear mapping to map back from our warped unit cell 
to the uniform grid. The inverse mapping can be derived by solving 
two simple quadratic equations, as in Figure 5. 

One implementation detail worth noting is how we efficiently de- 
termine which gates are ”acquired by each warped cell, as optimi- 
zation deforms each unit grid. Given that we expect a large number 
of gates, and a large number of evaluations of our overall objective 
function, this must be done very efficiently. We use a modified 
scanline algorithm (151 to associate each placed gate with the 
unique warped unit cell that overlaps it. The edges of the warped 
cells determine the boundaries of each unique warping transfonna- 
tion; we treat them as the edges of a polygon, labeled so that we can 
always tell “inside” and “outside”. We could use a conventional 
scanline and add each individual gate location, as well as the 
warped unit cell edges, to the algorithm, and advance the scanline 
gate by gate. This is, however, much too inefficient, especially 
since we have many gates, hut a relatively small number of grid 
edges. Hence, we partition the placement into yet another grid we 
refer to as the source grid. We now use a block-oriented scanline 
which advances row-by-row up the grid, and visits the gates grid by 
grid, left to right across the columns [14]. The basic idea is that 
many of these source grid cells will be completely contained in one 
warped unit cell, and so we know we can apply the same inverse bi- 
linear transform to each gate. Only a relatively small number of 
source grid cells will actually cross the edge of a warped cell, and 

Inverse 
Bilinear 
Transform 

Soke for (U,”): Dls  + Ev + F =  0 

vhere A’=o/-bc B = e x - o ~ h - d & c f - b g  C=gxsy+ch-dg 
D = og-a E = ex-qy+clhcfe+J+bg F = Jx-bytbh-df 

A d +  Bu + C= 0 

and ~=x,-x,I-xo,+x,, e=y,-y,,-y,, +yo 
b = -1, + xID f = y  (0 + Y,a 

g=-y + e = ‘XI( +xn ’ DI Yo, 
d = x ,  h =yW 

FIGURE 5. Transfoming an “acquired” gate at (x,y) in a warped unit cell 
backto location (u,v) inside the original unit cell via inverse bilineartransfom. 

so only those cells require the detailed process of disceming exactly 
which side of the cutline edge they belong to, and thus which in- 
verse bilinear transform to apply to map each gate back to some 
original unit grid. 

3.4 Warping Objective Function and Optimizer Engine 
We now know how to represent the placement space as a slicing- 
style unit grid, and that this grid can he deformed by specifying the 
values of a modest number of variables (e.g., 6 for a 2x2 grid, 30 for 
a 4x4 grid, etc.). We now need to choose an objective function to 
optimize, and a nonlinear solution method. 

For the solver itself, we use a classical Brent-Powell engine, in the 
style of [16]. The choice is motivated by the fact that our problems 
are small, and we lack derivatives or, indeed, guarantees of conti- 
nuity of any objective function, given the discrete nature of the 
warping process. A small change in the variables specifying the lo- 
catiodorientation of each slicing cutline can change the shape and 
location of the deformed quadrilateral of each warped unit cell, 
which in turn can add or remove any number of discrete gates from 
this cell. A derivative-kee optimizer is a good choice here, and we 
find the basic Brent-Powell formulation performs well, even though 
it is only a local optimizer. We start the optimization with each cut- 
line variable set to value 0.5, i.e., with a perfectly uniform grid of 
unit cells. The engine converges to a good nearby local optimum, 
usually making several thousand calls to the objective function. 

For the objective function, we use a weighted linear combination of 
wirelength and congestion. Here, we can see again one of the ad- 
vantages of using a nonlinear optimization to evolve the placement: 
we can use any well-behaved functional form here: 

(2) 
We use half-perimeter for the wirelengh, and a penalty function for- 
mulation for the congestion that reuses the source grid mentioned 
earlier. Each source cell i j  contributes a penalty C,j based on 
whether the number of gates mapped to its region exceeds a speci- 
fied capacity (the total number of gates m divided by the number of 
S O U I C ~  cells lq ; call this K ). Let mg be the number of gates in cell 
ij, then: 

Cost = Wirelength + W x  Congestionpenalty 

2 
c, (m,-K) if mij E [o. 85K,o. 95K] U [I. 05K,i. 15~$’3) I 2  M+(mij -  K) otherwise 

C..= 

Regions with far too many, or too few gates, always incur a large 
baseline penalty (M) which grows as demand differs from capacity. 
However, as we near the capacity, the penalty is moderated, and 
within 5% of the correct capacity, it vanishes. Warping deforms 
space so that, aft& each gate is mapped to its new location, each 
unit grid has roughly the same number of gates in it, while striving 
to ensure the wirelength is not too compromised. 

3.5 Decomposition and Recursion 
Grid-warping still relies on recursive decomposition, since we need 
to keep the size of the warping grid small enough for quick nonlin- 
ear optimization. Thus, each cell in the slicing-style unit grid be- 
comes a new problem for placement by grid-warping. We lypically 
use either a 2x2 or a 4x4 slicing-style unit grid for warping. 

This means that we need to formulate a way to confine the cells in- 
side each decomposed region, so that we can again run an initial 
quadratic placement to begin warping each subregion. To do this, 
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Pre- 
Warping 

FIGURE 6. Pre-warping he initial quadratic placement with a 20x20 
nonunifon gridding. 

we propagate pins from other gates in external regions to the bound- 
ary of the region being optimized, using the method from [6]. 
Roughly speaking, we propagate each extemal gate to the closest 
point on the boundary of the rectangular region we are optimizing, 
and proceed forward with optimizing the gates in each region, con- 
nected now to new pins on its boundary. 

We also borrow one other technique from prior methods the use of 
mincut partitioning to disambiguate gates placed v n y  close to OUT 
cutlines [3]. We use the hMetis engine [7] in regions ranging from 
10.25% ofthe dimension of the unit cell. Note that 2x2 grid-warping 
is essentially a quadrisecting cut, albeit one with the twin novelties of 
cutlines at arbitrary angles, and no requirement that all the cuts meet 
at a common central point. An advantage of warping is that we free 
the quadrisection (or even higher-dimensional cut) step from the ar- 
tificial consttaint that each cut is axis parallel. Quadratic placement 
certainly does not arrange gate clusters so that they form perfect axis- 
parallel rectangular blocks, and we see no reason to assume that the 
recursive balancing cuts need to he similarly restricted. 

3.6 Geometric Pre-Conditioning: The Pre-Warping Step 
The algorithm as defined so far is complete, but not optimal. Exper- 
iments showed that the success of warping is extremely dependent 
on the density of the initial quadratic placement: a placement with 
very dense hot-spots and large empty regions is quite difficult to 
warp to achieve a more uniform distribution of gates across the chip 
surface. This is, in fact, another reason why we avoid linear re- 
weighting, which tends to cluster gates during initial placement 
even more densely than a pure quadratic metric. 

Our solution is a special geometric pie-conditioning step we call 
pre-warping [ I  I]. The idea is simple: we compute a non-uniform 
gridding such that each grid row and column has the same number 
of gates, and use this to spread the gates more uniformly, and later 
rely on warping to repair any artifacts we introduce. 

To build a non-uniform F'xP grid, the placement surface is swept 
twice. First, it is swept from left to right, calculating the width of 
each grid column as the distance swept until the next UP of the total 
gate area has been seen. For example, if this grid is 20 x 20, each 
step sweeps a sorted list ofthe gates until the next 1/20th of the gate 
area has been seen. This process is repeated, except now sweeping 

(a) Quadratic place (b) Pre-warp (c) Early warp 

FIGURE 0. Progress of warping as measured by cost function 
components in Powell outer oplimizaEon loop for ibm06 benchmark using 
a 2x2 warping grid. Warping makes 5468 total calls to the cost function. 

FIGURE 9. Example placement snapshot afler recursive decompositions. 

from top to bottom. The result is the nonuniform grid shown in 
Figure 6(lett). We then simply linearly stretch each IOW and col- 
umn of this nonuniform grid, and the gates therein, to make it uni- 
form, as in Figure 6(right). This is fast, and surprisingly effective. 

4. Experimental Results 
We have implemented these ideas into a prototype placer called 
W m l .  With all the steps of our algorithm defined, we first show 
a few isolated WARPI examples to give a better sense ofjust how 
grid-warping works. Figure I shows several snapshots of the 
progress of top-level warping for the ibm06 benchmark from [17], 
using a 4x4 warping grid. Figure 8 shows the cost function as the 
nonlinear optimization mns at top-level for the same benchmark us- 
ing a 2x2 grid. As we can see, warping arranges the gates in a more 
uniform way (better congestion) while minimally degrading the 
wirelength. This proves to be a good tradeoff, and sets up the recur- 
sive decomposition to repeat the process in each warped unit cell. 
Figure 9 shows the placement after a few recursion steps. 

Table 1 shows detailed quantitative comparisons hetween WARPI 
and several state-of-the-art published placers. We use the ISPD 
benchmarks fiom [I71 (ranging h m  roughly 10,000 to 200,000 
gates) with 10% total white-space, uniform cell sizes, no routing 
channels, and random pad locations. We run on a 1.6Ghz L m  ma- 
chine. Following [8], we also use DOMINO [4] for final legalization 
after warping placement. Although we regard WARP1 as a still pre- 
liminary implementation of an immature algorithm, our results are al- 
ready entirely competitive with several more mahue placement 
engines. In particular, WARPI averages 4% less wirelength than 
GORDIAI-L-DOMNO [3,4] running in its maximum quality mode 
(with several reweighting steps [IO]), and runs roughly 40% faster. 

I) Mid-warp (e)% warp (r) Final warp gndedges 

FIGURE 7. Progress through grid-warping flow for top-level for the ibm06 benchmark, using an 8x8 pre-warp grid, and a 4x4 unit slicing grid for warping. 

355 



As expected, we do a hit better against CAPO [IE], though we are 
slower than this very fast mincut engine; similarly, we do slightly less 
well than DRAGON’S annealingplacer [19], thoughroughly4X fast- 
er. Comparisons with mPL2 are still in progress, but we note that 
their most recent version [9] produces wirelengths about 2% better 
than GORLXAN-L-DOMINO on a set of benchmarks that differ only 
slightly (e.g., pad locations and channel spacings [20]). Another 
promising obselvation is that, unlike other placers, W m l  results are 
consistently superior to GORDIAN on every benchmark in the 1SPD98 
suite, without use ofany linear reweighting [IO]. We hope th is bodes 
well for our ongoing effolts to improve the algorithm. We regard this 
as an extremely satisfactory outcome for a new placement algorithm 
which is still the subject of ongoing research. 

5. Conclusions 
Grid-warping is a new placement algorithm based on a simple idea: 
rather than move the gates to optimize their location, we elastically 
deform a model of the 2-D chip surface on which the gates have been 
roughly placed, “stretching” it until the gates arrange themselves to 
our liking. Deforming the elastic grid is a simple, low-dimensional 
nonlinear optimization, and augments a traditional quadratic formu- 
lation. A preliminary implementation, WARPI, is already competi- 
tive with most recently published placers, e.g., 4% better wirelength, 
40% faster than GORDIAN-L-DOMINO. We believe there is significant 
potential in the fundamental “warping” concept for further improve- 
ment. We are currently examining options for incorporating timing, 
net-based congestion estimators and fixed pre-placement of macrob- 
locks. 
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