
From Finance to Flip Flops: A Study of Fast Quasi-Monte Carlo Methods 
from Computational Finance Applied to Statistical Circuit Analysis

 Amith Singhee, Rob A. Rutenbar 
Dept. of ECE, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213 USA

{asinghee,rutenbar}@ece.cmu.edu

Abstract
Problems in computational finance share many of the characteristics
that challenge us in statistical circuit analysis: high dimensionality,
profound nonlinearity, stringent accuracy requirements, and expen-
sive sample simulation. We offer a detailed experimental study of
how one celebrated technique from this domain -- Quasi-Monte Carlo
(QMC) analysis -- can be used for fast statistical circuit analysis. In
contrast with traditional pseudo-random Monte Carlo sampling,
QMC substitutes a (shorter) sequence of deterministically chosen
sample points. Across a set of digital and analog circuits, in 90nm and
45nm technologies, varying in size from 30 to 400 devices, we obtain
speedups in parametric yield estimation from 2X to 50X.

1.  Introduction
Continued device scaling has dramatically increased the statistical
variability with which tomorrow’s circuits must contend. In a few
special cases, we have analytical methods that can give us the de-
terministic answers we seek, e.g., optimal sizing and threshold as-
signment in combinational logic under statistical yield and timing
constraints [1]. Unfortunately, such analytical solutions remain
rare. In the general case, some combination of complex statistics,
high dimensionality, profound nonlinearity or non-normality, strin-
gent accuracy, and expensive performance evaluation (e.g., de-
tailed simulation) thwart our analytical aspirations. What remains
are the Monte Carlo methods [2].

The first contribution of this paper is the simple observation that there
is another application domain characterized by many of the same
technical challenges we face with semiconductors. That domain is
computational finance. Indeed, the parallels are striking. There are
celebrated analytical results, for example, the Nobel Prize winning
Black-Scholes model for option pricing [2]. But there is also the re-
ality that, as financial instruments have become ever more complex
and subtle, analytical models have given way to Monte Carlo as the
only practical analysis method [2]. The problems are not only very
nonlinear, they can also be quite large: pricing a portfolio of options
or securities over a several year horizon can create problems with
1000+ statistical variables [3]. Accuracy is often required to the level
of one basis point (a relative accuracy of 10-4) under impressively
short time constraints (minutes, in the case of real-time arbitrage).

The natural question becomes: can we redeploy any of these meth-
ods, moving them from finance to flip flops? In particular, can we
retarget recent Monte Carlo methods developed for quickly pricing
complex financial instruments, to the problem of estimating statis-
tical quantities of interest in deeply scaled circuits? To be concrete:
does the deep statistical structure of pricing a 30-year mortgage
backed security resemble, in any practical and exploitable way, the
structure of random dopant fluctuations in an SRAM column?

As it turns out, the answer is “yes”. In this paper we offer a rigorous
experimental study of one of the most celebrated methods devel-

oped in computational finance in the last decade: the Quasi Monte
Carlo (QMC) method. As with all Monte Carlo (MC) methods, the
goal is to converge to the required accuracy as rapidly as possible,
with as few sample simulations as possible. Although the underpin-
nings of QMC are not new [4], recent improvements in both theory
and implementation complexity, along with the empirical discovery
that these methods are unexpectedly efficient at high-dimensional
statistical integral evaluation, propelled these techniques onto cen-
ter stage in the computational finance world [5].

Unfortunately, like all complex mathematical methods, correct ap-
plication requires adapting the strengths of the methods to the spe-
cifics of the problem. In other words, we cannot apply these ideas
blindly and expect to extract maximum (or, perhaps, any) benefit.
In the remainder of the paper, we review the convergence theory for
both standard MC and QMC methods, and show how to correctly
apply these ideas to a range of statistical circuit analysis problems. 

2.  Standard Monte Carlo Convergence Behavior
MC methods are typically used to approximate some integral of the
following standard form:

, (1)

where  is the -dimensional unit cube, and  is some
integrable function. The MC approximation is given by

, (2)
where  are  independent and identically distributed samples
drawn from the s-dimensional uniform distribution . Prob-
lems with different variable ranges, arbitrary statistical distributions,
arbitrary nonlinearity, etc., can always be transformed into this ca-
nonical integral form, i.e., these can always be included in our func-
tion , without any loss of generality. Thus, the problems we discuss
are all defined over the s-dimensional unit cube. Parametric yield
computation for circuits also follows the form in (1). Given this, let
us look at the convergence properties of standard MC. 

If  has finite variance

(3)

the mean square error of the MC integral approximation is given as
(4)

Hence, the expected MC error is . The advantage of stan-
dard MC is that this error does not depend on the dimensionality .

There is another way to look at the error, using the concept of dis-
crepancy. Fig. 1 shows 200 uniformly distributed pseudo-random
points in . The points are, indeed, uniformly distributed, but
geometrically, they are not equally separated. We can see that the
points exhibit both clumps and empty holes. Discrepancy is a quan-
tity used to reflect this geometric non-uniformity of points in a set.
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There are several definitions of discrepancy [6], the simplest being
the Star Discrepancy, or the -discrepancy:

, (5)
where  is any s-dimensional hyper-rectangle with one corner
at 0.  is the volume of , and  is the number of points
inside . Geometrically speaking, the star discrepancy measures
how well the (relative) volume of any origin-anchored hyper-rect-
angle in the unit cube is approximated by the fraction of sample
points that lie in that volume. Surprisingly enough, samples from
the standard uniform distribution  may show extreme-
ly large discrepancy, as Fig. 1 so clearly illustrates.

The Koksma-Hlawka theorem [7] quantifies this effect. If  has a
suitably bounded variation  then the absolute integration error
is itself bounded by the star discrepancy, as:

(6)

(  itself has a rather technical definition; see [8].) The larger im-
plication is that sample points with lower discrepancy can produce
integral estimates with lower errors. 

The first obvious question is: what is the discrepancy for standard
Monte Carlo? Chung [9] showed that, for uniform points

,

(7)

Thus, we see an echo of the familiar  convergence behavior.
But the real question is this: are there sampling sequences that guar-
antee a better, lower discrepancy? The answer is “yes”.

3.  Quasi-Monte Carlo
Sequences with asymptotically superior discrepancy exist and are
known as Low Discrepancy Sequences (LDSs). Fig. 1 also shows
200 points drawn from such a sequence (points from a so-called
Sobol’ sequence[10]). The higher uniformity, as compared to pseu-
do-random points, is obvious. Theoretically, the discrepancy bound
for these points is

(8)

and they possess the surprising attribute that they are generated de-
terministically, in contrast to the standard pseudo-random sampling
of classical MC. Monte Carlo performed using samples generated
deterministically from a low discrepancy sequence is known as Qua-
si-Monte Carlo (QMC). LDSs are also known as Quasi-Random Se-
quences. The overall idea is conceptually simple: rather than
randomly sampling the space, we try to “fill the space” with samples
that are as geometrically, homogeneously equidistant as possible. 

Comparing the bounds of (7) and (8) gives us some sense of the

possible advantages, and challenges, of the method. Comparing de-
nominators, we see the tantalizing possibility of linear convergence
for QMC. But comparing numerators, we see that the advantages of
QMC may, for larger problems (large dimensionality s), only make
themselves apparent after a huge number of sample points n. Luck-
ily, in many empirical situations, this turns out not to be the case;
we shall return to this in Section 5.

The first construction of an LDS for all problem dimensions  was
given by Halton in 1960 [4]. Other constructions have been intro-
duced by Sobol’ [10], Faure [11], Niederreiter [12] and Niederreiter
and Xing (NX) [13]. Space does not permit any detailed survey of
the different strategies here; see [2] for a survey. Niederreiter
showed a general construction principle for one large and popular
class of LDSs called (t,s)-sequences[6]. We use one particularly
successful set of (t,s)-sequence, called Sobol’ point, for our experi-
ments.

4.  Sobol’ Points
Sobol’s construction, introduced in [10], is one of the most popular
in current use. Sobol’ points perform significantly better than the
original Halton points in terms of discrepancy. Also, empirical re-
sults [2][14] suggest that Sobol’ points perform better than Faure
points—at least, for modern computational finance applications.
The NX points promise to have significantly better discrepancy
[13]. However, their implementation is significantly more complex
and, currently, not flexible enough for an arbitrary problem dimen-
sion , requiring the solution of a set of thorny number theoretic
problems for each dimension. For all these reasons, we choose the
Sobol’ points as our representative LDS. Let us briefly describe
their construction.

We use the implementations in [15] and [16]. First, suppose we are
working in just one dimension, i.e., . We choose one primi-
tive polynomial [17] in the field  (coefficients from {0,1})

(9)
We also choose odd integers , such that . De-
fine direction numbers

, (10)
and their recurrence relation (in Boolean operations)

, (11)

This gives us a set of direction numbers  for . To compute
the -th Sobol’ value , we use

, (12)

where  is the Gray code representation of . Using the
Gray code representation is must faster than using the binary repre-
sentation, since only one bit changes in the Gray code from  to

, making the operation (12) incremental (only one XOR). This
reshuffling does not affect the asymptotic discrepancy.

For a general problem with dimensions, we now choose  dif-
ferent primitive polynomials and generate sequences for each coordi-
nate, using the above method. The polynomials are chosen
sequentially with non-decreasing degree , for increasing dimension.

One additional problem is how to choose the initial  values for
each dimension . Let us name these as . Also, renaming the
direction numbers as , where  is the dimension , we
define  as the first bit after the binary point of . Set
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, where  and (13)
Then, according to Sobol’s development in [10], the condition

(14)
gives better uniformity. Hence,  are chosen to satisfy (14) (see [16]).

A generator for Sobol’ points is relatively straightforward to imple-
ment, requiring mainly bit-level Boolean operations, and relatively
little of the number-theoretic difficulty of some of the other LDS
strategies. However, all LDS schemes suffer from some idiosyncra-
sies when applied to higher dimensional problems, requiring addi-
tional finesse in the way we map our statistical integration problems
into a viable QMC formulation. We treat these problems next.

5.  Minimizing QMC Integration Error: 
Effective Dimension & LDS Pattern Effects
Looking only at the asymptotics, the  error bound of
QMC should show no runtime improvements over the 
bound of conventional MC for very large  and feasibly large .
However, QMC has been seen to outperform MC even for problems
with very large , e.g., IBM’s 1439-dimensional derivative-pricing
experiments of [3]. This anomalous, empirical success has been
largely explained using the concept of effective dimension [8]. We
review the concept here, because it strongly impacts the manner in
which will map our circuits problems into a successful QMC form.

Let us first review the concept of the Analysis of Variance (ANO-
VA) Decomposition. The decomposition expresses a function 
as a sum of simpler functions , each depending on a subset of
the inputs . For any subset , let  be
its complementary set  and let  be the
sub-vector of coordinates of  corresponding to . Also, let  de-
note the unit cube in the dimensions that belong to . Then, for any
square integrable function , the ANOVA decomposition is

, (15)
where the ANOVA terms follow the recursion

. (16)
and are orthogonal. Hence, the variance of  can be written as

, where (17)
Then, taking  as a selected probability value close to 1, we have
the following definitions.

Definition 1. The effective dimension of , in the superposition
sense, is the smallest integer , s.t. .

Definition 2. The effective dimension of , in the truncation sense,
is the smallest integer , s.t. .

Hence,  is the number of leading dimensions, in a fixed ordering,
that account for most of the variance in the function, while  is an
indicator of whether only low-dimensional interactions dominate
the variation in . For example,  has truncation
dimension 4, but superposition dimension 1.

Effective dimension is relevant to us for two important reasons.
First, it is widely invoked to help explain why QMC has been so
strikingly efficient (e.g., 150X speedup[3]) on large financial prob-
lems. These tasks seem to have low effective dimension; for exam-
ple, in a pricing task with a long time horizon. money today is much
more valuable than money tomorrow, which reduces the impact of
many dimensions of the problem. It is an open question if this be-
havior obtains in circuit analysis. Second, effective dimension is es-
sential to optimally map problems into QMC form, which we

discuss next.

Ideally, it should not matter how we assign problem variables to el-
ements in our LDS points . Suppose we have, say,
100 random threshold voltages to sample. It should not matter if any
particular  voltage is mapped to x1, or x37, or x99. Unfortunate-
ly, this is not the case. All LDSs are imperfect, and usually show de-
graded uniformity as dimension increases. This takes the form of
pattern dependencies [8], illustrated in Fig. 2. If we take two arbi-
trary elements (x1,xj) from point , we should expect
to see a low-discrepancy 2-D projection such as Fig. 1. This is not
always the case, as shown for two LDSs in Fig. 2.

We can finesse this problem by trying to assign the most “impor-
tant” statistical variables to the lower, less pattern sensitive coordi-
nates of x. More formally, in the language of ANOVA, we can write

, (18)

where  is the variation of  taken as a -dimensional func-
tion [18], and  is the star-discrepancy of the -dimensional
points obtained by projecting the sequence onto the coordinates in

. This suggests that if  has low , then, because of lower ,
QMC will perform better than MC. but to deal with the pattern ef-
fects of Fig. 2. we should map the input values  to the coordi-
nates of the LDS such that subsets  with large  ( ) and
small  coincide, and those with large  and small  co-
incide. If we can do this, we can still achieve very low error.

For problems with a time-series random-walk structure, there are
good techniques for mapping [19], but these are not applicable in
the case of circuit yield analysis. Principal Components analysis
(PCA) is obviously useful, but even here, we still need to be able to
best map the problem to a QMC form after PCA has completed. We
can suggest two strategies:

1. The designer selects the parameters that most affect the relevant
performance metrics, and assigns these to the lower coordinates of
the QMC.

2. The global sensitivity of the metric to circuit parameters is used a
measure of their “importance”, and the parameters are sorted in de-
creasing order of importance. This sorted list is then mapped to the
corresponding LDS coordinates.

We concentrate on the latter method here. The measure of sensitiv-
ity that we use is the absolute value of the Spearman’s Rank Corre-
lation Coefficient [20]. This is similar to Pearson’s Correlation, but
more robust in the presence of non-linear relationships. Suppose 
and  are the ranks of corresponding values of a parameter and a
metric, then their rank correlation is given as:

(19)
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This approach has a two-fold advantage. First, it helps reduce the
truncation dimension, since all the important dimensions are the
first few. Second, the first few dimensions of the Sobol’ points are
more uniform for small [2][19], and this approach helps map the
important subset of variables (large ) to the dimensions with
good uniformity (small ). The rank correlation can be com-
puted by first running a smaller MC run. For multiple metrics, we
use the sum of the rank correlation values across all the metrics.

6.  Randomized QMC
We now confront one final problem: the error bound (6) for QMC
is very difficult to compute. Also, it is only an upper bound on the
error: it does not provide a practical way to measure the actual er-
ror, if the exact solution is unknown. In a standard MC scenario, we
would simply run several different pseudo-random samplings, and
compare them. But QMC generates deterministic samples: each run
yields the same samples. To address this, Owen [21] introduced
Randomized QMC (RQMC) to estimate the variance, using so-
called scrambled versions of the same LDS. Let  and

 denote the original LDS and a randomly scrambled
version, respectively. Let  be the -th coordinate
of . Then,

, and  for (20)

where  are random permutations of , chosen
uniformly and mutually independently. Hence, this method scram-
bles the digits of the original LDS. Other methods have also been
introduced [22]. All these randomized sequences maintain the uni-
formity properties of the original LDS. 

Owen’s original scrambling uses a large amount of memory.
Hence, we use a more scalable, but less powerful, version described
in [23].

7.  Experimental Results for Circuit Analysis
In this section, we compare the performance of the scrambled
Sobol’ points against the performance of standard Monte Carlo, on
three different testcases. First, we make some observations about
our MC and RQMC implementations:

Since LDSs perform better when the first few points are
skipped, we skip the first  Sobol’ points [14].

A Linear Congruential Generator (LCG) [2] (drand48() in C)
was used to generate the pseudo-random sequences for standard
MC because of its widespread popularity. Variance results in
[24], comparing LCG with a Generalized Feedback Shift Regis-
ter Generator (GFSR) [25], do not show significant improve-
ment for GFSR, relative to the improvement with RQMC.

The standard Box Muller method for generating normally dis-
tributed variates is inaccurate, especially for a large number of
samples [26]. Hence, an inverse transform method was used.

Now, we describe the testcases and the experiments. All samples
were evaluated using detailed circuit simulation in Cadence Spec-
tre. Results for all testcases will be analyzed together in Section 7.4.

7.1  Master-Slave Flip-Flip with Scan (MSFF)
The first testcase is a commonly seen Master-Slave Flip-Flop with
scan chain (MSFF) Fig. 3. The design has been implemented using
the 45 nm CMOS Predictive Technology Models of [27]. Varia-
tions considered are Random Dopant Fluctuation (RDF) for all
transistors and one global gate-oxide (tox) variation The RDF is

modeled as normally distributed threshold voltage (Vt) variation:

 where W,L are in μm (21)

Vt0 is the nominal threshold voltage. This results in 30% standard
deviation for a minimum-sized transistor. The tox standard devia-
tion is taken as 2%. The metric being measured is the clock-output
delay, . The integral being estimated is the parametric yield,
with a maximum acceptable delay of  = 200ps. If we define

(22)

We can express yield in the form (1) as follows:

(23)

where  transforms uniformly distributed  to the re-
quired joint distribution (normal in this case). There are a total of 31
statistical variables in this problem. For the MSFF, yield will be
given as . 10 MC runs of 50,000 pseudo-random
points each were run. 1 QMC run with 50,000 Sobol’ points, and 9
QMC runs with 50,000 scrambled Sobol’ points each were also run.
Results are discussed in Section 7.4.
As an illustrating example, let us look at how the rank correlation-
based variable-dimension mapping works for this testcase. Fig. 4
shows the absolute value of the rank correlation ( ) of each cir-
cuit parameter with the clock-output delay, for rising output, com-
puted from an initial MC run of 1000 samples. The variable are
sorted according to decreasing importance ( ): in the order they
would be mapped to the dimensions of the Sobol’ sequence. The
three most important parameters are labeled: 1) : global gate ox-
ide variation, 2) : the  variation of the pMOS device in the
input transmission gate Tg1, and 3) : the  variation of the
nMOS device in the inverter Inv1. The latter two devices are on the
critical signal path for a high input causing a rising output, and are
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important for correctly sampling a “1” at the input, especially when
the input timing is close to the setup limit. Since, the input was
timed in such a manner in the testbench, these measures of impor-
tance make intuitive sense.

7.2  64-bit SRAM Column
Yield analysis of SRAMs is unavoidable, given the large capacity
of SRAMs and large variation due to RDF. Our second testcase is a
64-bit SRAM Column, with non-restoring write driver and column
multiplexor (Fig. 5). Only one cell is being accessed, while all the
other wordlines are turned off. The device models used are from the
Cadence 90nm Generic PDK library. RDF on all 402 devices (in-
cluding the write driver and column mux) are considered, along
with one global gate-oxide variation. All variations are assumed to
be normally distributed. The Vt standard deviation is taken as

 where W,L are in μm (24)

This variation is too large for the 90nm process, but is in the expect-
ed range for more scaled technologies. (tox) is taken to be 2%.

The metric being measured is the write time : the time between
the wordline going high to the non-driven cell node (node 2) transi-
tioning. Here, “going high” and “transitioning” imply crossing 50%
of the full voltage change. The write time is measured as a multiple
of the fanout-4 delay of an inverter (FO4). The value being estimat-
ed is the 90-th percentile of the write time. If we write

, (25)

any p-th percentile can be expressed in form (1) as
. (26)

Then, the 90-th percentile in this case will be .

10 MC runs of 20,000 pseudo-random points each were run. 1 QMC
run of 20,000 Sobol’ points and 9 QMC runs of 20,000 scrambled
Sobol’ points each, were also run. Results are discussed in Section 7.4.

7.3  Low-Voltage CMOS Bandgap Reference
Fig. 6 shows a low-voltage CMOS Bandgap Reference circuit [28].
This bandgap is able to provide reference voltages that are less than
1 Volt, and is built using standard CMOS technology. This circuit
was chosen for its relevance in today’s low-voltage designs, and

also to test QMC on a circuit with highly non-linear behavior. The
opamp used is a standard single-ended RC-compensated two-stage
opamp [29]. The circuit has 101 diodes. The transistor device and
variation models are the same 90nm CMOS as the SRAM. RDF in
the diodes is modeled as normally distributed variations on the sat-
uration current, with standard deviation of 10%. Each resistor and
capacitor has its own normally distributed variation source, with a
standard deviation of 5%. There are a total of 121 local variation pa-
rameters and one global tox variation. 

In this case, we measure three metrics: 1) output voltage ( ), 2)
settling time ( ) and 3) dropout voltage ( ).  is the difference
between the supply voltage and  when  falls by 1% of its
nominal value (0.6V): lower  implies a more robust circuit. The
circuit performance is deemed acceptable only if  is within 10%
of 0.6V, 200ns and 0.9V. The yield integral can be written
in form (1), similar to Section 7.1. 10 MC runs of 10,000 pseudo-ran-
dom points each were run. 1 QMC run of 10,000 Sobol’ points and 9
QMC runs of 10,000 scrambled Sobol’ points each, were also run.

7.4  Analysis of Results
Figs. 7 and 9 present the results for all three testcases. Fig. 7 plots the
values of the estimates with increasing number of points for each MC
(pseudo-random) and QMC (Sobol’) run. For all three cases, we can
clearly see that the QMC graphs converge more quickly than the MC
graphs. In particular, the non-scrambled Sobol’ points converge very
fast towards the final result. This fact provides indirect validation that
our rank correlation-based dimension mapping is an effective heuris-
tic. Scrambling the digits of an LDS changes the way the space is
filled up, and hence, changes the patterns and the discrepancies of the
projections of the sequence. What we observe is that changing the
patterns in this way causes the QMC performance to degrade in gen-
eral. This implies that the rank correlation arranges the variables in a
way that is optimal (or close to optimal), given the patterns of the
non-scrambled LDS. This behavior is more pronounced as the prob-
lem dimensionality increases from MSFF to the SRAM Column,
suggesting that for low dimensionality (e.g. 31-D MSFF), the LDS is
uniformly distributed even for few samples; that is, has few patterns.
For high dimensional problems, however, effective variable-dimen-
sion mapping should give notable improvement, over a random or
uneducated assigment of variables to LDS dimensions. The best esti-
mates shown are computed using all the points from all the MC and
QMC runs. These estimates will be used as the “exact” values of the
quantities being measured.

Fig. 8 plots the absolute values of the relative QMC estimate errors
with two different variable orderings: 1) Correct -- use the rank cor-
relation method outlined in Section 5, and 2) Reverse -- use the re-
verse ordering, with increasing rank correlation as the dimension
increases. For the MSFF we do not see much difference in perfor-
mance, since the dimensionality is low enough for all dimensions
of the LDS to be similarly uniform. For the 122-D bandgap prob-

σ Vt( ) 5mV WL⁄=
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FIGURE 5. 64-bit SRAM column with column mux and write drivers.
Vt variation on all devices and global tox variation.
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lem, we can see the that the reversed mapping is slower to converge.
For the 403-D SRAM column, the reverse mapping has a larger er-
ror after about 700 points. The lower error in the beginning is prob-
ably because of good point placement due to chance.

Fig. 9 compares the standard deviation ( ) of the MC runs and the
QMC runs with increasing number of points, showing the effective-
ness of QMC as a variance-reduction method. The plots are in log-
log scale; hence, a  relationship will appear as a straight
line with slope , where  is the number of samples. The plots
also show straight lines, fit via least squares, to the standard devia-
tion data, along with the relationship they represent. We can imme-
diately see that QMC exhibits lower variance and faster
convergence (larger  magnitude) compared to MC in all three
cases. Ideally, the value of  should be 0.5 for MC (eqn. (4)). We
see that in reality it is a little slower. Even if the convergence rate
were to reach this theoretical limit for large , QMC methods still
exhibit faster convergence for the testcases studied. Furthermore,

with increasing ,  for QMC should tend towards 1.0 (Section 3),
further improving the rate of convergence.

Using these fits, we can estimate the number of MC or QMC samples
needed such that the result lies within a given interval for a given con-
fidence level. Using the Central Limit Theorem [30], for a confidence
level of 95.45%, this interval is [ , ]. Hence, if we want
the estimates to lie within 1% deviation from the exact value, with a
confidence of 95.45%, the value of  should be no greater than 0.5%
of the exact value. Table 1 compares the number of points needed for
MC and QMC, for maximum errors of 1% and 0.1%, at the same con-
fidence level. The exact value is approximated by the best estimate,
shown in Fig. 7.

We can see moderate to large speedups (2x to 50x), showing the ef-
fectiveness of QMC as a variance reduction method. These speed-
ups improve as the required accuracy increases. Here, we have
assumed that the value of  computed using 10 runs is exact. This is
not true in reality, but, since we are using the same assumption for the
MC and QMC cases, the relative trends seen here can be believed. It
should also be possible to apply other MC variance reduction tech-
niques [2], independently, on top of QMC, to further improve accu-
racy.

8.  Conclusions
Computational finance problems share a number of the features with
statistical circuit analysis problems. We demonstrated that one of the
most celebrated techniques in the finance world, Quasi-Monte Carlo
analysis, can be successfully applied to statistical circuit yield prob-
lems, with attractive runtime speedups. However, we also showed
that one must be quite careful in mapping these problems onto a
QMC form, using appropriate sensitivity information. To the best of
our knowledge, this is the largest and most rigorous experimental

FIGURE 7. Comparison of estimates from Monte Carlo (Pseudo-
random) and Quasi-Monte Carlo (Scrambled Sobol’).
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TABLE 1. Number of points needed to achieve a given confidence level 
for given percentage error values.

FIGURE 8. QMC estimate with increasing number of points, for the
correct variable-dimension mapping (variables sorted with decreasing
rank correlation), and for the reversed mapping (increasing rank
correlation).
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comparison of MC versus QMC ideas ever undertaken in the context
of industrially relevant scaled CMOS technologies and circuits.
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