
Generation of Yield-Aware Pareto Surfaces for Hierarchical
Circuit Design Space Exploration

Saurabh K Tiwary
Carnegie Mellon University

Pittsburgh,PA USA

stiwary@ece.cmu.edu

Pragati K Tiwary
BIT Mesra

Ranchi,Jharkhand India

pragati398@bitmesra.ac.in

Rob A Rutenbar
Carnegie Mellon University

Pittsburgh,PA USA

rutenbar@ece.cmu.edu

ABSTRACT
Pareto surfaces in the performance space determine the range of
feasible performance values for a circuit topology in a given tech-
nology. We present a non-dominated sorting based global optimiza-
tion algorithm to generate the nominal pareto front efficiently using
a simulator-in-a-loop approach. The solutions on this pareto front
combined with efficient Monte Carlo approximation ideas are then
used to compute the yield-aware pareto fronts. We show experi-
mental results for both the nominal and yield-aware pareto fronts
for power and phase noise for a voltage controlled oscillator (VCO)
circuit. The presented methodology computes yield-aware pareto
fronts in approximately 5-6 times the time required for a single cir-
cuit synthesis run and is thus practically efficient. We also show
applications of yield-aware paretos to find the optimal VCO circuit
to meet the system level specifications of a phase locked loop.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms Design

Keywords
Yield, performance space, pareto surfaces, optimization

1. INTRODUCTION
Recent advances in design automation and increased computa-

tional power has led to a gradual transition from “hand-calculation”
based analog circuit design to a simulation-based sizing methodol-
ogy [3]. Simulation based synthesis uses efficient global optimiza-
tion techniques to visit many circuit candidates, and fully evaluates
each candidate via detailed simulation. This methodology works
very well for circuits in the range of a few hundred devices. How-
ever, for larger circuits, the simulation time required for a single
simulation is too large to do a practical simulator-in-the-loop cir-
cuit sizing. Also, with large number of design variables, the de-
sign space in which to search for optimal design points becomes
too large for these circuits to be handled by the tools available
today. To handle this problem, methods for modeling the perfor-
mance space of circuits have been presented [10] [14] [5]. Using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

these performance models, efficient system level design space ex-
plorations can be done for topology selection [9] as well as circuit
synthesis[13]. Of late, much work has been done in the field of
analog circuit macromodeling which aims at simulating these cir-
cuits faster [16] [8] [12]. These macromodels capture the important
functional characteristics of the circuit while discarding the redun-
dant information. They are faster to simulate than the original tran-
sistor level circuit and hence could be used to replace the circuits
that they model in a system level simulation context. A class of
models called pareto surfaces generated in the performance space
of the circuits has often been used with these macromodeling tools
for hierarchical synthesis of larger systems [13]. These pareto sur-
faces can be generated by both stochastic [19] [17] and determinis-
tic algorithms [6] [15].

Pareto surfaces represent the best performance that can be ob-
tained from a given circuit topology across its complete design
space. These surfaces are generated for the nominal values of the
process parameters and are often used for optimizing the perfor-
mance parameters of the circuit in order to meet the system level
specifications [13]. However, with reduction in feature sizes, the ef-
fect of process variations on circuit performance is becoming more
pronounced. Such a system level design methodology gives us no
idea of how the circuit would perform once fabricated with the op-
timized performance parameters in the presence of process varia-
tions. In the worst case, it is likely that the nominal design point lies
in the tail of the performance distribution when Monte Carlo anal-
ysis is performed for the optimized circuit candidate across process
variations. This, in turn, would result in poor yield (fraction of cir-
cuits that meet the system level specifications across all the circuits
that are fabricated). Therefore, a yield-aware pareto surface (points
on the pareto surface guaranteeing a fixed yield number) would be
more useful for hierarchical synthesis applications.

In this paper, we present an efficient, novel algorithm for gener-
ating a yield-aware pareto surface for an arbitrary custom circuit.
To the best of our knowledge, this is the first realistic approach
successfully implemented and validated for this problem. Sec.2
gives some basic background on pareto methods and the function-
ality missing in prior efforts. Sec.3 describes the elements of our
yield-aware pareto generation methodology: nominal “soft” pareto
generation; yield-aware pareto for a particular design point; and
optimization of yield-aware pareto curve across the design space.
Sec.4 shows experimental results for a voltage controlled oscillator
(VCO) circuit. Nominal and yield-aware pareto fronts for different
yield targets of 20%, 50% and 80% are generated for the circuit
efficiently. The total time taken for the front generation is only 5-
6X the CPU time required for circuit synthesis runs. These pareto
fronts are then used to hierarchically synthesize a PLL. Sec.5 offers
concluding remarks followed by acknowledgements in Sec.6.

3.3

31

2. BACKGROUND

2.1 Circuit Sizing
A circuit sizing (synthesis) problem is to find the sizes/values of

elements in a circuit block e.g., W and L of transistors, etc,. such
that the block meets a set of performance specifications. Formally,
if p is a vector of parameters values on which the performance func-
tion f(p) depends, then the sizing problem is to find a set of values
for p represented by p0 such that

f(p0) < fg (1)

Here, fg is the set of goal specifications for the circuit. Lower
bounds on the performance parameters can be specified using this
formulation by multiplying the goal value by -1.

If the statistical variation of the parameters is to be considered,
e.g., process variations, then the circuit sizing problem is rephrased
as a yield improvement problem. The goal in such cases is to in-
crease the percentage of circuit meeting the goal specifications (fg)
for a particular set of input parameters (p0). A common method
used to find the performance values for a particular set of input
parameters is circuit simulation.

p � circuit simulation �→ f(p) (2)

SPICE like circuit simulators are the most common tools used for
such mapping. Being the most accurate tool for finding such a map-
ping, the process of circuit simulation is also the most expensive.
Automatic circuit sizing tools are often designed in such a way so
as to do minimal number of SPICE simulation. For a constrained
range of input parameters, regression based approches for mod-
eling the performance function is often employed for fast evalu-
ations. However, the performance function is very non-linear for
large variations in the parameter space. A lot of effort has been
devoted to better model the performance as a function of design
parameters [5] [10]. Such efforts often require a lot of SPICE level
circuit simulation upfront for building the models.

2.2 Pareto Optimal Surfaces
Often, a number of the elements in the objective function f(p)

compete against each other. Thus, the circuit optimization prob-
lem turns out to be a multi-objective optimization problem over the
range of parameters (p) such that some sizing constraints (c(p) >
0) are satisfied. For competing objective functions, it is not feasible
to maximize the performance of all of them. In such case, we often
have to consider trade-offs between the different performance pa-
rameters. Improving one might result in decreasing another com-
peting performance function. In such cases, we strive for pareto
optimality which ensures the best overall performance one could
extract in the presence of competing performance functions.

Defining it formally, a set of performances fa is considered more
optimal than another set fb if fa dominates fb.

fa � fb ⇔ ∀(fai ≥ fbi) ∧ ∃(fai > fbi) for i = {1, .., n} (3)

A set of performances f∗ is considered pareto optimal if it is
not dominated by any other set of performance parameters f. The
surface generated in the performance space by the complete set of
pareto optimal points make up the pareto optimal surface.

2.3 Finding the Pareto Optimal Surface
Many tools for circuit sizing [3] have focused on finding a sin-

gle point on the pareto surface. This problem can be transformed
into a scalar optimization problem by weighting the different per-
formance parameters.

max o(p) =
nX

i=1

wifi(p) s.t. c(p) > 0 (4)

A set of weights w = {w1, .., wn} leads to a particular solution
on the pareto front. The methods for obtaining the solution to this
problem are fairly mature and various commercials softwares are
also available for the purpose [2].

Considerable research has focussed on the automated generation
of the pareto surfaces using deterministic and stochastic optimiza-
tion techniques. One of the common methods for generating the
points is by choosing different values for wi in Eqn. 4. In such a
case, the challenge is to find sets of weight values such that pareto
front could be captured with least number of point evaluations of
the surface. A method to automatically generate suitably spaced
points on the pareto is the normal boundary intersection (NBI)
method [6]. The basic idea of the algorithm is shown in Fig. 1.
First, the global optimal points on the pareto are obtained for each

f1
f2

f1

*

*f2

Figure 1: Normal boundary intersection (NBI) method.
of the performance dimensions (f1∗ and f2∗). The convex hull
between the individual optima is described by

F · w = w1f1∗ +w2f2∗ for w1, w2 ≥ 0; w1 +w2 = 1 (5)

The convex hull is intersected at equidistant points as shown in Fig.
1. At each of these points the best performance set for the circuit
is obtained in the direction of the normal to the convex hull. These
points, obtained using standard circuit optimization techniques, are
used to approximate the pareto surface.

Another method often employed for generating these pareto fronts
is the non-dominated sorting genetic algorithm (NSGA) [7]. The
basic idea is to start with a population of samples in the param-
eter space. These sets of parameters for points in the parameter
space (individuals) are called chromosomes. During each genera-
tion, the individuals are sorted based on a fitness function (domi-
nating points (Eqn. 3) are fitter for pareto surface generation). The
second generation of population is generated by crossover and mu-
tation of the chromosomes of the fitter individuals [7].

Simulated annealing [11] is another method quite extensively
used for global optimization. We start at a randomly chosen point
(seed) in the parameter space and then move to another point in the
space with certain probabilities. The probability to move to the new
point in the parameter space is higher if the performance values im-
prove at this new point. Even in cases where the performance value
degrades, the move is sometimes accepted (with low probability).
This step ensures hill climbing properties of the algorithm.

2.4 Challenges in Generating Pareto Surfaces
The primary challenge that one faces while generating the pareto

front is the curse of dimensionality. The number of points required
to model a surface increases exponentially with the number of di-
mensions. The normal boundary intersection method, for exam-
ple, requires proportional number of circuit optimization runs as
the number of points required on the surface. Another problem is
that the additional constraint of searching for optimal points in the
direction perpendicular to the convex hull (Fig. 1) makes the op-
timization problem extremely difficult if we are using a stochastic
optimizer to find the optimal point on the line. Also, for each point
on the pareto front, one needs to run a complete sequence of the
global optimization routine. This makes the method intractable for
problems with high dimensionality.

32

Stochastic algorithms that dynamically handle the pareto front
like non-dominated sorting genetic algorithm (NSGA-II) [7] are
very efficient in generating the pareto fronts. The problem with
using such an algorithm with applications in modeling the pareto
surface of a given circuit topology is that, the resulting pareto front
has no notion of yield for the circuit. The fronts thus generated
only consider the nominal design parameter values for the circuit.
Once the circuit is fabricated for a particular set of design parameter
values corresponding to a point on the pareto surface, it is proba-
ble that a high percentage of the fabricated circuit’s performance is
inferior to that point on the pareto due to variations in process pa-
rameters. This probability is very high for “aggressively” generated
pareto fronts. Often the performance function is highly non-linear
with respect to the process parameters (e.g. tox, vth etc.) of the
circuit. Thus, if we neglect the process variation information, the
optimizer may choose designs whose nominal performance param-
eters lie on the pareto front but, this nominal design actually lies
in the tail of the performance distribution function across process
variations.

The right – and so far, missing – solution is a yield-aware pareto
surface. A trivial and brute-force approach would simply compute
the yield for all circuit candidates through Monte Carlo sampling
and thus, optimize the yield-aware pareto fronts. However, this
method would be computationally very expensive if not prohibitive.
The rest of the paper develops a new methodology that seeks to
address this problem and generate yield-aware pareto surfaces effi-
ciently.

3. YIELD-AWARE PARETO GENERATION
We have developed a yield-aware pareto front generation algo-

rithm. The key steps are shown in Algorithm 1. The basic idea is to
generate “soft” pareto surfaces for nominal design (without taking
process variations into account). By “soft” we mean that we do not
aggressively search for the actual pareto front using the stochas-
tic algorithms described in Section 3.1. We stop the search after
moderate convergence of the algorithm. Using points on this “soft”
pareto, a fast local yield estimator algorithm is used to search for
locally optimum pareto points. These points are then combined to-
gether to form the yield-aware pareto fronts. Before we discuss the
details of our algorithm, let us revisit the nominal pareto generation
problem.

Algorithm 1 Pseudo-code for yield-aware pareto front generation
1: Given: A circuit topology, ranges for design parameters and

distributions of process parameters
2: Generate “soft” nominal pareto using NSGA with “Ice Ages”
3: Choose equi-distant pts {x1, .., xN} on pareto front of order k
4: for all xi as anchor points do
5: Generate local yield model
6: Locally optimize the yield front around anchor points
7: end for
8: Merge all the local yield fronts to generate a yield-aware pareto

front for the given circuit topology

3.1 NSGA with “Ice Ages”
We use a combination of genetic algorithm (GA) [7] and sim-

ulated annealing (SA) [11] ideas to generate our nominal pareto
front (Figure 2). Genetic algorithm and simulated annealing op-
timizations are sequentially used with underlying non-dominated
sorting ideas to improve the pareto front. Each set of these se-
quences is termed an “epoch”. During the whole process, points
are sorted using their non-domination rank and crowding distance

[7] for efficient, spread-out pareto surface generation with minimal
number of points.

GA: Genetic Algorithm

"Epoch" Time

Ice Ages

SA GA

SA GA
SA GA

T
em

pe
ra

tu
re

SA: Simulated Annealing

final
T

initial
T

Figure 2: Pareto front generation schedule.
If we take a close look at GA, the two steps that bring in diver-

sity to the population sample are: (a) crossover and (b) mutation.
Crossover intermingles the parameter values of the highly ranked
individuals in the population. Mutation, on the other hand, results
in sampling of new regions of the parameter space that are close to
the spatial location of the current individual. This step is similar
to the choice of new points in the simulated annealing algorithm
where we randomly pick a new candidate and probabilistically ac-
cept it after evaluating its set of performance functions. The heuris-
tic of sequential application of GA and SA algorithm is based on
the notion that GA based algorithms perform an excellent job of
finding better candidates from a “mix” of the current population.
However, the parameter space that they visit is rather constrained
by the set of parameter values of the highly ranked individuals in
the population. Passes of SA ensure a better stochastic search in
the whole of the parameter space. Though, it might seem that the
mutation step of GA is similar to a pure SA pass. However, the
amount of effort that a standard GA implementation puts in muta-
tion is quite less. Sequential runs of both of these algorithms pro-
vide the opportunity for new and (hopefully) attractive regions of
the parameter space to be discovered (by SA) and the performance
further improved amongst the candidate set (through GA).

This notion is similar to the concept of ice ages during the evo-
lution of organisms on earth. During the warm periods, regular
crossover and mutation of chromosomes occurred between the or-
ganisms leading to the development of better living creatures. How-
ever, during periods of extremely cold temperatures (ice ages), these
superior organisms did not get the right environment to further
their breed. Rather, some other inefficient (during the warm peri-
ods) organisms got the opportunity to mature, develop and compete
against the superior organisms when the new “warm” periods en-
sued. We apply three such epochs (SA followed by GA) to generate
our final pareto fronts.

3.2 Yield-Aware Pareto Surfaces
As discussed in earlier sections, if we ignore the process varia-

tions during the generation of the pareto surface, the points on the
pareto may have poor yield values even though they represent the
best set of performances that the circuit can achieve for the nom-
inal design. This is primarily because the global optimizer used
to generate the pareto works extremely hard to push (improve) the
nominal design. In such cases, it often pushes the nominal design
towards the tail in the performance distribution curve to get the non-
dominated point on the pareto. However if we plot the performance
distribution across process variation for that particular nominal de-
sign corresponding to a point on the pareto, we would often find
the nominal point lying along the edges of the resulting distribu-
tion (Fig. 3). This means that once the circuit is fabricated using
the partcular set of design parameters corresponding to the point
on the pareto front, most of the circuits would have performances

33

much inferior to co-ordinates of the pareto point in the performance
space.

2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

x 10
−3

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6
x 10

−12

Nominal Design

P1

P2

Figure 3: Distribution of process variation based Monte Carlo
samples in the performance space for a design that was part of
the pareto front. The nominal design lies at the edge of the dis-
tribution thereby resulting in very low yield if the correspond-
ing co-ordinates of the nominal design are considered as per-
formance specifications for the circuit.

This behavior was observed in almost all the points on the pareto
front that we generated for a particular circuit. Figure 3 serves
as the motivation behind our work for generation of yield-aware
pareto surfaces.

Formally, we define a yield-aware pareto surface with a yield
‘Y’ as a surface in the performance space generated using a set
of non-dominated performance points such that for each of these
points, there exists atleast one set of design parameters that results
in yield greater than ‘Y’. The yield being measured by setting the
co-ordinates of the points in the performance space as the circuit’s
performance specification.

A simple way of generating these fronts is to keep track of the
points on the yield curves (for a specific yield number) for each
set of design parameters during a global optimization routine and
then trying to improve the front generated by these points. This can
be done by generating Monte Carlo samples across process varia-
tions at each design point. However, the method is computationally
prohibitive since it requires Monte Carlo simulations for each can-
didate point in the parameter space. In the next section, we describe
an approximate but fast methodology for computing Monte Carlo
distributions that can be used to characterize the yield surface for a
particular design point.

3.3 Approximate Monte Carlo Simulation
Monte Carlo analysis for a particular design point (that we call

anchor points) is generally very expensive since it requires evalu-
ation of the performance function for large number of input pro-
cess parameter sets. Latin Hypercube (LH) sampling [4] is the
most common method to reduce the number of evaluations required
while still ensuring reasonable accuracy in computing the perfor-
mance distribution function.

In our methodology, we generate sets of 10 LH samples using
variational information about the process parameters and we repeat
this step 10 times, thereby generating 100 input parameter sets. We
then find the performance distribution function for the circuit can-
didate using SPICE simulations. Due to the nonlinear nature of
the circuits, the resulting distributions often do not conform to any
standard distribution e.g., Normal, Weibull etc. We use a transfor-
mation function to convert these distributions to a normal distribu-
tion. Each dimension (x) in the performance space is transformed
into a new space (y) using either one of the transformation equa-
tions shown in Eqn. 6 such that the distribution function matches
that of a normal distribution with the same mean and variance as
that for the given data in the transformed space. This is an opti-

mization problem where values of the variables (a, b, c, d) is to be
determined such that our performance distribution data best resem-
bles a Gaussian in the transformed space. The choice of these par-
ticular functions was made after experimentations which suggested
that these equations provided the required fidelity for transforming
arbitrary distributions, obtained during Monte Carlo simulations of
the circuit, to a Normal distribution using minimal number of pa-
rameters. The optimization is performed using Brent-Powell based
local optimzation scheme [18]. The metric for resemblance is the
sum of squared error between the distribution functions.

y = a + b ∗ (x + c)d

y = a + b ∗ log(c ∗ x + d)
(6)

Once the optimal transformation is obtained, we pick the set of
10 LH samples that best resemble the full performance distribution
of the 100 LH samples in the transformed space. We call this set of
10 LH samples optimal latin hypercube sampling LHSopt for the
particular anchor point. We use LHSopt to predict the distribution
function of the circuit candidate in its performance space. For a
design point close to the anchor point, we simulate the circuit for
these 10 LHSopt points. The performance values obtained through
simulations are then transformed into a new space by applying Eqn.
6 using the values for parameters a, b, c and d obtained through op-
timization in the previous steps. In the new transformed space, the
performance distribution functions are expected to match a Normal
distribution as was the case for the anchor point. Using the mean,
variance and correlation matrix of these points in the transformed
space, large number of pseudo points are generated for the underly-
ing Normal distribution. The pseudo points are directly generated
using the distribution functions and do not require actual circuit
simulation. Hence, this step is extremely fast. Once, we have these
large number of points, we can compute the yield of the circuit
for that particular design point for any arbitrary performance goal.
Alternatively, we can also compute the performance values which
would give us a particular yield number for the circuit candidate
under consideration.

The set of optimum LH samples works fine for approximating
the performance distribution function in regions of the parameter
space (p) that are close to the anchor point. We, therefore, need
different LHSopt for each region of the parameter space that we
need to model.

3.4 Generating Yield-Aware Pareto
We first generate the nominal pareto front using the new non-

dominated sorting based algorithm described in Sec. 3.1 (NSGA
with ice ages). The primary pareto front thus generated is called
the pareto front of order 1. A pareto front of order k is the front
generated after removing all the points of pareto fronts of order 1
to (k − 1).

We start with N equi-distant points on the kth order front that
we call anchor points (line 3 of Algorithm 1). k is usually chosen
as 3 or 4 to give us a “soft” pareto front (line 2 of Algorithm 1). We
then compute LHSopt for these anchor points on the “soft” pareto
front. Using LHSopt, we compute the points in the performance
space that would give a yield greater than some fixed quantity ‘Y ’
(line 5 of Algorithm 1). The resulting set of points form a yield
front. Figure 4 shows one such yield front computed for a particular
design point with a yield of 80%.

We then try to improve this yield surface using local optimiza-
tion techniques like Brent-Powell [18] (line 6 of Algorithm 1). At
each yield evaluation for a particular design point during Brent-
Powell optimization, we generate a set of points on the yield front
(Figure 4). We use a non-dominated sorting algorithm to keep the
yield points computed in the current evaluation and all previous

34

0 0.5 1 1.5 2

0

0.5

1

1.5

2

80% Yield Pareto

f1

f2

Figure 4: Points on the curve are equi-probability regions for
an 80% yield corresponding to a particular design point. Yield
based points for different design parameters can be combined
together to compute the yield-aware pareto front.

evaluations as part of the evolving pareto. Since LHSopt com-
putes an approximate yield number, we do not aggressively search
for incremental improvements in yield numbers that lead to points
in the parameter space that are further away from the anchor point
where the LHSopt was generated. Once converged, the resulting
pareto surface represents the best points in the performance space
for which we could find a design such that the yield for that partic-
ular point is greater than the fixed number ‘Y ’ for which the pareto
was generated. Finally, we merge the yield fronts corresponding
to all the N anchor points to obtain the final yield-aware pareto
front for the particular circuit topology under consideration (line 8
of Algorithm 1). We could repeat this process for multiple yield
numbers to generate multiple fronts – one each for a given yield
number. Or, we could piggy back multiple yield number fronts on
a single pareto front improvement step.

4. EXPERIMENTAL RESULTS
We have implemented the complete flow described in the pre-

vious sections. For verification of the results for the voltage con-
trolled oscillator (VCO) that we have used as a test case, we em-
ploy a behavioral modeling infrastructure for efficiently computing
the system level specifications of the phase locked loop (PLL) in
which the VCO is used based on the algorithms presented in [13].
The tool uses Spectre [1] as its simulator for the computation of
the performance values. The simulator chosen is arbitrary and our
methodology is independent of the choice of the underlying func-
tion evaluator (circuit simulator). Since, most of the optimization
routines are highly parallelizable, our tool used 4 machines with 3.2
GHz processors and 4GB of RAM each for evaluating the function
values (f) for input parameter sets (p), simultaneously.

Figure 5: Circuit schematic of ring oscillator VCO circuit.

Fig. 5 shows the schematic of the ring oscillator VCO circuit
whose pareto surface was to be generated. The performance speci-
fications (f) across which the pareto front was to be generated were
phase noise and power (current, assuming constant supply voltage).
There were some nominal specifications which the candidate cir-
cuits had to meet before they could be considered for being a point
on the pareto. Table 1 lists the nominal specifications. The num-
ber of input design variables (p) across which the optimal pareto
front was generated was 12. Each parameter had a particular range

within which they could assume any value. These ranges were
granulated based on design rules for manufacturability.

Table 1: Nominal specifications for the VCO circuit
Performance Goal

Variable Value
Min. o/p voltage < 0.1
Max. o/p voltage > 1.7

Min. o/p frequency < 400MHz
Max. o/p frequency > 500MHz

Linearity (o/p freq. Vs Vctrl) > 0.5 & < 1.5

The pareto front generation process was started using 20 random
seeds. The methodology presented in Section 3.1 was followed to
generate the front. Fig. 6 shows the state of the pareto surface af-
ter the completion of each epoch (simulated annealing followed by
genetic algorithm). Around 5,000 points were generated in each
epoch. A regular circuit synthesis problem for this VCO using
a commercial circuit synthesis tool [2] typically involved 4,000-
5,000 circuit evaluations. Thus, the total effort required to generate
the complete pareto front is equivalent to finding 3-4 points on the
pareto front using the standard normal boundary intersection (NBI)
method as described in Section 2.3.

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

0.6

0.8

1
x 10

−11

Current (A)

Ji
tte

r (
s)

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

0.6

0.8

1
x 10

−11

Current (A)

Ji
tte

r (
s)

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

0.6

0.8

1
x 10

−11

Current (A)

Ji
tte

r (
s)

2.5 3 3.5 4 4.5

x 10
−3

1

2

3

4

5
x 10

−12

Current (A)

Ji
tte

r (
s)

(a) (b)

(c) (d)

Figure 6: Generation of the pareto fronts across epochs – after
(a) 1st epoch, (b) 2nd epoch and (c)3rd epoch. Subfigure (d)
represents the interesting region of the pareto front of order 1
after the pareto generation is complete (box region in epoch 3)

Once the nominal pareto front is generated, we pick a “soft”
pareto (pareto front of order 4 (Section 3.4)). We pick equidis-
tant points on this “soft” pareto as anchor points. For each anchor
point, we perform a Monte Carlo analysis using the variational in-
formation for the process parameters. We use 10 sets of 10 LH
samples to perform the approximate Monte Carlo analysis at each
point. The distribution of samples in the performance space is then
transformed to another space where distribution along each dimen-
sion resembles a Gaussian distribution. Fig. 7 shows the fitted
distribution function for the two performance variables along with
the fitting errors. The distribution functions in the non-transformed
space were well behaved in this case resulting in a close match
with the Gaussian distribution in the transformed space. However,
we applied the transformations for other non-gaussian distributions.
Even for these distributions, our optimization algorithm finds the
set of parameters which transform the distribution to a Gaussian
quite accurately (The transformations were tried only for distribu-
tions with unimodal pdfs).

After optimizing for the parameters for the transformation (Eqn.
6) at the anchor points, we picked the set of 10 LH samples that
best represent the original distribution function in the transformed
space. We use this as LHSopt for computing the performance dis-
tribution functions for new, closeby points in the parameter space.

35

41.1 41.2 41.3 41.4 41.5
0

0.2

0.4

0.6

0.8

1

C
D

F

41.1 41.2 41.3 41.4 41.5
−2

0

2

4

6

8

10
x 10

−4

Fi
tti

ng
 E

rro
r

4.28 4.285 4.29 4.295 4.3
0

0.2

0.4

0.6

0.8

1

4.28 4.285 4.29 4.295 4.3
−2

0

2

4

6

8

10
x 10

−4

Current Jitter

Figure 7: Plots showing the closeness of the distribution func-
tions to the normal distribution in the transformed space.

Thus, for new design points, we simulate the circuit for the 10
LHSopt values; transform the performance space using parame-
ters obtained earlier for the anchor points. Using the mean, vari-
ance and correlation coefficient metric for these points in the trans-
formed space, we sample the Gaussian distribution with these met-
rics to generate pseudo Monte Carlo sample points. This step is
extremely fast since no circuit simulation is required. We then find
pareto points on this distribution that would result in a given fixed
yield number. These points are then transformed back to the real
performance space as candidates for the pareto front. The front
is then improved using a simple Brent-Powell [18] local optimizer
which simulates the circuit for LHSopt (process parameter) points
repeatedly at each new design points. Fig. 8 shows the yield-aware
pareto curves corresponding to different yield number after the lo-
cal optimization step for the VCO circuit.

2.5 3 3.5 4 4.5 5 5.5

x 10
−3

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

−12

Current (A)

Ji
tte

r (
s)

Y=20%
Y=50%
Y=80%

Figure 8: Pareto fronts for 20%, 50% and 80% yield.

The pareto curve for the VCO corresponding to a yield of 50%
was used for doing hierarchical synthesis of a PLL using ideas sim-
ilar to those in [13] and synthesis tools from [1]. The pareto was
modeled using a piecewise polynomial equation in VerilogA. The
PLL was synthesized for a set of overall jitter, power and lock time
constraints. The VCO circuit was synthesized by doing a look-up
for the design point that generated the nearest sampled pareto point
closest to the optimum pareto point. The yield for that final syn-
thesized design, using a full Monte Carlo analysis, came out to be
47.3%, which is in close agreement to the 50% number that we
were expecting.

Figure 9: PLL simulation infrastructure. VCO represented by
the pareto curve. Loop filter as real devices. All other blocks
assumed fixed and represented using behavioral models.

5. CONCLUSIONS
We have presented a novel methodology for generating yield-

aware pareto surfaces. The method includes a new, nominal pareto
generation algorithm. It then uses efficient local latin-hypercube
sampling resulting in fast Monte Carlo analysis for generation of
yield-aware pareto fronts. The complete algorithm requires sim-
ulation time close to 5-6 full circuit synthesis runs and hence is
extremely efficient computationally. A simple experiment to syn-
thesize PLL hierarchically, with a targeted yield, suggests the prac-
ticality of the approach. These pareto surfaces can find applications
in hierarchical synthesis, topology selection and other yield-aware
design applications.

6. ACKNOWLEDGMENTS
This work was funded in part by the MARCO/DARPA Center

for Circuits & Systems Solutions (C2S2) and the Pittsburgh Tech-
nology Collaborative.

7. REFERENCES
[1] Spectre simulator from Cadence. http://www.cadence.com.
[2] High-performance CMOS-amplifier design uses front-to-back

analog flow. A.H.Shah and S.Dugalleix and F.Lemery, EDN, 2002.
[3] E.Ochotta, R.Rutenbar, and L.Carley. Synthesis of high performance

analog circuits in astrx/oblx. TCAD, 15:273–294, 1996.
[4] K. T. Fang, K. Fang, and L. Runze. Design and Modeling for

Computer Experiments. CRC Press, October 2005.
[5] R. Harjani and J. Shao. Feasibility and performance region modeling

of analog an digital circuits. In Jrnl. of Analog Integrated Circuits
and Signal Processing,, pages 23–43, June 1996.

[6] I.Das and J.E.Dennis. Normal-boundary intersection: A new method
for generating the pareto surface in nonlinear multicriteria
optimization problems. In SIAM Journal on Optimization, pages
631–657, 1998.

[7] K.Deb, A.Pratap, S.Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. In Trans. on
Evolutionary Computation, number 2, pages 182–197, April 2002.

[8] K.Kundert. Predicting the phase noise and jitter of PLL based
frequency synthesizers. http://www.designers-guide.org.

[9] M. W. Kruiskamp and D. Leenaerts. Darwin: Cmos opamp synthesis
by means of a genetic algorithm. In DAC, pages 433–438, 1995.

[10] H. Liu, A. Singhee, R. Rutenbar, and L. Carley. Remembrance of
circuits past: Macromodeling by data mining in large analog design
spaces. In DAC, pages 437–442, 2002.

[11] S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi. Optimization by
simulated annealing. Science, (671-680), 1983.

[12] S.K.Tiwary and R.A.Rutenbar. Scalable trajectory methods for
on-demand analog macromodel extraction. In DAC, 2005.

[13] S.K.Tiwary, S.Velu, R.A.Rutenbar, and T.Mukherjee. Pareto optimal
modeling for efficient PLL optimization. In Modeling and
Simulation of Microsystems, Nanotech, pages 195–198, 2004.

[14] G. Stehr, H. Graeb, and K. Antreich. Feasibility regions and their
significance to the hierarchical optimization of analog and
mixedsignal systems. In Intl. Series of Numerical Mathematics,
pages 167–184, 2003.

[15] G. Stehr, H. Graeb, and K. Antreich. Performance tradeoff analysis
of analog circuit by normal boundary intersection. In DAC, pages
958–963, 2003.

[16] T.K.Ogawa and K.Kundert. VCO jitter simulation and its
comparision with measurements. In ASP-DAC, Jan. 1999.

[17] D. A. V. Veldhuizen. Multiobjective Evolutionary Algorithms:
classifications, analysis, and new innovations. PhD thesis, Air Force
Institute of Technology, WrightPatterson AFB, USA,, June 1999.

[18] W.H.Press, S.S.Teukolsky, W.T.Vetterling, and B.P.Flannery.
Numerical Recipes in C++ : The Art of Scientific Computing.
Cambridge University Press, 2002.

[19] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results. In Evolutionary
Computation, pages 173–195, 2000.

36

