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ABSTRACT
A quorum system over a universe of logical elements is a collection
of subsets (quorums) of elements, any two of which intersect. In
numerous distributed algorithms, the elements of the universe re-
side on the nodes of a physical network and the participatingnodes
access the system by contacting every element in some quorum,
potentially causing the added network congestion induced by these
quorum accesses to play a limiting factor in the performanceof the
algorithm.

In this paper we initiate the study of algorithms to place universe
elements on the nodes of a physical network so as to minimize the
network congestion that results from quorum accesses, while also
ensuring that no physical node is overloaded by access requests
from clients. We consider two models, one in which communica-
tion routes can be chosen arbitrarily and one in which they are fixed
in advance. We show that in either model, the optimal congestion
(with respect to the load constraints) cannot be approximated to
anyfactor (unless P=NP). However, we show that at most doubling
the load on nodes allows us to achieve a congestion that is close to
this optimal value. We also shed some light on the extent to which
element migration can reduce congestion in this context.

Categories and Subject Descriptors:C.2.4 [Computer- Commu-
nication Networks]: Distributed Systems -distributed applications

General Terms: Algorithms, Performance, Theory.

Keywords: Quorum Systems, Congestion Problems, Approxima-
tion Algorithms, LP Rounding.

1. INTRODUCTION
Given a universe (set)U of elements, a quorum systemQ ⊆ 2U

(where 2U denotes the power set ofU) is a collection of subsets of
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U such that any two subsets inQ have a non-empty intersection.
Each subset inQ is called aquorum. Quorums are the basic unit
of access in many distributed algorithms; e.g., to ensure data con-
sistency while allowing distributed access, one could use aquorum
system: the copies of the object are its elements, and each client
is required to perform each read or write on a quorum of objects.
Since each pair of quorums intersect, this ensures that eachclient
sees at least one copy of the latest version of the object. There are
many other examples of using quorum systems to implement dis-
tributed coordination of some type, e.g., [2, 5, 9, 13, 15, 16, 18, 23,
24, 28].

Quorum constructions have been studied for over 25 years, and
quorum systems with many different properties and guarantees have
been developed (e.g., [5, 24]). For example, note that quorum sys-
tems naturally provide load dispersion: since the quorum sizes may
be smaller than the size of the universeU , quorum systems allow
us to reduce theload, i.e., the probability with which the busiest
server is accessed in any given quorum invocation. Through careful
design of the quorums inQ, and of theaccess strategy—i.e., the
probability distributionp over quorums inQ such thatQ ∈ Q is
chosen in any client with probabilityp(Q)—a load ofO(1/

√

|U |)
can be achieved [22].

Despite this research, it is only very recently thatnetworking is-
sueshave also been considered in the study of quorum systems:
while we may understand the properties of a good quorum system
over some abstract universeU , we do not yet understand how to
map the elements ofU to the physical nodesV in our network so
as to give usgood network performance. For instance, some very
recent work of the authors and others has proposed algorithms for
finding placements that minimize therouting delaysthat clients in-
cur when accessing quorums [8, 10, 11, 14, 29]. (We discuss this
work in more detail in Section 2.) In this paper, we initiate the
study of an orthogonal issue: that of thenetwork congestioncaused
by the deployment of quorum systems in networks. Roughly speak-
ing, our goal is to develop algorithms to place quorums in a network
so as to minimize the congestion resulting from client accesses to
quorums, while additionally ensuring that each physical node is not
overloaded by quorum requests from clients.

The Model. Formally, we model the network as an undirected
graphG= (V,E) of sizen= |V|. Each physical nodev∈V is given
a node capacitynode cap(v) ∈ R≥0, which is an upper bound on
the amount of quorum load it wishes to handle. Furthermore, each
edgee∈ E also has anedge capacityedge cap(e) ∈ R≥0, which
represents its bandwidth, i.e., the amount of traffic it can carry. For
a given quorum systemQ = {Q1, . . . ,Qm} on a universeU , an ac-
cess strategyp, and a networkG= (V,E), a mapf :U →V placing
the elements on the physical nodes is called aquorum placement;
we will use f (Q) ⊆V to denote the set of nodes∪u∈Q{ f (u)}.
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We assume that the set of clients accessing the quorums inQ

is just the node setV. To make the explanations simpler, we will
assume that each of the clientsv ∈ V generates requests at some
rate rv with ∑v∈V rv = 1. It will be convenient to think of the rate
rv as the probability that clientv makes a request.

The Measures of Goodness.We are concerned with two measures
in this paper: thenetwork congestioncaused by routing the requests
from the clients to the nodes hosting the quorum elements, and the
loadgenerated on these nodes due to processing these requests. Let
us formally define these.

Load. Given a quorum systemQ overU and an access strategy
p, we can define the load of an elementu ∈ U to be load(u) =
∑Q∈Q:u∈Q p(Q). (In other words, this is the probability that the
elementu is accessed when using the access strategyp.) Given
a placementf : U → V, we can extend this notion of load to any
nodev by defining load f (v) = ∑u∈U : f (u)=v load(u). Ideally, we
would like load f (v) ≤ node cap(v) for every nodev∈V.

Congestion. To access a quorumQ, a clientv needs to access
each memberf (u) ∈ f (Q) individually, and has to send a request
to f (u). This access fromv to f (u) naturally increases the traffic
on the edges of some path fromv to f (u), and we would like to
minimize this. We consider two models for selecting the path.

1. In thearbitrary routing model, the path used for routing in
the network may be chosen arbitrarily, and hence it is con-
venient to model traffic between any two nodesv,v′ ∈V as a
flow gv,v′ : E → R≥0. (Note that each access will use a single
path, but we may vary the paths used between a pair of nodes
so that the average traffic on any edge is the same as in the
flow.)

2. In thefixed routing pathsmodel, the paths{Pv,v′} are speci-
fied as part of the input, and while we can define the flowgv,v′

as before, all the flow must travel along the pathPv,v′ . This
is motivated by networks like the Internet where senders and
receivers cannot control or select the paths along which their
traffic travels.

Thus in either model we may define the expected traffic on any
edgee∈ E due to requests from a fixed nodev to be

∑
Q∈Q

p(Q) ∑
u∈Q

gv, f (u)(e)

Finally, since the nodev is responsible for anrv fraction of the
requests, we can define theaverage trafficon the edgee to be

traffic f (e) = ∑
v∈V

rv ∑
Q∈Q

p(Q) ∑
u∈Q

gv, f (u)(e).

(This can be read thus: we choose the clientv with probability rv,
choose a quorumQ with probability p(Q), and incur a traffic of
gv, f (u)(e) for everyu∈ Q.)

Since we are always considering averages, we will usually just
refer to this as thetraffic on the edgee. Finally, given an edge
capacityedge cap(e), thecongestiondue to the placementf is

cong f (e) = traffic f (e)/edge cap(e) (1.1)

Ideally, this quantity should be as low as possible. Indeed,the ob-
jective function we seek to minimize is thecongestionof the place-
ment f , which is defined to be the congestion of the most congested
edge, namelycong f = maxe∈E cong f (e).

Before we proceed, note that we used a flowgv,v′ in the above
discussion to model the flow of messages betweenv andv′. Given
a placementf in the arbitrary routing model, finding a set of flows
{gv,v′} that minimize the congestion (1.1) subject to the placement

f is just a flow problem, and can be optimized in polynomial time.
(Of course, the flow in the fixed-paths model is justPv,v′ .) Hence,
the rest of the paper will focus on finding the placementsf : when-
ever we refer to a “placementf with congestionc” in the arbitrary
routing model, it should be taken to read “placementf for which
there exist flows{gv,v′} that give congestionc”.

We are finally in a position to formally define the problem ad-
dressed in this paper:

Problem 1.1 (Quorum Placement Problem for Congestion (QPPC))
Given a quorum systemQ over the universe U, an access strategy
p, and an undirected network G= (V,E) with capacitiesedge cap :
E → R≥0 and node cap : V → R≥0 on edges and nodes, respec-
tively, and client access rates{rv}, find a placement f: U → V
that (a) minimizes the congestioncong f subject to (b)load f (v) ≤
node cap(v) for all nodes v∈V.

Since we can scale the capacities on the edges, we will assume(for
simplicity of exposition) that the edge congestioncong f ∗ of the
optimum placementf ∗ is precisely 1.

Before we present our results, let us note that all our analyses ap-
ply in theunicastmodel, where an individual request is sent toeach
element of the quorum being accessed. An alternate model (which
we do not consider here) would permitmulticastmessages from
the source to the quorum members. Using these multicasts clearly
decreases the congestion incurred: for instance, if two quorum el-
ements are mapped to the same physical nodev, these co-located
elements could be reached using a single message. (Moreover, the
nodev could intelligently process the information reaching these
co-located elements just once, thereby incurring less load.) We
leave the study of these models and optimizations for futurework.

1.1 Our Contributions
As stated, the QPPC problem turns out to be highly intractable:

Theorem 1.2 Even determining whether a feasible solution for the
QPPC exists (in either model) is NP hard if we do not allow any
node capacities to be violated.

We go on to show a number of approximation results for the QPPC
problem if we are allowed to violate the node capacities by atmost
a factor of two. We use the following notation: iff ∗ is the optimal
solution to a QPPC instance (that satisfies the load constraints),
thenan (α,β )-approximationis a placementf such thatcong f ≤
α ·cong f ∗ andload f (v) ≤ β ·node cap(v) for all nodesv.

Theorem 1.3 (Approximations for Arbitrary Routing) For
any instance of QPPC in the arbitrary routing model, we can find
an (O(log2 nlog logn),2) - approximation in polynomial time. If
the graph G is a tree, we obtain a(5,2)-approximation.

Theorem 1.4 (Approximations for Fixed Paths) Given an
instance of QPPC in the fixed routing paths model, we can find an
(O( η ·logn

log logn),2)-approximation in polynomial time, whereη is the
size of{blog(load(u))c |u∈U}. For example, if there exists an N
such thatload(u)∈ [1/N,1] for all u ∈U, then the algorithm above
yields an(O( logN logn

loglogn ),2)-approximation.

Our Techniques.The basis of the algorithm for the arbitrary rout-
ing model QPPC lies in a reduction of the problem to the case in
which the graph is a treeand there is only one client in the system
(i.e., there is a nodev with rv = 1). This reduction uses some of the
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properties of quorum systems, combined with the general graph de-
composition result of Räcke [25]; however, it costs us a factor of
O(log2nlog logn) in the congestion. For the single-client tree case,
we give an approximation algorithm by first writing an integer pro-
gramming formulation, and then rounding its linear-programming
relaxation: the rounding uses an algorithm for unsplittable flows
from Dinitz et al. [6], and is possibly of independent interest.

Our results for the fixed paths model use a different set of tools:
we first develop an algorithm for instances where all the elements
of U have identical (“uniform”) loads. For this we use a different
linear programming relaxation, and then round it using a different
rounding technique that does not allow node capacities to bevi-
olated [27]. We then use this algorithm as a subroutine to solve
the non-uniform case by carefully placing down sets of elements in
decreasing order of their loads.

We also show hardness results for QPPC in the fixed paths model,
even when the loads are all uniform. Theorem 6.1 states that it is
NP-hard to approximate the congestion to any constant factor (even
if we completely ignore the load constraints); in fact, we can ob-
tain stronger inapproximability results under stronger complexity-
theoretic assumptions.

Finally, we provide preliminary results regarding the utility of
migration of universe elements between physical nodes of the net-
work as a technique to further reduce congestion. The details of
this analysis are included in Appendix A.

2. RELATED WORK
As mentioned above, quorum systems are well-studied; see, e.g.,

[1, 2, 5, 9, 18, 20, 21, 28] and the references therein. There is much
less work on quorum placement problems that seek to minimize
objectives that capture network performance, which we summarize
here.

To the best of our knowledge, previous work on quorum place-
ment in networks has only considered minimizing various notions
of delaythat a client incurs by accessing a quorum. Specifically, let
d(v,v′) denote the distance from nodev to v′ in a graphG = (V,E),
and letδ (v,Q) = maxv′∈Qd(v,v′) and γ(v,Q) = ∑v′∈Qd(v,v′) be
the delays incurred by a nodev when accessing a quorumQ ⊆ V
in parallel and sequentially, respectively (hence the max and the
sum in the two definitions). Previous work has included algorithms
to design quorum systems to minimize objectives like(a) average
delayAvgv∈V

[

minQ∈Q δ (v,Q)
]

for particular classes of graphs [8]
or for arbitrary graphs [14];(b) or max-delay to the closest quorum
maxv∈V minQ∈Q δ (v,Q) [29].

Furthermore, there has been work on finding placements of a
given quorum systemQ on an arbitrary graphG = (V,E): there
is work on(i) designing bijectionsf : U →V andq : V → Q that
minimizeAvgv∈Vγ(v, f (q(v))) [10], or (ii) designing a placement
f :U →V to (approximately) respect load constraints on nodes and
minimizeAvgv∈V [E[γ(v, f (Q))]] or Avgv∈V [E[δ (v, f (Q))]], where
expectations are taken with respect to the selection ofQ according
to p [11]. Among these, only the work in(ii) considers the load of
the quorum system; however, it does not consider the congestion
incurred by these placements, and indeed may give us fairly poor
placements with respect to network congestion.

Minimizing network congestion for both specific and general
networks is a problem that has received considerable attention in
the past; given the impossibility of summarizing this work,we
mention just some of the most important results here. Early work
in this area included the seminal results of Valiant [30] andValiant
and Brebner [31] who gave randomized routing algorithms in hy-
percubes and meshes to get small congestion. Leighton, Makedon
and Tollis then gave deterministic algorithms for meshes [17]. Lin-

ear programming relaxations and randomized rounding was first
used by Raghavan and Thompson [26] to find unsplittable paths
with low congestion. Single-source versions of unsplittable flow
were studied by Dinitz, Garg and Goemans [6], who gave constant-
factor approximation algorithms for various versions of the prob-
lem.

In a model similar to ours, Maggs et al. [19] consider a data man-
agement problem for special networks (trees, meshes, and clustered
networks). In their work, clients issue read and write requests for
objects, where a read request is serviced by any node holdinga
copy of the object, but a write request must update all copiesof the
object. Just as in this paper, the goal of their work is to place the
objects optimally on the nodes of a network to minimize conges-
tion. However, while their paper considered the questions behind
replicating objects and the static and dynamic issues therein (i.e.,
how many copies of an object to maintain at any time? where to
place them?), here we take a fixed quorum system and client re-
quest rates as input and try to find congestion-optimal placements
that respect node capacities.

The results of Maggs et al. [19] are extended by Westermann [32]
to a model in which objects are allowed tomigratebetween nodes
of the network: while migrating an object increases congestion,
moving the object closer to a source may eventually decreasetraffic
in the network. He gives a 3-competitive algorithm for congestion
for trees, and extends these results to other classes of networks.

Räcke [25] further generalizes these results by giving a general
method to solve a congestion problem in arbitrary graphs. His
method is based on the construction of acongestion-tree TG that
“simulates” the original graph with a polylog|V| factor loss in
congestion; more details on this general method are given inSec-
tion 3.1.

3. PRELIMINARIES
In this section, we introduce some concepts and results thatwill

be used in developing algorithms for the QPPC problem in the ar-
bitrary routing model. The “congestion preserving” trees of Räcke
mentioned in Section 2 are directly related to the problem athand,
so we discuss them in more detail in the next section. The results on
unsplittable flows in Section 3.2 will be used in rounding a linear-
programming relaxation of one of the problems we consider here.

3.1 Congestion Trees
Given an instance of a congestion-minimization problem on a

general graphG, one may try to reduce the problem to one on a
simpler graph—for instance, a treeT—where it is algorithmically
easier to find a good solution. Of course, we would like that the
treeT “approximates” the graphG well; the following definition
formally states the notion of approximation we will use. Recall
that amulticommodity flowon a graphG = (V,E) is a setg = {gi :
E→R≥0}i of flows wheregi carriesdi units fromsi to ti (si ,ti ∈V);
the vector{di}i is thevalueof the flow.

Definition 3.1 A tree T= (VT ,ET) with edge capacities given by
edge capT : ET → R≥0 is a β -approximate congestion tree for a
graph G= (V,E) with edge capacitiesedge capG : E → R≥0 if:

1. The vertices of G are the leaves of T .

2. For any multicommodity flow g on pairs{(si ,ti)}i that is fea-
sible on G (i.e.,∑i gi(e) ≤ edge capG(e) for each e∈ E)
there is a feasible multicommodity flow of the same value
on leaves{(si ,ti)}i in T .
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3. For any feasible multicommodity flow gT on pairs of leaves
{(si ,ti)}i in T , there exists a multicommodity flow g on{(si ,ti)}i
in G such that g has the same value as gT and ∑i gi(e) ≤
β ×edge capG(e) for each e∈ E.

In a surprising recent result, Räcke [25] showed that one can
find congestion trees for general networks withβ = poly logn. His
initial result was existential, but subsequent results of [3, 12] made
the construction algorithmic, and also improved the value of β to
give us the following theorem.

Theorem 3.2 Given any undirected graph G= (V,E), there exists
an O(log2nlog logn) - approximate congestion tree TG; further-
more, this congestion tree can be found in time polynomial inn and
the maximum capacity of any edge (assuming edge capacities are
bounded to within a fixed polynomial factor of each other).

Working in the arbitrary routing model, we will use this result to
reduce an instance of the Quorum Placement Problem for Conges-
tion on general graphs to an instance on trees, and then we will give
algorithms to solve the Quorum Placement Problem for Congestion
on trees.

3.2 Single Source Unsplittable Flow
In general, a flow froms to t could befractional, i.e., the com-

modity travels on multiple paths froms to t. In contrast, anunsplit-
table flowis one that is constrained to travel only on a single path.
TheSingle-Source Unsplittable Flow Problem(SSUFP), then, is
specifically the following: given a directed graphG = (V,E) with
edge capacitiesedge cap : E → R≥0, a source nodes∈ V andk
terminals ti ∈ V, with eachti in 1 ≤ i ≤ k having ademand di ,
find a multicommodity flow from the source to the terminals such
that the flowgi : E → R from s to ti (of di units) is unsplittable
(i.e., travels on asingle path), and the total flow on any edgee
is ∑i gi(e) ≤ edge cap(e). Note that a solution to this problem is
given by a set of paths{Pi}k

i=1, wherePi is a path froms to ti .
This problem was studied by Dinitz, Garg and Goemans [6], who

proved the following: given any feasible instance of the single-
source unsplittable flow problem, there is a polynomial timealgo-
rithm to obtain a set of pathsPi (one for each terminalti ), such that
the total traffic∑i:e∈Pi

di on any edgee is at mostedge cap(e) +
maxi{di}. In fact, they prove a slightly stronger result, which we
now state in a form most convenient to us:

Theorem 3.3 Given a fractional multicommodity flow that satisfies
terminal demands and the edge capacities (where the flow of di
units from s to ti is denoted by gi), the algorithm of Dinitz et al. [6]
converts it into an unsplittable flow Pi where the total traffic over
an edge e is

∑
i:e∈Pi

di ≤ edge cap(e)+max{ di | gi(e) > 0}.

Note that the maximum on the right hand side is only over the com-
modities using the edge e in the input fractional flow.

In Section 4.2, we will use this theorem to round a fractional
solution of a linear programming relaxation for the QPPC problem
in the arbitrary routing model.

4. THE ARBITRARY ROUTING MODEL:
THE SINGLE CLIENT CASE

In this section, we present our first results for the Quorum Place-
ment Problem for Congestion (QPPC) in the arbitrary routingmodel:

we consider the special case when there isonly one clientin the
system generating the requests. For this case, we show that it is
NP-hard to approximate the congestion withinany factor if we en-
force the node capacitiesnode cap(v). We then show that if we are
allowed to violate the node capacities by a “small” amount, we can
achieve a “small” congestion as well.

4.1 A Hardness Result
Let us begin by proving the following simple theorem that shows

that this problem is NP-hard to approximate withinanyfactor. This
hardness result motivates a line of inquiry we will pursue, where we
allow the node capacities to be violated by a small amount, and then
try to minimize the edge congestion incurred.

Theorem 4.1 Finding any feasible solution to the Single Client
case of QPPC (in either model) is NP-hard if no node capacities
node cap(v) are violated.

Proof. The reduction is from the PARTITION problem, an instance
of which contains a set of numbers{a1,a2, . . . ,al} with ∑i ai = 2M,
and the goal is to find a subset of theai ’s that sum to exactlyM.

We now construct a quorum systemQ on l +1 nodesU = {u0,
u1, . . . ,ul} with l quorumsQi = {u0,ui}, and the access strategy
p(Qi) = ai/2M. Note thatload(u0) = 1 andload(ui) = ai/2M oth-
erwise. Finally, let the graphG = (V,E) consist of the complete
graph with 3 nodes{v0,v1,v2}, with node capacitiesnode cap(v0) =
1, andnode cap(v1) = node cap(v2) = 0.5. (The edge capacities
are not relevant in this reduction.) Finally, let all the requests orig-
inate from a single client located atv0.

Note that any feasible placementf that respects the node capac-
ities must place the elementu0 at the rootv0, and hence the set of
elements placed at nodev1 must have∑ai

= M. Thus it is NP-hard
to find any feasible placementfor this instance, let alone a place-
ment that approximates the edge congestion.

4.2 The Algorithm for the Single Client Case
Our result for the special case of a single client works for the

more general case of directed graphs. In fact, we also permitthe
presence of the following additional constraints:

• for each edgee, we can give a set offorbidden elementsde-
noted byFe⊆U such that traffic to any elementu∈ Fe is not
allowed to traverse edgee; and

• for each nodev, a set of forbidden elementsFv ⊆U that can-
not be placed at the nodev. (I.e., forbidden placementsf are
those withf (u) = v for someu∈ Fv.)

Let us denote byloadmaxv the maximum load of any element that
can be placed onv, i.e., loadmaxv = maxu6∈Fv

load(u). Similarly,
let loadmaxe = maxu6∈Fe

load(u). We will use these quantities to
parameterize the performance of the following theorem.

Theorem 4.2 Given a directed instance of the Quorum Placement
Problem for Congestion in the arbitrary routing model, witha sin-
gle client v0 generating requests, let f∗ be the optimal placement
that respects node capacitiesnode cap and achieves a congestion
of cong∗ on the edges. We can find, in polynomial time, a place-
ment f for which:

• the load load f (v) on any node v is at mostnode cap(v)
+ loadmaxv, and
• the traffic on any edge e is at most(cong∗× edge cap(e))
+ loadmaxe.
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Proof. To prove this theorem, we formulate the Quorum Place-
ment Problem for Congestion as an integer linear program (ILP),
consider its linear programming (LP) relaxation, and rounda (pos-
sibly fractional) solution to this LP relaxation to an integer solution
to (ILP) while losing at mostO(loadmax(e)) during this rounding.

Consider the following integer linear programming formulation
(ILP):

λ ∗ = minimizeλ (4.2)

∑
i

xiu = 1, ∀ u∈U (4.3)

∑
u
load(u) xiu ≤ node cap(vi), ∀ vi ∈V (4.4)

xiu = 0, ∀ u∈ Fvi (4.5)

∑
P∈Pi

gu(P) = load(u)xiu,∀ u∈U,∀ vi ∈V (4.6)

∑
P∈Pi
e∈P

gu(P) = 0, ∀ u∈ Fe,∀ e∈ E (4.7)

∑
u∈U

∑
vi∈V

∑
P∈Pi
e∈P

gu(P) ≤ λ ×edge cap(e), ∀ e∈ E (4.8)

xiu ∈ {0,1},∀ vi ∈V,∀ u∈U. (4.9)

Herexiu is the indicator variable for the elementu being placed
on nodevi , Pi is the set of paths from the clientv0 to the nodevi ,1

gu(P) is the amount of traffic destined for elementu that uses some
path P, andλ is the overall congestion of the resulting solution.
Since each ofxiu is either 0 or 1, thegu(P)’s tell us how to send
the traffic from the clientv0 to the nodevi with xiu = 1. (Since we
do not require that thegu(P)’s be integral, technically the above
program is a mixed-integer program.)

Note that given a solutionf to the single-client QPPC problem
with congestioncong f , we may setxiu = 1 ⇐⇒ f (u) = vi and use
the flows prescribed by the given solution to obtainλ = cong f , and
hence this is indeed a formulation of the original problem.

Since we cannot solve this ILP optimally in polynomial time,we
relax the integrality constraints: instead of (4.9), we throw in the
constraint 0≤ xiu ≤ 1 and solve the resulting linear program; now
we have to round the resulting fractional solution(λ ,x,g) to one
wherexiu ∈ {0,1} for all i andu. For simplicity of exposition, we
scale the edge capacities by a factor ofλ , so that with the new edge
capacitiesλ ∗ = 1.

Preprocessing.We will use the rounding scheme used for the
Single-Source Unsplittable Flow Problem to round our fractional
solution, and hence we first construct an instance of SSUFP. Con-
sider the graphG = (V,E), and let us add a new “sink” vertext
to it, with directed arcs(vi ,t) from eachvi ∈ V to this new ver-
tex t, with each arc(vi ,t) having a capacity ofedge cap((vi ,t)) =
node cap(vi). Now we create|U | new “terminals”{tu | u∈U}, all
of which are located at the “sink” nodet. Define the clientv0 to be
the “source”.

Finally, note that total amount of flow ending atvi is equal to
∑u∈U ∑P∈Pi

gu(Pi) = ∑u load(u)× xiu using equality (4.6), which
by (4.4) is at mostnode cap(vi). Thus we can take all the flow that
previously ended at the nodevi , and send it on the arc(vi ,t) to the
sink t without violating capacities. Doing this for all verticesvi , we
get a flow that for eachu∈U , sendsload(u) units of flow from the
sourcev0 to the terminaltu.

Using SSUFP to Round the LP Solution.Finally, we apply

1Note that|Pi | could be exponential inn; one can write an equiv-
alent formulation of this ILP with a number of variables and con-
straints polynomial inn. However, the formulation we present here
will be easier to argue about.

Theorem 3.3 to the flow created in the above construction: thean-
swer it returns is a set of paths{Pu}u∈U , one for eachu∈U , such
that the flow one is

∑
u:e∈Pu

load(u) ≤ edge cap(e)+ max
u:gu(e)>0

{load(u)}. (4.10)

Finally, if the pathPu uses the edge(vi ,t) to reachtu = t, define
f (u) to bevi .

Proving the Claimed Guarantees. Let us first consider the
load load f (vi), which is equal to the traffic on the arc(vi ,t). Re-
call that edge cap((vi ,t)) = node cap(vi). Also, if gu((vi ,t)) =

∑P∈Pi
gu(P) is non-zero, thenu 6∈ Fvi by the constraint (4.7), and

thus loadmaxvi ≥ loadu. Plugging these facts into (4.10) implies
that load f (vi) ≤ node cap(vi)+ loadmaxvi , as claimed.

Now for the traffic on an edgee∈ E: this was originally at most
edge cap(e), and now can increase by at mostloadmaxe (due to
the constraint (4.5)), thus proving the theorem.

5. THE GENERAL CASE OF QPPC IN THE
ARBITRARY ROUTING MODEL

To obtain the result for an arbitrary number of clients claimed in
Section 1, we use the following strategy:

(A) Reduce the problem to trees.We first translate the QPPC
problem on a general graphG to theβ -approximate congestion tree
TG with β = O(log2 nlog logn), as guaranteed by Theorem 3.2.

It follows from the definition of a congestion tree, and the fact
that the leaves ofTG correspond to nodes of the networkG, that any
placementf :U → leaves(TG) which is anα-approximation for the
optimal congestion inTG corresponds to a placementf :U →V(G)
which approximates the optimal congestion inG to within α ×β .
(The details of this translation are given in Section 5.1.)

(B) Reduce the problem to the single-source case.In Sec-
tion 5.2, we show that there is a placementf0 that maps all elements
in U to a single nodev0 in the treeTG and minimizes the congestion
of the tree edges. However, this placement has very high load, and
since our goal is to achieve low loads in addition to a low network
congestion, this solution is clearly not acceptable. However, this
will be a convenient structural result for the rest of the argument.

(C) Solve the single-source problem.Finally, in Section 5.3, we
imagine the above single-node solutionv0 as asingle client gener-
ating all the requests, and use the algorithm of Section 4 to find a
good placementf : U → leaves(TG) for this single-client case. We
show thatf is also a “good” placement for the original set of clients
in TG, and achieves a congestion ofα ≤ 5 times the optimum.

5.1 Translating the QPPC Instance to a Con-
gestion Tree

Consider a graphG = (V,E) and aβ -approximate congestion
treeTG = (VT ,ET). Recall thatV is equal to the set of leaves ofTG,
i.e.V = leaves(TG). Let f ∗G : U →V be the placement in the graph
G with the least edge congestioncong∗G. Let f ∗TG

: U → leaves(TG)
be the placement that has the least congestion over the edgesof
the treeTG, and letcong∗TG

be the value of this congestion. By
the definition of congestion trees, it follows thatcong∗TG

≤ cong∗G.
Since we assumed that the optimal congestion onG is exactly 1,
we get the following fact.

Lemma 5.1 The optimal congestion on TG is at most1.

Moreover, if f : U → leaves(TG) is a placement with congestion
at mostα × cong∗TG

over the edges ofTG, then f has congestion of
at most(α ×β )×cong∗TG

≤ (α ×β )×cong∗G over the edges ofG.
This implies the following result:
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Theorem 5.2 Any placement f: U → leaves(TG) with edge con-
gestionα ×cong∗TG

over the edges of TG has a congestion ofαβ ×
cong∗G over the edges of G. In other words, a placement on the
leaves of TG that is anα-approximation for congestion on TG is an
αβ -approximation for congestion on G.

Note that the above theorem only works for placements that map
elements to the leaves ofTG, and as such cannot be used directly
with the results of the next section.

5.2 Single Node Solutions are Good on Trees
For any nodev∈VT , let fv :U →VT be the trivial placement with

fv(u) = v for all u∈U ; i.e., all the elements ofU are placed on the
single nodev. We will show that on a tree, an optimal placement of
(Q, p), provided we ignore node capacity constraints, is on a single
node of the tree.

Lemma 5.3 Given a tree T= (VT ,ET) and a placement f: U →
VT , one can find (in polynomial time) a node v0 ∈V such that the
placement fv0 has congestion no greater than that of f .

Proof. Let f−1(v) denote{u | f (u) = v}. For a nodev∈ T, recall
that rv was the fraction of all the requests in the system that are
generated by the clientv, and also that

load f (v) = ∑
u∈U : f (u)=v

load(u)

= ∑
u∈U : f (u)=v

∑
Q∈Q:u∈Q

p(Q)

= ∑
Q∈Q

p(Q)×| f−1(v)∩Q|

is the expected number of messages that reach the nodev (where the
expectation is taken over the choice ofQ under the access strategy
p). It is a simple exercise to prove that there exists a nodev0 in T
such that each subtreeT ′ of T−{v0} has at most half the demands;
i.e.,∑v∈T ′ rv ≤ 1

2 ≤ ∑v6∈T ′ rv.
Consider an edgee, and letTL and TR be the subtrees formed

by deletinge. Let r(TL) = ∑v∈TL
rv be the total fraction of de-

mands generated by clients inTL. The expected number of mes-
sages seen by nodes inTL is load f (TL) = ∑v∈TL

load f (v). Let r(TR)
andload f (TR) be defined similarly for the subtreeTR. Then the to-
tal congestion of the edgee under the placementf is

r(TL)× load f (TR)+ r(TR)× load f (TL)

edge cap(e)
(5.11)

Without loss of generality, letr(TL)≤ r(TR), and hence the nodev0
must lie inTR. Thus all the messages traversing the edgee under
the placementfv0 go fromTL to TR, with e having a congestion of
r(TL)× [load f (TR)+ load f (TL)]/edge cap(e); ther(TL)load f (TR)
term corresponds to messages generated by nodes inTL which are
sent acrosseunder both placements, while ther(TL)load f (TL) term
corresponds to messages generated by nodes inTL that are sent to
nodes inTL under placementf but are sent acrosse under place-
ment fv0. Sincer(TL) ≤ r(TR), this quantity is at most (5.11), the
congestion under the placementf . Finally, we note that the node
v0 can be found in linear time simply by trying all the nodes ofT,
which completes the proof of the lemma.

While this lemma tells us how to find the best quorum placement
on trees, it is unsatisfying for at least two reasons. First,the node
v0 in the above theorem suffers all the load in the system under the
placementfv0. Second, this nodev0 may be an internal node of
TG, and hence we cannot directly obtain a solution for the graphG

by applying Lemma 5.3 on the congestion treeTG, and then using
Theorem 5.2 to translate the solution back toG. In the next section
we provide a solution to these problems.

5.3 The Algorithm for General QPPC
Consider a congestion treeTG, let f ∗ be the best placement ofU

on the leaves ofTG that respects the node capacities (i.e.,load f ∗(v)≤
node cap(v) for all v); let cong f ∗ be the congestion inTG under
f ∗. Let the best (single-node) placement given by Lemma 5.3 for
the treeTG be fv0, which places the entire quorum onv0. Let the
congestion incurred under this placement becong fv0

; Lemma 5.3
shows thatcong fv0

≤ cong f ∗ .
Let us show that ifv0 were generating all the requests (instead of

the nodev generating requests with probabilityrv), the placement
f ∗ would still be a fairly good placement.

Lemma 5.4 The congestion incurred by the placement f∗ if all the
requests in the system originate at v0 (instead of at the individual
clients) iscong f ∗,v0

≤ 2cong f ∗ .

Proof. Indeed, the congestion is no worse than if we use the fol-
lowing routing strategy for messages: letv0 chooseQ according
to the access strategyp, and a leafv with probability rv, and send
the messages to the various nodes inf (Q) by first sending them to
v, which forwards them on tof (u). The first part of this indirect
route incurs the same congestion as the case whenv were generat-
ing all the|Q| messages and using the placementfv0, which is just
cong fv0

≤ cong f ∗ (by Lemma 5.3). The second part of the route
incurs a further congestion ofcong f ∗ , which proves the result.

Recall thatcong f ∗ ≤ 1 due to Lemma 5.1. We now prove the
main result for the QPPC problem on trees:

Theorem 5.5 There is a placement f on the leaves of the tree TG
that incurs a congestion of at most3cong f ∗ + 2 ≤ 5, and which
places a load of at most2node cap(v) on each leaf v.

Proof. Let us imagine the nodev0 of Lemma 5.4 to be the sole
client, and use the algorithm of Section 4 to find a placementf
on the leaves ofTG with “low” load and congestion. Each leaf
nodev of TG corresponds to a node ofG and hence has a node
capacity already defined; for each internal nodev∈ TG, define the
node cap(v) = 0, thus ensuring that no elements are mapped to
internal nodes.

Recall that one could specifyforbidden setsfor nodes and edges
in the algorithm of Section 4.2: let the forbidden setFv for nodev
be the set of elementsu with load(u) > node cap(v). Also, the for-
bidden setFe for a tree edgee is defined to be the set of all elements
u such thatload(u) > 2edge cap(e). Note that these settings ensure
that loadmaxe ≤ 2edge cap(e) andloadmaxv ≤ node cap(v).

Note that the placementf ∗ on the leaves ofT is a possible solu-
tion to this instance of the single-client QPPC, having a congestion
of at most 2 (due to Lemma 5.4 and Lemma 5.1) and load of at
mostnode cap(v), for eachv ∈ V. Hence, Theorem 4.2 guaran-
tees us that (a) each node has a load of at mostnode cap(v) +
loadmaxv = 2node cap(v), and that (b) each edge sees a traffic of
at most(cong f ∗ ,v0

× edge cap(e))+ 2edge cap(e), and hence the
congestion is at mostcong f ∗ ,v0

+2≤ 2cong f ∗ +2.
Now, since the requests are generated by the various nodes of

the network and not by the single nodev0, one has to add in the
extra congestion incurred by sending all the requests tov0. By
Lemma 5.3, this extra congestion is at mostcong fv0

≤ cong f ∗ .
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Finally, putting the pieces together, the idea of conceptually “del-
egating” all the requests tov0 and using the placementf that (ap-
proximately) optimizes the congestion for the “source”v0 gives us
the claimed congestion of 3cong f ∗ + 2 ≤ 5 (sincecong f ∗ ≤ 1 by
Lemma 5.1).

Now combined with the results of Section 5.1, we get the result
for general graphs.

Theorem 5.6 Given an instance of QPPC on general graphs, we
can find a placement f that incurs on any node v a load of at most
2node cap(v), and an edge congestion of at most5β times the op-
timum (whereβ is the performance of the best known congestion
tree).

Sinceβ = O(log2nlog logn), this proves Theorem 1.3.

6. THE FIXED ROUTING PATHS MODEL
In this section we consider a variant of QPPC in which we are

given routing pathsPv,v′ between each pair of vertices. A node
v generating an access to elementu thus incurs a unit of flow on
the edges ofPf (u),v, whereu has been placed at nodef (u). In
general, we do not requirePv,v′ andPv′,v to be equal. As before, our
goal is to find a placementf of quorum elements onto the nodes
to minimize the congestion, while respecting the node capacities.
First note that Theorem 1.2 applies to this variant; if we arenot
allowed to violate the node capacities then even finding a feasible
solution is NP hard. As before, we retreat to the task of finding
solutions that approximate the congestion well, but may violate the
node capacities by a small multiplicative factor. However,even if
we allow ourselves to ignore the node capacity constraints entirely
(i.e., violate them by arbitrary factors), minimizing the congestion
is still fairly inapproximable, as the following result states.

Theorem 6.1 In the fixed routing paths model, it is NP hard to c-
approximate the minimum congestion of a QPPC problem, for all
c ∈ N, even on instances wherenode cap(v) = ∞ for all v, and
load(u) = load(u′) for all u,u′ ∈ U. Furthermore, unlessNP ⊆
ZPTIME

(

nO((log log(n))2)
)

, it is NP hard to o(
√

log log(n)) - ap-

proximate the minimum congestion QPPC solution, even on in-
stances wherenode cap(v) = ∞ for all v, and load(u) = load(u′)
for all u,u′ ∈U.

Proof. Recall that for a vectorx, ‖x‖p :=
(

∑i x
p
i

)1/p, and‖x‖∞ =
maxi{xi}. The proof proceeds along similar lines as the proof
of hardness of the Vector Scheduling problem given by Chekuri
and Khanna [4]. We reduce Independent Set to QPPC instances
with node cap(v) = ∞ for all v, and load(u) = load(u′) for all
u,u′ ∈U . For a graphG, let α(G) be the size of the largest inde-
pendent set inG, and letω(G) be the size of the largest clique inG.
Lemma 6.2 states thatα(G) ≥ 1

2en1/ω(G), whereG hasn vertices.
Now consider the following multi-dimensional packing problem
(MDP): givenA∈ {0,1}d×n andk≤ n, minimize‖Ax‖∞ such that
x∈ {0,1}n and‖x‖1 = k. We can reduce MDP to QPPC instances
with load(u) = load(u′) for all u,u′ ∈U in an approximation pre-
serving fashion as follows. We construct a quorum system onk
elements with uniform load. We addd vertex disjoint edges of unit
capacity, one for each row of the matrixA, as well as two sources
of quorum accesses,s1 ands2. Partition of columns ofA into sets
S1,S2, . . . ,Sr using the natural equivalence relation on the column
vectors, and add a vertexvi for eachSi with node cap(vi) = |Si |.
Note that if |Si | = k, we can setnode cap(vi) = ∞. We also add

a bottleneck edge of capacity 1/n2. We route the paths to ensure
that placing an element atvi is like selecting a column inSi (add
some infinite capacity edges to the graph as needed). Finally, we
ensure that no elements are placed at nodes other than{v1, . . . ,vr}
by routing paths to these other nodes through the bottleneckedge.

Note that since we want to restrict ourselves to MDP instances
that reduce to QPPC instances with uniform load andnode cap(v)=
∞ for all v, we require the matrixA to satisfy the following prop-
erty: if ~a is column vector ofA, thenA must have at leastk− 1
other column vectors that equal~a.

We now proceed by reducing Independent Set to such MDP in-
stances. LetG be an Independent Set instance onn nodes. Fix
parametersk andB. We construct a matrixA′ with n columns, cor-
responding to each node ofG. For each cliqueC in G of sizeB+1
or smaller, add a rowC to A′ such thata′C,v = 1 if v∈C, and zero
otherwise. Now construct a matrixA with kn columns, consisting
of k copies of each column ofA′. Callx∈ {0,1}kn valid if ‖x‖1 = k.
Note that if‖Ax‖∞ > 1 for all validx, thenα(G) < k. Furthermore,
if there exists a validx such that‖Ax‖∞ ≤ B, thenα(G) ≥ 1

2ek1/B.
To prove this, consider a graphG′ that is constructed fromG by
replacing each nodev of G with a cliqueCv of sizek, and adding
all edges inCv×Cv′ to G′ whenever(v,v′) is an edge ofG′. Clearly,
α(G) = α(G′). Note that since‖Ax‖∞ ≤ B, the subgraphG′

x of G′

induced on{v|xv = 1} hasω(G′
x) ≤ B, so

α(G′
x) ≥

1
2e

|V[G′
x]|1/ω(G′

x) ≥ 1
2e

|V[G′
x]|1/B =

1
2e

k1/B (6.12)

and clearly,α(G) = α(G′) ≥ α(G′
x).

Given aρ-approximation for MDP on these instances (obtained
from a ρ approximation for QPPC on uniform load, infinite node
capacity instances), we approximate Independent Set onG as fol-
lows. Setk := nρ/(ρ+1), B := ρ, and construct matrixA accord-
ingly. Let x be the output of the MDP algorithm. If‖Ax‖∞ > B,
output one, otherwise output12ek1/B. The output is always at most
α(G) by equation 6.12. Furthermore, in the first case‖Ax‖∞ > 1
for all valid x, since we used aρ-approximation for MDP, and
thusα(G) < k. In the latter case,α(G) ≤ n trivially, so we have

a max{k,en/k1/B} = 2e · (n1− 1
B )-approximation. (Note that the

reduction takes poly(nρ ) time.) Combining this reduction with
known hardness results for Independent Set (see [7] and references
therein), completes the proof.

Lemma 6.2 In any undirected graph G on n nodes,2e·α(G) ≥
n1/ω(G) whereα(G) is the size of the largest independent set in G,
andω(G) is the size of the largest clique in G.2

Proof. Suppose for a contradiction thatn > (2e·α(G))ω(G). Us-
ing the well known Erdös-Szekeres bound on the Ramsey number
R(s,t), namelyR(s,t) ≤

(s+t−2
s−1

)

, we conclude that

n > (2e·α(G))ω(G) ≥
(

α(G)+ω(G)

ω(G)

)

≥ R(α(G)+1,ω(G)+1)

Thus, by the definition ofR(·, ·), G has an independent set of size
α(G) + 1 or a clique of sizeω(G) + 1, which yields the desired
contradiction.

We now develop an approximation algorithm for QPPC in the
fixed paths model, starting with instances with uniform element
loads.

2We note that stronger versions of this lemma exist, and a similar
lemma is stated without proof in [4], however this version issuffi-
cient for our purposes.
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6.1 Uniform Element Loads

Theorem 6.3 There is a polynomial time randomized algorithm
that, given an instance of the QPPC problem in the fixed routing
paths model in whichload(u) = load(u′) for all u,u′ ∈U, yields a
(O(logn/ log logn),1)-approximation.

We reformulate the QPPC problem in the fixed paths model with
uniform elements loads as follows. Assume WLOG that for each
u∈U , load(u) = l . Consider placing a logical elementu at a node
v. Since the loads are uniform, placing any logical element atv re-
sults in the same increase in congestion to the edges of the network.
We represent this as a vectorcv ∈ R

|E|, where the coordinates are
indexed by edges. Thus coordinatee of cv is the expected conges-
tion incurred by placing an element atv. For eachv, suppose we

can place at mosth(v) :=
⌊

node cap(v)
l

⌋

logical elements atv while

respecting the node capacities. Consider a matrixA that has ex-
actlyb := ∑v h(v) columns, consisting ofh(v) copies ofcv for each
v. We say theseh(v) columns areassociatedwith v. Our variant of
the QPPC problem thus becomes

minimize ‖Ax‖∞ s.t. x∈ {0,1}b and ‖x‖1 = |U |

We say thatx selectscolumns i for which xi = 1, and for each
column associated withv thatx selects, we place a logical element
at v. We call the resulting assignmentfx. It is easy to encode this
formulation as an ILP and take the LP relaxation.

λ ∗ = minimizeλ
λ ≥ ∑ j ai j x j ∀i
∑ j x j = |U |
x j ∈ [0,1] ∀ j

To solve this LP we can start by guessing the optimal conges-
tion 3 cong∗, and remove all columns containing any entryai j >
cong∗ from the matrixA. We then solve the resulting LP, and ap-
ply the rounding scheme of Srinivasan [27] to the resulting optimal
fractional solutionx to get an integral vectory.

Using this rounding procedure, Srinivasan guarantees that‖y‖1 =
|U |, and for all vectorsa such thata j ∈ [0,1] for all j , and for all
δ ≥ 0 andµ ≥ E

[

∑ j a jy j
]

Pr
[

∑ j a jy j ≥ µ(1+δ )
]

≤
(

eδ

(1+δ )1+δ

)µ
(6.13)

As before, we can scale the valuesai j by 1/cong∗, so that the op-
timal congestion becomes one, and eachai j ≤ 1. We can apply then
equation 6.13 to bound the congestion on a fixed edgei. Note that
E

[

∑ j ai j y j
]

= ∑ j ai j x j ≤ 1, since the optimal congestion is one, so
we setµ = 1. For any constantc, we can apply equation 6.13 with
someδ = Θ(logn/ log logn) to prove that the congestion on edge
i exceeds the optimal congestion by more than an additive factor
of δ with probability at most 1/nc. Taking a union bound over
the edges, we infer that the congestion isO(logn/ log logn) with
high probability. Thus the placementfy is a(O(logn/ log logn),1)-
approximation.

The algorithm is summarized as follows:

3If guessingcong∗ requires too much nondeterminism, it is suf-

ficient to guesst =
⌈

log(1+ε)(cong∗)
⌉

, for any ε > 0, and use

(1+ ε)t as an estimate forcong∗. This increases the bound on
congestion by a factor of 1+ ε.

Algorithm for uniform load instances:
Generate matrixA and guesscong∗.
Remove columnsj of A with maxi{ai j } > cong∗.
Optimally solve the resulting LP to get solutionx.
Roundx to y using the rounding in [27].
Output fy.

6.2 The General Case
Here, letA be any algorithm for uniform load instances. IfA

is the algorithm given above, we suppose it is given its guessfor
cong∗ as part of its input.

Algorithm for general instances:
Guessκ = cong∗.
For eachu∈U , roundload(u) down to the nearest power
of two. Call the resultload′(u).
Let L := {load′(u) |u∈U}.
For eachl ∈ L, in decreasing order of size

RunA onUl := {u∈U | load′(u) = l},
usingκ as the input guess if needed.
PlaceUl asA suggests, and decreasenode cap(·)
accordingly. That is, ift elements ofUl are placed
onv, decreasenode cap(v) by tl .

Lemma 6.4 If A is a (α,β )-approximation for QPPC instances
with uniform load in the fixed routing paths model, then the above
algorithm is a(α|L|, 2β )-approximation for general QPPC instances
in the fixed routing paths model.

Proof. Supposef is the placement output by the algorithm. We first
prove load f (v) ≤ 2βnode cap(v) for eachv. Note that it suffices
to show thatload′f (v) ≤ βnode cap(v), sinceload(u) ≤ 2load′(u)

for all v. From now on all references to load refer toload′.
Fix any v. SupposeA is run on elementsu with load′(u) = l

and placest of them onv. There are two cases: either at this stage,
node cap(v) ≥ tl , in which case we can charge the load these ele-
ments cause to the corresponding decrease innode cap(v), or else
node cap(v) < tl . In the latter case, we know thatnode cap(v) ≥
tl/β sinceA is an(α,β ) - approximation, so we can chargetl/β
to node cap(v). Furthermore, sincenode cap(v) is reduced to
zero, v is not assigned any additional elements later on. Thus
we can charge 1/β of the load tonode cap(v), and conclude that
load′f (v) ≤ βnode cap(v).

We now bound the congestion caused by each execution ofA

by α · cong∗. To do this, it suffices to prove that the optimal con-
gestion is at mostcong∗ in each instance on whichA is run. Fix
an instance, say on elements withload′(u) = l , denotedUl . All
elements with larger loads have already been placed, thus reducing
the node capacities at some nodes. For a placementf , nodev, and
W ⊆U , let

cap( f ,v,W) = node cap(v) − ∑
u∈W: f (u)=v

load′(u)

denote the remaining load atv after placing downW using f . Here,
node cap(v) are the original input node capacities. LetU ′ := {u |
load′(u) ≥ 2l}, and let f be the partial placement ofU ′ created
by the algorithm so far. Fix any optimal solutionf ∗. We can
place down elements ofUl at nodesv such thatcap( f ,v,U ′) −
cap( f ∗,v,U ′∪Ul ) > 0. Specifically, we place downb(cap( f ,v,U ′)
− cap( f ∗,v,U ′ ∪Ul ))/lc such elements atv. It remains to show
that we can place all ofUl down this way. To see this, first note
that, by a simple volumetric argument,

∑
v

(

cap( f ,v,U ′)−cap( f ∗,v,U ′ ∪Ul )
)

= l · |Ul |
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Next, observe thatcap( f ,v,U ′)− cap( f ∗,v,U ′ ∪Ul ) is always a
multiple of l , since all elements ofU ′ andUl have loads that are
multiples of l . (Note how we have used the fact that the loads
load′(u) are multiples of two.) Combining these two facts, we see
that we can packUl in node capacity occupied by elements ofU ′∪
Ul under placementf ∗, while respecting node capacity constraints
(with respect toload′), no matter howf placed downU ′. Having
done this, it is clear that the resulting congestion due to placingUl
is no more thancong∗.

Since the congestion due toA on each instance is at mostα ·
cong∗, we conclude that all executions ofA together contribute
congestion at most|L| ·α ·cong∗.

Note that|L| = |{blog2(load(u))c |u ∈ U}| = η, so using the
algorithm given above forA , with α = O(logn/ log logn) andβ =
1, we complete the proof of Theorem 1.4.

7. CONCLUSIONS
In this paper we studied the problem of placing the elements of a

universeU underlying a quorum systemQ on a networkG in a way
that minimizes congestion due to quorum accesses, while respect-
ing the computing capacity of each network node. We considered
this problem in two models, differing on the basis of whethercom-
munication routes are fixed or can be chosen. We showed that in
either case, this problem cannot be approximated to withinanyfac-
tor (unless P=NP). However, by allowing doubling of the capacity
of each node, we present efficient approximation algorithmsfor this
problem in both models.

8. REFERENCES
[1] Y. Amir and A. Wool. Optimal availability quorum systems:

theory and practice.Inf. Proc. Lett., 65(5):223–228, 1998.
[2] D. Barbara and H. Garcia-Molina. The reliability of voting

mechanisms.IEEE Trans. Comput., 36(10):1197–1208,
1987.

[3] M. Bienkowski, M. Korzeniowski, and H. Räcke. A practical
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APPENDIX

A. THE MIGRATION MODEL
In this section we study the congestion of a quorum system place-

ment in a variant of the arbitrary routing model. We assume that
the logical elements ofU canmigrate from one physical node to
another. For simplicity we ascribe zero cost to the migration of
logical elements, leaving as future work the study of the problem
in a model with non-zero costs for migration.

Our objective function is the congestion of the most congested
edgee∈ E amortized over∆ time units, where each elementu∈U
is stationary during each time unit (and can migrate in between).
A solution to this problem is aplacement with migration, i.e., a
functionh : U ×{1, . . . ,∆}→V, whereh(u,t) specifies the nodev
that hostsuduring time unitt. No bounds are placed on the capacity
of any physical node, in other words, load is not an issue here. As
with migration cost, we leave the problem of addressing loadin a
migration model as future work.

We now give an example which shows that, in arbitrary graphs,
migration can indeed help reduce congestion. Consider the com-
plete graphKn on n vertices, with each edge having unit capacity,
and assume that the universe of logical elements consists ofa sin-
gle node,U = {u}. A static strategy would specify a placement
f : U →V of u onv = f (u), one of the nodes ofKn. Assuming that
each client sends a request each time unit, the amortized congestion
of the placement is 1.

Consider now what happens when we allow migration. Suppose
that after each client request we move the logical element from one
physical node to the next in a circular manner such that all nodes are
used. In this case all edges have congestion 1/n

2 which is less than
the one obtained for a fixed placement. In fact, a simple averaging
argument shows thatO(n) is the largest gap that can be obtained
between the congestions of the two models (with and without mi-
gration).

This example indicates that studying the model in which migra-
tion is allowed can have possible benefits in terms of congestion.
Unfortunately, this is not true for all graphs, in particular, it is not
true for trees, as we will now prove.

Lemma 1 For a tree T there exists a node v0 such that no place-
ment with migration h of a quorum system over the universe with a
single element U= {h} can have a congestion better than that of
hv0 , where hv0(u,t) = v0 for each t∈ {1, . . . ,∆}.

Proof. The proof is similar to that of Lemma 5.3. Leth : U ×
{1, . . . ,∆} → V be an arbitrary placement with migration, and let
ht = h(·,t) : U →V be the placement specified byh at timet. For
an edgee∈ E, let r(TL) and r(TR) be the request rates of clients
coming from the two subtreesTL andTR (obtained by removinge

from T). Let alsoloadht
(TL) = ∑v∈TL

loadht
(v) andloadht

(TR) de-
fined similarly, be the expected number of messages seen by nodes
in TL andTR respectively, at timet. Then the congestion of the edge
e over the time period∆ is

∆

∑
t=1

r(TL)× loadht
(TR)+ r(TR)× loadht

(TL)

edge cap(e)
(A.14)

Let v0 be the node found in Lemma 5.3 and assume thatr(TL) ≤
r(TR). Nodev0 has to lie inTR and thus the congestion ofe for the

placementhv0 with migration is
∆×r(TL)×

(

loadhv0
(TR)+loadhv0

(TL)
)

edge cap(e) .

Sincer(TL)≤ r(TR) and the total load of the system does not change,
this is at most the quantity given by A.14, which completes our
proof.

A.1 A solution for arbitrary graphs.
To obtain a solution for arbitrary graphs we will use Räcke’s

results on congestion trees. Consider an arbitrary graphG and con-
struct its associated congestion treeTG. Then find the nodev0 from
Lemma 5.3 that minimizes congestion, assuming the request rates
of clients are known. If the nodev0 is a leaf we are done, we can
simply use the placementfv0 in the original graphG with only a
polylogn loss in congestion. Ifv0 is an internal node inTG we need
to specify a way in whichv0 gets mapped to one of the nodes ofG
in the cluster corresponding tov0 in G. In Räcke’s work this was
done by choosing the leaf onto whichv0 is mapped, independently
at random from a special distribution depending on the cluster cor-
responding tov0. More precisely, each leaf was chosen with a prob-
ability proportional to itsweightin that cluster (which was equal to
the sum of the capacities of the edges incident to that node that
were leaving the cluster). This is done independently at random for
each message that is routed through the nodev0.

To obtain the same approximation ratio for congestion, we can
do something similar here (this is based on ideas from [32]).After
a fixed amount of time, the node in the cluster ofv0 onto whichv0
is mapped, makes a decision as to whether it should keep all the
logical elements ofU mapped onto itself or it should migrate them
to another node of the cluster corresponding tov0. The next node
in the migration chain is picked independently at random from the
special distribution mentioned before from the nodes of thecluster.
This ensures that over a longer period of time, we will match the
conditions that enable Räcke’s construction to provide the polylog
approximation factor for congestion. By an argument similar to
the one from Section 5.1, we can see that our solution will also
suffer only a polylog loss in congestion compared to the optimal
one in the migration model, regardless of whether that solution uses
migration or not.

Here is an example illustrating how our algorithm works for a
particular graph. Consider the congestion treeTKn for the com-
plete graphKn and assume that all edges ofKn have unit capacity.
Assume further, that clients issue requests uniformly fromall the
nodes ofKn. The treeTKn will consist of a root andn leaves, each
leaf being connected to the root by an edge of capacityn−1. The
algorithm will find the root as the node minimizing congestion and
will place all the elements ofU on it. The root is mapped to one
of the leaves with probability1n and then migrated after some fixed
amount of time to a new leaf chosen independently at random (and
uniformly in this case) from all the leaves ofTKn. This, in fact,
corresponds to the optimal solution for the complete graphKn.
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