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ABSTRACT U such that any two subsets i have a non-empty intersection.
Each subset i2 is called aguorum Quorums are the basic unit
of access in many distributed algorithms; e.g., to ensura can-
sistency while allowing distributed access, one could upecum
system: the copies of the object are its elements, and eaatt cl
is required to perform each read or write on a quorum of object
Since each pair of quorums intersect, this ensures thatdizctt
sees at least one copy of the latest version of the objecteTdre
many other examples of using quorum systems to implement dis
tributed coordination of some type, e.g., [2, 5, 9, 13, 15,18 23,

A quorum system over a universe of logical elements is acibtle
of subsets quorum$ of elements, any two of which intersect. In
numerous distributed algorithms, the elements of the usévee-
side on the nodes of a physical network and the participatitps
access the system by contacting every element in some quorum
potentially causing the added network congestion indugeitiése
quorum accesses to play a limiting factor in the performaritbe
algorithm.

In this paper we initiate the study of algorithms to placevarse
elements on the nodes of a physical network so as to minirhize t 24, 28]. . .
network congestion that results from quorum accessesewvalsb Quorum constru_ctlons hav_e been StUd'eq for over 25 yeats, an
ensuring that no physical node is overloaded by access sejue qguorum systems with many different properties and guaeartiave
from clients. We consider two models, one in which communica been developed (e._g., [5, 24].)' For_exam_ple, note that UG5
tion routes can be chosen arbitrarily and one in which theyized tems naturally prowdg load dlsperglon: since the quorumessinay
in advance. We show that in either model, the optimal comyest be smaller than the Size of the unlve_t:_tequprum §ystems aII_ow
(with respect to the load constraints) cannot be approsichad us to reduce théoad, i.e., the probability with which the busiest

anyfactor (unless P=NP). However, we show that at most doubling Zeryer |sfacri:essed inany given dqufor#m Invocation. Thr.oagéfkllui
the load on nodes allows us to achieve a congestion thatss tto esign of the quorums it?, and of theaccess strategy-.e., the

this optimal value. We also shed some light on the extent tclwh probability distributionp over quorums in2 such thalQ € 2 is

element migration can reduce congestion in this context. chosen in any client with probabilitg(Q)—a load ofO(1/+/|U)
can be achieved [22].

Despite this research, it is only very recently thatworking is-
sueshave also been considered in the study of quorum systems:

Categories and Subject DescriptorsC.2.4 [Computer- Commu-
nication Networks]: Distributed Systemslistributed applications

General Terms: Algorithms, Performance, Theory. while we may understand the properties of a good quorummsyste
Keywords: Quorum Systems, Congestion Problems, Approxima- ©Ver some abstract univertk we do not yet understand how to
tion Algorithms, LP Rounding. map the elements & to the physical node¥ in our network so

as to give ugjood network performanceFor instance, some very
recent work of the authors and others has proposed algaritbm
1. INTRODUCTION finding placements that minimize theuting delayghat clients in-
Given a universe (set) of elementsaquorum systen® C 2V cur when accessing quorums [8, 10, 11, 14, 29]. (We discuss th

(where ¥ denotes the power set b) is a collection of subsets of  work in more detail in Section 2.) In this paper, we initiake t
study of an orthogonal issue: that of thetwork congestionaused

by the deployment of quorum systems in networks. Roughlgispe
ing, our goal is to develop algorithms to place quorums intavaek
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We assume that the set of clients accessing the quoruns in
is just the node s&f. To make the explanations simpler, we will
assume that each of the cliems V generates requests at some
rate ry with Sy rv = 1. It will be convenient to think of the rate
ry as the probability that clientmakes a request.

The Measures of Goodnes3/e are concerned with two measures
in this paper: th@etwork congestionaused by routing the requests
from the clients to the nodes hosting the quorum elementsthan

load generated on these nodes due to processing these requegsts. L

us formally define these.
Load. Given a quorum syster? overU and an access strategy
p, we can define the load of an element U to beload(u) =
Y 0c2:ueq P(Q)- (In other words, this is the probability that the
elementu is accessed when using the access strapeyGiven
a placement : U — V, we can extend this notion of load to any
nodev by definingload (V) = §ycy:f(u)—vload(u). Ideally, we
would likeloadt (V) < node_cap(v) for every nodes € V.
Congestion. To access a quorui®, a clientv needs to access
each membef (u) € f(Q) individually, and has to send a request
to f(u). This access from to f(u) naturally increases the traffic
on the edges of some path fromto f(u), and we would like to
minimize this. We consider two models for selecting the path

1. In thearbitrary routing model, the path used for routing in
the network may be chosen arbitrarily, and hence it is con-
venient to model traffic between any two nodeg cV as a
flow g,y : E — Rxq. (Note that each access will use a single

f is just a flow problem, and can be optimized in polynomial time
(Of course, the flow in the fixed-paths model is j&#g{,.) Hence,
the rest of the paper will focus on finding the placemente/hen-
ever we refer to a “placemeriitwith congestiorc” in the arbitrary
routing model, it should be taken to read “placemérior which
there exist flowg g, } that give congestion”.

We are finally in a position to formally define the problem ad-
dressed in this paper:

Problem 1.1 (Quorum Placement Problem for Congestion (QPPY}
Given a quorum syste® over the universe U, an access strategy
p, and an undirected network & (V, E) with capacitiesdge_cap:

E — R>o andnode_cap : V — R>¢ on edges and nodes, respec-
tively, and client access ratesy}, find a placement fU —V
that (a) minimizes the congestienng; subject to (b)oad;(v) <
node_cap(V) for all nodes ve V.

Since we can scale the capacities on the edges, we will ag$ome
simplicity of exposition) that the edge congestiosng;. of the
optimum placement* is precisely 1.

Before we present our results, let us note that all our aralgp-
ply in theunicastmodel, where an individual request is sen¢tzh
element of the quorum being accessed. An alternate modé&lfwh
we do not consider here) would permitulticastmessages from
the source to the quorum members. Using these multicastdycle
decreases the congestion incurred: for instance, if twoumal-
ements are mapped to the same physical npdkese co-located

path, but we may vary the paths used between a pair of nodes€lements could be reached using a single message. (Moréuer
so that the average traffic on any edge is the same as in thenodev could intelligently process the information reaching thes

flow.)

. In thefixed routing pathsnodel, the path¢R,, } are speci-
fied as part of the input, and while we can define the figw
as before, all the flow must travel along the p&ly. This
is motivated by networks like the Internet where senders and
receivers cannot control or select the paths along whiah the
traffic travels.

Thus in either model we may define the expected traffic on any
edgee € E due to requests from a fixed nodéo be

Qgg P(Q) qugv.f(u) (e)

Finally, since the node is responsible for am, fraction of the
requests, we can define theerage traffion the edgeto be

traffict (e) = ;rv z p(Q) Z?gv,f(u)(e)

Qe2
(This can be read thus: we choose the clienith probabilityry,
choose a quorun® with probability p(Q), and incur a traffic of
Oyt (u)(€) for everyu € Q)
Since we are always considering averages, we will usuadly ju
refer to this as theraffic on the edgee. Finally, given an edge
capacityedge_cap(e), thecongestiordue to the placemerftis

(1.1)

Ideally, this quantity should be as low as possible. Indéwse pb-
jective function we seek to minimize is tikengestiorof the place-
mentf, which is defined to be the congestion of the most congested
edge, namelyong; = MaXeck congs (€).

Before we proceed, note that we used a figw in the above
discussion to model the flow of messages betweandV'. Given
a placement in the arbitrary routing model, finding a set of flows
{gvv } that minimize the congestion (1.1) subject to the placement

congs (e) = traffics (€) /edge_cap(e)
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co-located elements just once, thereby incurring less.)Joatle
leave the study of these models and optimizations for futumex.

1.1 Our Contributions
As stated, the QPPC problem turns out to be highly intraetabl

Theorem 1.2 Even determining whether a feasible solution for the
QPPC exists (in either model) is NP hard if we do not allow any
node capacities to be violated.

We go on to show a number of approximation results for the QPPC
problem if we are allowed to violate the node capacities byast

a factor of two. We use the following notation: fif is the optimal
solution to a QPPC instance (that satisfies the load contjai
thenan (a, B)-approximationis a placement such thaiong; <

a - congs: andload¢(v) < - node_cap(v) for all nodesv.

Theorem 1.3 (Approximations for Arbitrary Routing) For

any instance of QPPC in the arbitrary routing model, we ca fin
an (O(log?nloglogn),2) - approximation in polynomial time. If
the graph G is a tree, we obtain(&, 2)-approximation.

Theorem 1.4 (Approximations for Fixed Paths) Given an

instance of QPPC in the fixed routing paths model, we can find an
(O(,Q—J%),Z)-approximaﬂon in polynomial time, wherg is the
size of{|log(load(u))| |ue U}. For example, if there exists an N
such thatoad(u) € [1/N, 1] for all u € U, then the algorithm above

yields an(O('—‘,’%\'%), 2)-approximation.

Our Techniques. The basis of the algorithm for the arbitrary rout-
ing model QPPC lies in a reduction of the problem to the case in
which the graph is a treand there is only one client in the system
(i.e., there is a nodewith ry = 1). This reduction uses some of the



properties of quorum systems, combined with the generahgila-
composition result of Racke [25]; however, it costs us adiaof
O(Iog2 nloglogn) in the congestion. For the single-client tree case,
we give an approximation algorithm by first writing an integeo-
gramming formulation, and then rounding its linear-prognaing
relaxation: the rounding uses an algorithm for unspligafbws
from Dinitz et al. [6], and is possibly of independent intgre

Our results for the fixed paths model use a different set détoo
we first develop an algorithm for instances where all the elas
of U have identical (“uniform”) loads. For this we use a diffetren
linear programming relaxation, and then round it using fecdiht
rounding technique that does not allow node capacities tai-be
olated [27]. We then use this algorithm as a subroutine teesol
the non-uniform case by carefully placing down sets of elgsim
decreasing order of their loads.

ear programming relaxations and randomized rounding wss fir
used by Raghavan and Thompson [26] to find unsplittable paths
with low congestion. Single-source versions of unspligafow
were studied by Dinitz, Garg and Goemans [6], who gave cafista
factor approximation algorithms for various versions & firob-

lem.

In a model similar to ours, Maggs et al. [19] consider a data-ma
agement problem for special networks (trees, meshes, asteobd
networks). In their work, clients issue read and write resgsior
objects, where a read request is serviced by any node hoiding
copy of the object, but a write request must update all capfiéise
object. Just as in this paper, the goal of their work is to @lie
objects optimally on the nodes of a network to minimize cenge
tion. However, while their paper considered the questictsra
replicating objects and the static and dynamic issues ithéice.,

We also show hardness results for QPPC in the fixed paths model how many copies of an object to maintain at any time? where to

even when the loads are all uniform. Theorem 6.1 statesttisat i
NP-hard to approximate the congestion to any constantrféaten

if we completely ignore the load constraints); in fact, we cd-
tain stronger inapproximability results under stronganptexity-
theoretic assumptions.

Finally, we provide preliminary results regarding the ityilof
migration of universe elements between physical nodeseohét-
work as a technique to further reduce congestion. The detéil
this analysis are included in Appendix A.

2. RELATED WORK

As mentioned above, quorum systems are well-studied; spe, e
[1,2,5,9, 18, 20, 21, 28] and the references therein. Tisareich
less work on quorum placement problems that seek to minimize
objectives that capture network performance, which we sarira
here.

To the best of our knowledge, previous work on quorum place-
ment in networks has only considered minimizing variousamst
of delaythat a client incurs by accessing a quorum. Specifically, let
d(vV') denote the distance from nodéo V' in a graphG = (V,E),
and letd(v,Q) = maxscqd(vV) and y(v,Q) = Tyeqd(v,V) be
the delays incurred by a nodewhen accessing a quoru@C vV
in parallel and sequentially, respectively (hence the mak the
sum in the two definitions). Previous work has included atgors
to design quorum systems to minimize objectives [&paverage
delayAvg,cy [Minge 2 3(v, Q)] for particular classes of graphs [8]
or for arbitrary graphs [14]b) or max-delay to the closest quorum
max.ey MiNge 2 0(v, Q) [29].

Furthermore, there has been work on finding placements of a

given quorum systen® on an arbitrary grapi® = (V,E): there

is work on(i) designing bijectiond : U — V andq:V — 2 that
minimize Avg,cy Y(V, f(q(v))) [10], or (ii) designing a placement

f :U —V to (approximately) respect load constraints on nodes and
minimize Avg,cy [E[y(v, f (Q))]] or Avg,cy [E[3(v, f(Q)]], where
expectations are taken with respect to the selectid@ afcording

to p [11]. Among these, only the work ifii) considers the load of
the quorum system; however, it does not consider the caongest
incurred by these placements, and indeed may give us faidy p
placements with respect to network congestion.

Minimizing network congestion for both specific and general
networks is a problem that has received considerable atteint
the past; given the impossibility of summarizing this worke
mention just some of the most important results here. Eaolgkw
in this area included the seminal results of Valiant [30] &atiant
and Brebner [31] who gave randomized routing algorithmsyin h
percubes and meshes to get small congestion. Leighton,ddake
and Tollis then gave deterministic algorithms for mesh@&$. [ILin-
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place them?), here we take a fixed quorum system and client re-
quest rates as input and try to find congestion-optimal phecgs
that respect node capacities.

The results of Maggs et al. [19] are extended by Westerma?in [3
to a model in which objects are allowedragratebetween nodes
of the network: while migrating an object increases corigast
moving the object closer to a source may eventually decteaffie
in the network. He gives a 3-competitive algorithm for costgmn
for trees, and extends these results to other classes obretw

Racke [25] further generalizes these results by givingreege
method to solve a congestion problem in arbitrary graphss Hi
method is based on the construction of@ngestion-tree d that
“simulates” the original graph with a polylogV| factor loss in
congestion; more details on this general method are giv&Sea
tion 3.1.

3. PRELIMINARIES

In this section, we introduce some concepts and resultswvifiat
be used in developing algorithms for the QPPC problem in the a
bitrary routing model. The “congestion preserving” treéRacke
mentioned in Section 2 are directly related to the probleimaat,
so we discuss them in more detail in the next section. Thétsasu
unsplittable flows in Section 3.2 will be used in roundingreeér-
programming relaxation of one of the problems we considez.he

3.1 Congestion Trees

Given an instance of a congestion-minimization problem on a
general graplG, one may try to reduce the problem to one on a
simpler graph—for instance, a trde—where it is algorithmically
easier to find a good solution. Of course, we would like that th
tree T “approximates” the grapks well; the following definition
formally states the notion of approximation we will use. BRéc
that amulticommodity flovon a graphG = (V,E) is a sefg = {g; :

E — Rxo}i of flows whereg; carriesd; units froms tot; (st € V);
the vector{d; }; is thevalueof the flow.

Definition 3.1 A tree T= (Vr,Et) with edge capacities given by
edge_capt : ET — R>¢ is a B-approximate congestion tree for a
graph G= (V, E) with edge capacitiesdge_capg : E — Rx>q if:

1. The vertices of G are the leaves of T.

2. For any multicommodity flow g on paifs$s;, t;) }; that is fea-
sible on G (i.e.,3jgi(e) < edge_capg(e) for each ec E)
there is a feasible multicommodity flow of the same value
on leaves((s,ti)}iinT.



3. For any feasible multicommodity flow @n pairs of leaves
{(s,t)}i in T, there exists a multicommodity flow g{(s, ;) }i
in G such that g has the same value asand 5;gi(e) <
B x edge_capg(e) for each ec E.

In a surprising recent result, Racke [25] showed that ome ca
find congestion trees for general networks with- poly logn. His
initial result was existential, but subsequent result8pflP] made
the construction algorithmic, and also improved the valu@ ¢o
give us the following theorem.

Theorem 3.2 Given any undirected graph & (V,E), there exists

an O(log?nloglogn) - approximate congestion tregsT further-
more, this congestion tree can be found in time polynomialand

the maximum capacity of any edge (assuming edge capaciges a
bounded to within a fixed polynomial factor of each other).

Working in the arbitrary routing model, we will use this réto
reduce an instance of the Quorum Placement Problem for Genge
tion on general graphs to an instance on trees, and then hgiveil
algorithms to solve the Quorum Placement Problem for Cdiares
on trees.

3.2 Single Source Unsplittable Flow

In general, a flow frons to t could befractional, i.e., the com-
modity travels on multiple paths frostot. In contrast, amnsplit-
table flowis one that is constrained to travel only on a single path.
The Single-Source Unsplittable Flow Problem(SSUFP), then, is
specifically the following: given a directed gragh= (V,E) with
edge capacitiesdge_cap : E — R>, a source node € V andk
terminals t € V, with eacht; in 1 <i < k having ademand ¢
find a multicommodity flow from the source to the terminalstsuc
that the flowg; : E — R from s to t; (of di units) is unsplittable
(i.e., travels on @single path, and the total flow on any edge
is 3;0i(e) < edge_cap(e). Note that a solution to this problem is
given by a set of path&h, }}‘:1, whereR is a path fronstot;.

This problem was studied by Dinitz, Garg and Goemans [6], who
proved the following: given any feasible instance of thegken
source unsplittable flow problem, there is a polynomial tafgo-
rithm to obtain a set of pathd (one for each terminai), such that
the total trafficy.ccp di On any edgee is at mostedge_cap(e) +
max{di}. In fact, they prove a slightly stronger result, which we
now state in a form most convenient to us:

Theorem 3.3 Given a fractional multicommodity flow that satisfies
terminal demands and the edge capacities (where the flow of d
units from s tojtis denoted by g, the algorithm of Dinitz et al. [6]
converts it into an unsplittable flow; Rihere the total traffic over
an edge eis

_ 2'3 di < edge_cap(e) +max{ d; | gi(e) > 0}.

Note that the maximum on the right hand side is only over the-co
modities using the edge e in the input fractional flow.

In Section 4.2, we will use this theorem to round a fractional
solution of a linear programming relaxation for the QPP Copgm
in the arbitrary routing model.

4. THE ARBITRARY ROUTING MODEL:
THE SINGLE CLIENT CASE

In this section, we present our first results for the Quoruat&l
ment Problem for Congestion (QPPC) in the arbitrary routiaglel:
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we consider the special case when thererly one clientin the
system generating the requests. For this case, we showt tkat i
NP-hard to approximate the congestion withimy factor if we en-
force the node capacitie®de_cap(v). We then show that if we are
allowed to violate the node capacities by a “small” amourg,can
achieve a “small” congestion as well.

4.1 A Hardness Result

Let us begin by proving the following simple theorem thatgbo
that this problem is NP-hard to approximate withimyfactor. This
hardness result motivates a line of inquiry we will pursubere we
allow the node capacities to be violated by a small amounittizen
try to minimize the edge congestion incurred.

Theorem 4.1 Finding any feasible solution to the Single Client
case of QPPC (in either model) is NP-hard if no node capegitie
node_cap(V) are violated.

Proof. The reduction is from theARTITION problem, an instance
of which contains a set of numbefa;, a, ..., a } with 38 =2M,
and the goal is to find a subset of taés that sum to exactiju.

We now construct a quorum systeghon| + 1 nodedJ = {up,
ui, ...,u } with | quorumsQ; = {up,u;}, and the access strategy
p(Qi) =& /2M. Note thatioad(up) = 1 andload(u;) = & /2M oth-
erwise. Finally, let the grapls = (V,E) consist of the complete
graph with 3 node$vp, v1,Vv2}, with node capacitiesode_cap(vg) =
1, andnode_cap(v1) = node_cap(vp) = 0.5. (The edge capacities
are not relevant in this reduction.) Finally, let all the wegts orig-
inate from a single client located &j.

Note that any feasible placemehthat respects the node capac-
ities must place the elemeng at the rootvy, and hence the set of
elements placed at node must havey ; = M. Thus it is NP-hard
to find any feasible placemerfior this instance, let alone a place-
ment that approximates the edge congestion. [ ]

4.2 The Algorithm for the Single Client Case

Our result for the special case of a single client works far th
more general case of directed graphs. In fact, we also pénenit
presence of the following additional constraints:

o for each edge, we can give a set dbrbidden elementde-
noted byFe C U such that traffic to any elemeante Fe is not
allowed to traverse edge and

o for each node, a set of forbidden elemenis C U that can-
not be placed at the node (l.e., forbidden placementsare
those withf (u) = v for someu € R,.)

Let us denote byoadmax, the maximum load of any element that
can be placed om, i.e., loadmaxy = maxr, load(u). Similarly,
let loadmaxe = maxgr, load(u). We will use these quantities to
parameterize the performance of the following theorem.

Theorem 4.2 Given a directed instance of the Quorum Placement
Problem for Congestion in the arbitrary routing model, wélsin-
gle client \y generating requests, let" fbe the optimal placement
that respects node capacitiesde_cap and achieves a congestion
of cong® on the edges. We can find, in polynomial time, a place-
ment f for which:
e the loadload¢(v) on any node v is at mostode_cap(v)
+ loadmaxy, and
o the traffic on any edge e is at mdsbng™ x edge_cap(e))
+ loadmaxe.



Proof. To prove this theorem, we formulate the Quorum Place-

ment Problem for Congestion as an integer linear program)(IL

consider its linear programming (LP) relaxation, and roar{gos-

sibly fractional) solution to this LP relaxation to an ingggolution

to (ILP) while losing at mosO(loadmax(e)) during this rounding.
Consider the following integer linear programming forntida

(ILP):

A* = minimize A (4.2)
YXu=1 YuelU (4.3)
I
S load(u) Xjy < node_cap(Vj), VVvi €V (4.4)
u
Xiu =0, Yue kR (4.5)
S gu(P) = load(u)xiy,VueU,¥v; eV (4.6)
PeZ;
S Qu(P)=0, Yuek,VecE 4.7
P /}i
ecp
S Qu(P) < A xedge_cap(e), Vec E (4.8)
ueU vieV Pe %
ecP
Xiu € {0,1},Vv; eV,YueU. (4.9

Herexy, is the indicator variable for the elemembeing placed
on nodev;, & is the set of paths from the cliew to the nodey;,!
ou(P) is the amount of traffic destined for elemerthat uses some
path P, and A is the overall congestion of the resulting solution.
Since each ok, is either 0 or 1, they,(P)’s tell us how to send
the traffic from the clientg to the nodey; with x, = 1. (Since we
do not require that they(P)’s be integral, technically the above
program is a mixed-integer program.)

Note that given a solutiofii to the single-client QPPC problem
with congestiorcong ¢, we may sekj, =1 <= f(u) =v; and use
the flows prescribed by the given solution to obtais cong¢, and
hence this is indeed a formulation of the original problem.

Since we cannot solve this ILP optimally in polynomial times
relax the integrality constraints: instead of (4.9), wepthiin the
constraint 0< xj; < 1 and solve the resulting linear program; now
we have to round the resulting fractional solutioh x,g) to one
wherex;y € {0,1} for all i andu. For simplicity of exposition, we
scale the edge capacities by a factoA pfo that with the new edge
capacitiesA* = 1.

Preprocessing. We will use the rounding scheme used for the
Single-Source Unsplittable Flow Problem to round our frawl
solution, and hence we first construct an instance of SSU& C
sider the graptG = (V,E), and let us add a new “sink” vertex
to it, with directed arcgv;,t) from eachy; € V to this new ver-
text, with each arqv;,t) having a capacity oédge_cap((vi,t)) =
node_cap(Vvj). Now we createU | new “terminals™{t, [ue U}, all
of which are located at the “sink” nodeDefine the clientg to be
the “source”.

Finally, note that total amount of flow ending atis equal to
Sueu Ypep Qu(P) = Yyload(u) x Xy using equality (4.6), which
by (4.4) is at moshode_cap(Vv;). Thus we can take all the flow that
previously ended at the nodg and send it on the ar;, t) to the
sinkt without violating capacities. Doing this for all verticas we
get a flow that for each € U, senddoad(u) units of flow from the
sourcevg to the terminaty,.

Using SSUFP to Round the LP Solution.Finally, we apply

INote that| 27| could be exponential in; one can write an equiv-
alent formulation of this ILP with a number of variables arhe
straints polynomial im. However, the formulation we present here
will be easier to argue about.
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Theorem 3.3 to the flow created in the above constructionatihe
swer it returns is a set of patf®,},cu, one for eachu € U, such
that the flow oreis

load(u) < edge_cap(e)+ max {load(u)}.

4.10
u:g,(e)>0 ( )

ueehk,

Finally, if the pathR, uses the edgév;,t) to reacht, =t, define
f(u) to bev;.

Proving the Claimed Guarantees. Let us first consider the
load load (v;), which is equal to the traffic on the afv;,t). Re-
call thatedge_cap((Vi,t)) = node_cap(vj). Also, if gu((vi,t)) =
Y pe#, Ju(P) is non-zero, them ¢ Ry, by the constraint (4.7), and
thusloadmaxy, > loady. Plugging these facts into (4.10) implies
thatload (vi) < node_cap(V;) + loadmaxy,, as claimed.

Now for the traffic on an edgec E: this was originally at most
edge_cap(e), and now can increase by at mdéstdmaxe (due to
the constraint (4.5)), thus proving the theorem. [ ]

5. THE GENERAL CASE OF QPPCIN THE
ARBITRARY ROUTING MODEL

To obtain the result for an arbitrary number of clients claghin
Section 1, we use the following strategy:

(A) Reduce the problem to trees.We first translate the QPPC
problem on a general graghto the3-approximate congestion tree
Te with B = O(log?nloglogn), as guaranteed by Theorem 3.2.

It follows from the definition of a congestion tree, and thetfa
that the leaves ofg correspond to nodes of the netwdskthat any
placement : U — leaves(Tg) which is ana-approximation for the
optimal congestion ifig corresponds to a placementU — V (G)
which approximates the optimal congestionGrto within a x 3.
(The details of this translation are given in Section 5.1.)

(B) Reduce the problem to the single-source caseln Sec-
tion 5.2, we show that there is a placemésithat maps all elements
in U to a single nodeg in the tre€Tg and minimizes the congestion
of the tree edges. However, this placement has very high &oati
since our goal is to achieve low loads in addition to a low roekwv
congestion, this solution is clearly not acceptable. Haxethis
will be a convenient structural result for the rest of theuangnt.

(C) Solve the single-source problemFinally, in Section 5.3, we
imagine the above single-node solutignas asingle client gener-
ating all the requestsand use the algorithm of Section 4 to find a
good placement : U — leaves(Tg) for this single-client case. We
show thatf is also a “good” placement for the original set of clients
in Tg, and achieves a congestionaf 5 times the optimum.

5.1 Translating the QPPC Instance to a Con-
gestion Tree

Consider a graplc = (V,E) and af3-approximate congestion
treeTg = (Vr,E7). Recall thaw is equal to the set of leaves &f,
i.e.V =leaves(Tg). Let f§ : U — V be the placement in the graph
G with the least edge congestioangg. Let f1 :U — leaves(Tg)
be the placement that has the least congestion over the eflges
the treeTg, and letcongy be the value of this congestion. By
the definition of congestion trees, it follows thm‘nﬁG < congg,.
Since we assumed that the optimal congestiorsas exactly 1,
we get the following fact.

Lemma 5.1 The optimal congestion orsTis at mostl.

Moreover, iff : U — leaves(Tg) is a placement with congestion
at mosta x congy over the edges dfg, thenf has congestion of
at most(a x ) x congt < (a x 3) x congg over the edges d&.
This implies the following result:



Theorem 5.2 Any placement fU — leaves(Tg) with edge con-
gestiona x congy over the edges ofglhas a congestion af 3 x
congg, over the edges of G. In other words, a placement on the
leaves of § that is ana-approximation for congestion oriTis an

o B-approximation for congestion on G.

Note that the above theorem only works for placements that ma
elements to the leaves @, and as such cannot be used directly
with the results of the next section.

5.2 Single Node Solutions are Good on Trees

For any noder €V, let fy : U — Vi be the trivial placement with
fu(u) =vforallueU; i.e., all the elements & are placed on the
single nodev. We will show that on a tree, an optimal placement of
(2, p), provided we ignore node capacity constraints, is on asing|
node of the tree.

Lemma 5.3 Given a tree T= (V1,Et) and a placement fU —
Vr, one can find (in polynomial time) a nodg & V such that the
placement \f, has congestion no greater than that of f.

Proof. Let f~1(v) denote{u| f(u) = v}. For a nodev € T, recall
thatry was the fraction of all the requests in the system that are
generated by the cliert and also that

load (V) = load(u)
uel:f(u)=v

(®)
ueU :fz(u):v QE;UGQ

= 3 pQx|WNQ

Qe2

is the expected number of messages that reach then{odiere the
expectation is taken over the choice@iinder the access strategy
p). Itis a simple exercise to prove that there exists a ngda T
such that each subtr@é of T — {vy} has at most half the demands;
8., Sver v < 3 < Sugr v,

Consider an edge, and letT. and Tr be the subtrees formed
by deletinge. Letr(TL) = Yyey, v be the total fraction of de-
mands generated by clients Th. The expected number of mes-
sages seen by nodesTinis load (TL) = Y yer, load¢ (V). Letr(Tr)
andload (Tr) be defined similarly for the subtrég. Then the to-
tal congestion of the edgeunder the placemertftis

r(TL) x load(Tr) +r(TR) x load ¢ (TL)
edge_cap(e)

Without loss of generality, let(T_) <r(Tr), and hence the nodg
must lie inTr. Thus all the messages traversing the eelgader
the placementy, go fromT_ to Tr, with e having a congestion of
r(TL) x [load (TR) +load¢ (T.)]/edge_cap(e); ther (T )load  (TR)
term corresponds to messages generated by nodgswhich are
sent acrose under both placements, while th@Tl )load (T ) term
corresponds to messages generated by nodgstimt are sent to
nodes inT_ under placement but are sent acrossunder place-
ment fy,. Sincer(T.) < r(Tr), this quantity is at most (5.11), the
congestion under the placement Finally, we note that the node
Vo can be found in linear time simply by trying all the nodesTof
which completes the proof of the lemma. [ ]

(5.11)

While this lemma tells us how to find the best quorum placement
on trees, it is unsatisfying for at least two reasons. Fingt,node
Vo in the above theorem suffers all the load in the system urer t
placementfy,. Second, this nodeg may be an internal node of
Tg, and hence we cannot directly obtain a solution for the gaph

21

by applying Lemma 5.3 on the congestion tileg and then using
Theorem 5.2 to translate the solution backstdn the next section
we provide a solution to these problems.

5.3 The Algorithm for General QPPC

Consider a congestion trdg, let f* be the best placement of
on the leaves 0Of that respects the node capacities (lead ;- (v) <
node_cap(v) for all v); let cong;- be the congestion ifig under
f*. Let the best (single-node) placement given by Lemma 5.3 for
the treeTg be fy,, which places the entire quorum og. Let the
congestion incurred under this placementcbengO; Lemma 5.3
shows that:ongfv0 < congjs-.

Let us show that ifg were generating all the requests (instead of
the nodev generating requests with probability), the placement
f* would still be a fairly good placement.

Lemma 5.4 The congestion incurred by the placemehiffall the
requests in the system originate at(instead of at the individual
clients) iscongs. ,, < 2cong..

Proof. Indeed, the congestion is no worse than if we use the fol-
lowing routing strategy for messages: gt chooseQ according

to the access strategy and a leaf with probability ry, and send
the messages to the various node$ (@) by first sending them to

v, which forwards them on td (u). The first part of this indirect
route incurs the same congestion as the case whesre generat-
ing all the|Q| messages and using the placemiggptwhich is just
congi, < cong¢- (by Lemma 5.3). The second part of the route

incurs a further congestion a@bngg-, which proves the result. m

Recall thatcong¢. < 1 due to Lemma 5.1. We now prove the
main result for the QPPC problem on trees:

Theorem 5.5 There is a placement f on the leaves of the trge T
that incurs a congestion of at mo8tong¢- + 2 < 5, and which
places a load of at mo&node_cap(v) on each leaf v.

Proof. Let us imagine the nodgy of Lemma 5.4 to be the sole
client, and use the algorithm of Section 4 to find a placenfent
on the leaves offg with “low” load and congestion. Each leaf
nodev of Tg corresponds to a node & and hence has a node
capacity already defined; for each internal nedeTg, define the
node_cap(v) = 0, thus ensuring that no elements are mapped to
internal nodes.

Recall that one could specifgrbidden set$or nodes and edges
in the algorithm of Section 4.2: let the forbidden &gffor nodev
be the set of elementswith load(u) > node_cap(v). Also, the for-
bidden seF. for a tree edgeis defined to be the set of all elements
usuch thatoad(u) > 2edge_cap(e). Note that these settings ensure
thatloadmaxe < 2edge_cap(e) andloadmaxy < node_cap(V).

Note that the placemerit' on the leaves of is a possible solu-
tion to this instance of the single-client QPPC, having agestion
of at most 2 (due to Lemma 5.4 and Lemma 5.1) and load of at
mostnode_cap(v), for eachv € V. Hence, Theorem 4.2 guaran-
tees us that (a) each node has a load of at modt_cap(v) +
loadmaxy = 2node_cap(Vv), and that (b) each edge sees a traffic of
at most(congg- , X edge_cap(e)) + 2edge_cap(e), and hence the
congestion is at mogbng. , +2 < 2cong- +2.

Now, since the requests are generated by the various nodes of
the network and not by the single nodg one has to add in the
extra congestion incurred by sending all the requestgtoBy
Lemma 5.3, this extra congestion is at rmsﬁgva < congjs.



Finally, putting the pieces together, the idea of concdlyttidel-
egating” all the requests t@ and using the placemeifitthat (ap-
proximately) optimizes the congestion for the “sourgggives us
the claimed congestion ok8ng;. +2 < 5 (sincecong- < 1 by
Lemma 5.1). [ ]

Now combined with the results of Section 5.1, we get the tesul
for general graphs.

Theorem 5.6 Given an instance of QPPC on general graphs, we

can find a placement f that incurs on any node v a load of at most

2node_cap(v), and an edge congestion of at mégttimes the op-
timum (whereg3 is the performance of the best known congestion
tree).

Sincef = O(log?nloglogn), this proves Theorem 1.3.

6. THE FIXED ROUTING PATHS MODEL

In this section we consider a variant of QPPC in which we are
given routing path$?,,, between each pair of vertices. A node
VvV generating an access to elemarthus incurs a unit of flow on
the edges oP% ), Whereu has been placed at nodgu). In
general, we do not requifg,,, andPy, , to be equal. As before, our
goal is to find a placemenit of quorum elements onto the nodes
to minimize the congestion, while respecting the node déipac
First note that Theorem 1.2 applies to this variant; if we r@oe
allowed to violate the node capacities then even finding siliéa
solution is NP hard. As before, we retreat to the task of figdin
solutions that approximate the congestion well, but maiatécthe
node capacities by a small multiplicative factor. Howeeen if
we allow ourselves to ignore the node capacity constraintisety
(i.e., violate them by arbitrary factors), minimizing thengestion
is still fairly inapproximable, as the following result sta.

Theorem 6.1 In the fixed routing paths model, it is NP hard to c-
approximate the minimum congestion of a QPPC problem, for al
c € N, even on instances whemde_cap(v) = o for all v, and
load(u) = load(U’) for all u,u’ € U. Furthermore, unless\P C

ZPTIME <n0(<'°g '09(“”2)), itis NP hard to ¢+/loglog(n)) - ap-
proximate the minimum congestion QPPC solution, even on in-
stances wheraode_cap(v) = o« for all v, andload(u) = load(U')
forallu,u’ eU.

Proof. Recall that for a vectox, |[X||p := (zixip)l/p, and||X| =
max{xi}. The proof proceeds along similar lines as the proof
of hardness of the Vector Scheduling problem given by Chekur

and Khanna [4]. We reduce Independent Set to QPPC instance

with node_cap(v) = « for all v, and load(u) = load(U’) for all
u,u’ € U. For a graphG, let a(G) be the size of the largest inde-
pendent set i, and letw(G) be the size of the largest clique®
Lemma 6.2 states that(G) > £n'/“(®), whereG hasn vertices.
Now consider the following multi-dimensional packing pierin
(MDP): givenA € {0,1}9" andk < n, minimize || AX||. such that

x € {0,1}" and||x||; = k. We can reduce MDP to QPPC instances
with load(u) = load(U') for all u,u’ € U in an approximation pre-
serving fashion as follows. We construct a quorum systenk on
elements with uniform load. We adhvertex disjoint edges of unit
capacity, one for each row of the matix as well as two sources
of quorum accesses; ands,. Partition of columns oA into sets
S1,S,...,S using the natural equivalence relation on the column
vectors, and add a vertex for eachS with node_cap(vj) = |S|.
Note that if|S§| = k, we can sehode_cap(vj) = ». We also add
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a bottleneck edge of capacity®®. We route the paths to ensure
that placing an element & is like selecting a column i (add
some infinite capacity edges to the graph as needed). Fimaly
ensure that no elements are placed at nodes othefthan. v }
by routing paths to these other nodes through the bottleaggk.
Note that since we want to restrict ourselves to MDP instance
that reduce to QPPC instances with uniform load@etke_cap(v) =
oo for all v, we require the matriXA to satisfy the following prop-
erty: if d is column vector ofA, then A must have at leadt— 1
other column vectors that equal
We now proceed by reducing Independent Set to such MDP in-
stances. LeG be an Independent Set instanceronodes. Fix
parameter& andB. We construct a matrid’ with n columns, cor-
responding to each node Gf For each cliqu€ in G of sizeB+ 1
or smaller, add a ro\€ to A’ such thala’C‘V =1if veC, and zero
otherwise. Now construct a matriwith kn columns, consisting
of k copies of each column @ Callx e {0, 1}" valid if ||x||; = k.
Note that if|| Ax||. > 1 for all validx, thena (G) < k. Furthermore,
if there exists a valick such that|Ax||. < B, thena (G) > LkYB.
To prove this, consider a gragll that is constructed fron® by
replacing each node of G with a cliqueC, of sizek, and adding
all edges irCy x C, to G’ whenever(v,V') is an edge o&'. Clearly,
a(G) = a(G'). Note that sincél AX||» < B, the subgrapl; of G’
induced on{v|x, = 1} hasw(G}) < B, so

1 mye_ 1
2elV[GHI7™ =5 K (6.12)

a(G) > e VG 19 >
2e
and clearlya (G) = a(G') > a(G}).

Given ap-approximation for MDP on these instances (obtained
from a p approximation for QPPC on uniform load, infinite node
capacity instances), we approximate Independent S& as fol-
lows. Setk :=nP/(P™1) B:= p, and construct matri® accord-
ingly. Let x be the output of the MDP algorithm. |fAx||l» > B,
output one, otherwise outpytk'/B. The output is always at most
a(G) by equation 6.12. Furthermore, in the first cifeq| > 1
for all valid x, since we used @-approximation for MDP, and
thusa(G) < k. In the latter caseq (G) < n trivially, so we have
a maxk,en/kl/B} = 2e. (nl~)-approximation. (Note that the
reduction takes poly’) time.) Combining this reduction with
known hardness results for Independent Set (see [7] ancnefes
therein), completes the proof. [ ]

Lemma 6.2 In any undirected graph G on n nodeze- a(G) >
n/@(G) wherea (G) is the size of the largest independent set in G,
and w(G) is the size of the largest clique in &.

Proof. Suppose for a contradiction that> (2e- a(G))®(®). Us-

S1ng the well known Erdds-Szekeres bound on the Ramsey numbe

R(s,t), namelyR(s,t) < (S.'?), we conclude that
a(G)+ w(G)
w(G)
Thus, by the definition oR(-,-), G has an independent set of size

a(G)+1 or a clique of sizew(G) + 1, which yields the desired
contradiction. [ ]

n> (2e-a(G))?® > ( ) >R(a(G)+1,w(G)+1)

We now develop an approximation algorithm for QPPC in the
fixed paths model, starting with instances with uniform edem
loads.

2\We note that stronger versions of this lemma exist, and dasimi
lemma is stated without proof in [4], however this versiosusfi-
cient for our purposes.



6.1 Uniform Element Loads

Theorem 6.3 There is a polynomial time randomized algorithm
that, given an instance of the QPPC problem in the fixed rgutin
paths model in whickoad (u) = load(U') for all u,u’ € U, yields a
(O(logn/loglogn), 1)-approximation.

We reformulate the QPPC problem in the fixed paths model with
uniform elements loads as follows. Assume WLOG that for each
ueU, load(u) = 1. Consider placing a logical elememtt a node
v. Since the loads are uniform, placing any logical elementrat
sults in the same increase in congestion to the edges of terhe
We represent this as a veciore RIE!, where the coordinates are
indexed by edges. Thus coordinatef cy is the expected conges-
tion incurred by placing an element\at For eachv, suppose we
can place at most(v) := %,“*’—(w logical elements at while
respecting the node capacities. Consider a m&rikat has ex-
actlyb:= ¥, h(v) columns, consisting di(v) copies ofc, for each
v. We say thesé(v) columns areassociatedvith v. Our variant of
the QPPC problem thus becomes

minimize ||AX|» st. xe{0,1}° and |x||; = U]

We say thatx selectscolumnsi for which x; = 1, and for each
column associated withthatx selects, we place a logical element
atv. We call the resulting assignmeft. It is easy to encode this
formulation as an ILP and take the LP relaxation.

A* = minimizeA

A > Yjaijxj Vi
Yixp = [V _
X; e [0,7] vj

To solve this LP we can start by guessing the optimal conges-
tion 3 cong*, and remove all columns containing any endyy >
cong* from the matrixA. We then solve the resulting LP, and ap-
ply the rounding scheme of Srinivasan [27] to the resultiptjoal
fractional solutiorx to get an integral vector.

Using this rounding procedure, Srinivasan guaranteedytjat=
|U|, and for all vectorsa such thata; < [0,1] for all j, and for all
3 >0andu > E[y;ajyj]

g (6.13)

J
Pr[zJ ajyj = H(1+9)] < <<1+%)1+5'>
As before, we can scale the valugsby 1/cong*, so that the op-
timal congestion becomes one, and eaghx 1. We can apply then
equation 6.13 to bound the congestion on a fixed ediiote that
E[yjajyj] = ¥jajXj <1, since the optimal congestion is one, so
we setu = 1. For any constartt, we can apply equation 6.13 with
somed = O(logn/loglogn) to prove that the congestion on edge
i exceeds the optimal congestion by more than an additiverfact
of & with probability at most In. Taking a union bound over
the edges, we infer that the congestiorOidogn/loglogn) with
high probability. Thus the placemefitis a(O(logn/loglogn),1)-
approximation.
The algorithm is summarized as follows:

3|f guessingcong™ requires too much nondeterminism, it is suf-
ficient to guess = [Ioguﬂ)(cong*)w, for any € > 0, and use

(1+¢)t as an estimate fotong*. This increases the bound on
congestion by a factor of % €.
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Algorithm for uniform load instances:
Generate matrid and guessong®.

Remove columng of Awith max {&j} > cong*.
Optimally solve the resulting LP to get solutian
Roundx to y using the rounding in [27].
Output fy.

6.2 The General Case

Here, let« be any algorithm for uniform load instances. df
is the algorithm given above, we suppose it is given its gfiess
cong* as part of its input.

Algorithm for general instances:
Guesx = cong*.
For eachu € U, roundload(u) down to the nearest power
of two. Call the resultoad’ (u).
LetL := {load’(u)|ucU}.
For eacH € L, in decreasing order of size
Run«/ onU ;= {u€U |load’(u) =1},
usingk as the input guess if needed.
PlaceU; as.« suggests, and decreassle_cap(-)
accordingly. That is, if elements otJ; are placed
onv, decreas@ode_cap(Vv) by tl.

Lemma 6.4 If &/ is a (a,B)-approximation for QPPC instances
with uniform load in the fixed routing paths model, then theath
algorithmis a(a|L|, 2B)-approximation for general QPPC instances
in the fixed routing paths model.

Proof. Suppose is the placement output by the algorithm. We first
proveloads (V) < 2Bnode_cap(v) for eachv. Note that it suffices
to show thatoad’ (v) < Bnode_cap(V), sinceload(u) < 2load’(u)

for all v. From now on all references to load referidad’.

Fix anyv. Supposes is run on elements with load’(u) = |
and places of them onv. There are two cases: either at this stage,
node_cap(v) >tl, in which case we can charge the load these ele-
ments cause to the corresponding decreasede_cap(v), or else
node_cap(Vv) < tl. In the latter case, we know thadde_cap(v) >
tl/B since« is an(a, ) - approximation, so we can chargef
to node_cap(v). Furthermore, sinceode_cap(v) is reduced to
zero, v is not assigned any additional elements later on. Thus
we can charge /i3 of the load tonode_cap(v), and conclude that
load; (V) < Bnode_cap(V).

We now bound the congestion caused by each executia# of
by a - cong®. To do this, it suffices to prove that the optimal con-
gestion is at mostong* in each instance on whicly is run. Fix
an instance, say on elements withad’(u) = |, denotedy;. All
elements with larger loads have already been placed, thusireg
the node capacities at some nodes. For a placefmerdev, and
W CU, let

cap(f,uW)

node_cap(v) — load’ (U)
ueW: f(u)=v

denote the remaining loadaafter placing doww using f. Here,
node_cap(v) are the original input node capacities. LEt:= {u |
load’(u) > 21}, and letf be the partial placement &’ created
by the algorithm so far. Fix any optimal solutiofif. We can
place down elements df, at nodesv such thatcap(f,v,U’) —
cap(f*,v,U’uUU)) > 0. Specifically, we place dow(cap(f,v,U’)

— cap(f*,vU'UU)))/I] such elements at It remains to show
that we can place all dfy down this way. To see this, first note
that, by a simple volumetric argument,

z (cap(f,v,U") —cap(f*,vU'UU})) =1-|Yj]|

Vv



Next, observe thatap(f,v,U’) —cap(f*,v,U’UU)) is always a
multiple of I, since all elements dfi’ andU; have loads that are
multiples ofl. (Note how we have used the fact that the loads
load' (u) are multiples of two.) Combining these two facts, we see
that we can paclJ; in node capacity occupied by element$Jdf.
U, under placement*, while respecting node capacity constraints
(with respect tdoad’), no matter howf placed dowrlJ’. Having
done this, it is clear that the resulting congestion due acipgU,
is no more tharong™.

Since the congestion due @ on each instance is at most-
cong®, we conclude that all executions eof together contribute
congestion at most | - o - cong*. ]

Note that|L| = |[{|log,(load(u))| |u € U}| = n, so using the
algorithm given above fogZ, with a = O(logn/loglogn) andp =
1, we complete the proof of Theorem 1.4.

7. CONCLUSIONS

In this paper we studied the problem of placing the elemefrds o
universdJ underlying a quorum syster® on a networkG in a way
that minimizes congestion due to quorum accesses, whipeces
ing the computing capacity of each network node. We coneitler
this problem in two models, differing on the basis of whett@mn-

munication routes are fixed or can be chosen. We showed that in

either case, this problem cannot be approximated to wéthyfac-
tor (unless P=NP). However, by allowing doubling of the cajya
of each node, we present efficient approximation algoritfamthis
problem in both models.
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APPENDIX
A. THE MIGRATION MODEL

In this section we study the congestion of a quorum systenepla
ment in a variant of the arbitrary routing model. We assunag th
the logical elements dff canmigrate from one physical node to
another. For simplicity we ascribe zero cost to the migratd
logical elements, leaving as future work the study of thebjem
in a model with non-zero costs for migration.

Our objective function is the congestion of the most coregbst
edgee € E amortized oven time units, where each eleman& U
is stationary during each time unit (and can migrate in behye
A solution to this problem is alacement with migratigni.e., a
functionh:U x {1,...,A} — V, whereh(u,t) specifies the node
that hostsu during time unit. No bounds are placed on the capacity
of any physical node, in other words, load is not an issue. hese
with migration cost, we leave the problem of addressing ioaal
migration model as future work.

We now give an example which shows that, in arbitrary graphs,

migration can indeed help reduce congestion. Considerdhe ¢
plete graphK, on n vertices, with each edge having unit capacity,
and assume that the universe of logical elements consistsiofF
gle node,U = {u}. A static strategy would specify a placement
f:U —V ofuonv= f(u), one of the nodes df,. Assuming that
each client sends a request each time unit, the amortizegstan

of the placement is 1.

from T). Let alsoloady, (TL) = Yyer, loadp, (v) andloady, (Tr) de-
fined similarly, be the expected number of messages seend®sno
in T_ andTr respectively, at timé Then the congestion of the edge
e over the time period is

r(T) x |OadhI (TR) +r(TR) x |Oadht (TL)
edge_cap(e)

(A.14)

t=1
Let vp be the node found in Lemma 5.3 and assume it(igt) <
r(Tr). Nodevg has to lie inTg and thus the congestion efor the

AxT(T.) (loadn,, (Tr)+loadn,, (TL))
placementhy, with migration is edge.cap(®)

Sincer (T.) <r(Tr) and the total load of the system does not change,
this is at most the quantity given by A.14, which completes ou
proof. [ ]

A.1 A solution for arbitrary graphs.

To obtain a solution for arbitrary graphs we will use Raske’
results on congestion trees. Consider an arbitrary g@&ahd con-
struct its associated congestion tiiee Then find the nodgg from
Lemma 5.3 that minimizes congestion, assuming the reqatest r
of clients are known. If the node is a leaf we are done, we can
simply use the placemerit, in the original graphG with only a
polylogn loss in congestion. My is an internal node ifig we need
to specify a way in whiclvg gets mapped to one of the nodes®f
in the cluster corresponding tg in G. In Racke’s work this was
done by choosing the leaf onto whighis mapped, independently
at random from a special distribution depending on the ehusir-
responding tap. More precisely, each leaf was chosen with a prob-
ability proportional to itsveightin that cluster (which was equal to
the sum of the capacities of the edges incident to that noafe th
were leaving the cluster). This is done independently ateemfor
each message that is routed through the ngde

To obtain the same approximation ratio for congestion, we ca
do something similar here (this is based on ideas from [3&fer
a fixed amount of time, the node in the clustemgbnto whichvg
is mapped, makes a decision as to whether it should keepeall th
logical elements o) mapped onto itself or it should migrate them
to another node of the cluster correspondinggoThe next node
in the migration chain is picked independently at randormftbe
special distribution mentioned before from the nodes otthster.

Consider now what happens when we allow migration. Suppose This ensures that over a longer period of time, we will mateh t

that after each client request we move the logical element fsne
physical node to the next in a circular manner such that aéaa@re
used. In this case all edges have congest'pdp\mhich is less than
the one obtained for a fixed placement. In fact, a simple auega
argument shows th@d(n) is the largest gap that can be obtained
between the congestions of the two models (with and withdut m
gration).

This example indicates that studying the model in which axgr
tion is allowed can have possible benefits in terms of cormest
Unfortunately, this is not true for all graphs, in partiaulais not
true for trees, as we will now prove.

Lemma 1l For atree T there exists a nodg such that no place-
ment with migration h of a quorum system over the universe avit
single element U= {h} can have a congestion better than that of
hy,, where |, (u,t) = v for each te {1,...,A}.

Proof. The proof is similar to that of Lemma 5.3. Lbat: U x
{1,...,A} —V be an arbitrary placement with migration, and let
ht = h(-,t) : U — V be the placement specified hyat timet. For
an edgee € E, letr(T_) andr(Tr) be the request rates of clients
coming from the two subtre€g andTr (obtained by removing

25

conditions that enable Racke’s construction to provigegblylog
approximation factor for congestion. By an argument sintita
the one from Section 5.1, we can see that our solution with als
suffer only a polylog loss in congestion compared to theroati
one in the migration model, regardless of whether that Erlutses
migration or not.

Here is an example illustrating how our algorithm works for a
particular graph. Consider the congestion tiige for the com-
plete graptK, and assume that all edgeskf have unit capacity.
Assume further, that clients issue requests uniformly fedhthe
nodes ofK,. The treeTk, will consist of a root andh leaves, each
leaf being connected to the root by an edge of capacityl. The
algorithm will find the root as the node minimizing congestand
will place all the elements dfl on it. The root is mapped to one
of the leaves with probabilit% and then migrated after some fixed
amount of time to a new leaf chosen independently at randaoh (a
uniformly in this case) from all the leaves @k,. This, in fact,
corresponds to the optimal solution for the complete gigph



