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Abstract

Despite the proliferation of detection and contain-
ment techniques in the worm defense literature, sim-
ple threshold-based methods remain the most widely de-
ployed and most popular approach among practitioners.
This popularity arises out of the simplistic appeal, ease
of use, and independence from attack-specific properties
such as scanning strategies and signatures. However,
such approaches have known limitations: they either
fail to detect low-rate attacks or incur very high false
positive rates. We propose a multi-resolution approach
to enhance the power of threshold-based detection and
rate-limiting techniques. Using such an approach we
can not only detect fast attacks with low latency, but
also discover low-rate attacks – several orders of mag-
nitude less aggressive than today’s fast propagating at-
tacks – with low false positive rates. We also outline a
multi-resolution rate limiting mechanism for throttling
the number of new connections a host can make, to con-
tain the spread of worms. Our trace analysis and sim-
ulation experiments demonstrate the benefits of a multi-
resolution approach for worm defense.

1. Introduction

Worms pose a significant threat to the depend-
ability of existing and future networking infrastruc-
ture. Defending against such self-propagating attacks
in an automated fashion is a challenging task, and has
sparked much interest in the research community. Ex-
isting approaches for worm defense (e.g., [3, 7, 13, 18])
have been shown to be effective for very fast, non-
polymorphic, random scanning worms. However, they
leave open to attackers opportunities to circumvent the
defense mechanisms by exploiting the very assumptions
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0433540, and by KISA and MIC of Korea.

used for detection and containment. Future attacks can
evade detection mechanisms which depend on scanning
rates, signatures, and other attack-specific features.

Interestingly, one of the earliest known scan-
detection heuristics, threshold-based detection based on
the number of unique destinations contacted, is applica-
ble across a wide spectrum of worm attacks. Threshold-
based mechanisms are very popular and are one of the
most widely-deployed worm defenses [12] due to their
simplicity and ease of deployment. The strength and ro-
bustness of the mechanism lies in its minimal set of as-
sumptions about the nature of attacks – scanners contact
many unique destinations. By adopting a metric which
is invariant across scanning attacks, independent of the
scanning strategy and content signatures, this approach
has the ability to be attack-agnostic.

However, threshold-based detection mechanisms cur-
rently lack the accuracy and effectiveness of attack-
specific approaches. Having only a single fixed thresh-
old for a metric (such as the number of unique desti-
nation addresses contacted), typically measured over a
single time window a few seconds long, network admin-
istrators must make a choice in the selection of the detec-
tion threshold. The choice is between a high threshold
that can detect only very high-rate attacks but has low
false positive rates, and a low threshold that can detect
low-rate stealthy attacks but that may have a very high
false positive rate. This fundamental inflexibility limits
the practical applicability of threshold-based approaches
to high-rate attacks. A natural question is: can we re-
tain the attack-agnostic properties of threshold-based de-
tection, but provide detection capabilities comparable to
attack-specific approaches?

Our solution is a multi-resolution approach for de-
tecting and containing worms, without depending on
attack-specific scanning properties and signatures. The
key insight behind the multi-resolution approach is the
following simple yet powerful observation. While the
short term connection patterns of normal end-hosts may
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be bursty, involving a large volume of traffic and con-
nections to many unique destination addresses, hosts ex-
hibit lower average connection rates when observed over
longer timescales. As a result, we find that connection
metrics, such as the traffic volume and the number of
distinct destinations contacted, grow as a concave func-
tion of the size of the time window (i.e., the second
derivative with respect to the time window size is nega-
tive). This suggests that using multiple resolutions with
different detection thresholds at different time granular-
ities will be an effective solution to detect a wide range
of attack rates with low false positive rates.

Our traffic analysis (Section 3) confirms this intu-
ition, and indicates the potential benefits of a multi-
resolution approach. We provide a systematic frame-
work (Section 4) for realizing these benefits, by bal-
ancing the inherent tradeoff between the false positive
rate and the detection latency (and hence the potential
damage caused by infected hosts). We define the se-
curity cost of a system, in terms of the false positive
rates and detection latencies, and outline an optimiza-
tion framework for selecting parameters optimally for a
multi-resolution detection system.

Our multi-resolution approach for containment (Sec-
tion 5) draws upon a similar insight in the nature of end-
host behavior. Locality in destination address selection
suggests that throttling connections to new destinations
that have not been contacted previously, will achieve the
desired containment capability without disrupting the
activity of normal hosts. Our evaluations demonstrate
that a multi-resolution approach achieves enhanced con-
tainment capabilities over traditional approaches.

2. Related Work

Prior work has focused on understanding differ-
ent worm propagation models (e.g., [10, 16]). Many
techniques have been proposed for detecting worm
outbreaks using either large-scale monitoring infras-
tructures (e.g., [19]) or locally deployed honeypots
(e.g., [5]). There are also several systems for efficient
and fast worm signature generation (e.g., [3, 7, 14]).

There has been surprisingly little work on detec-
tion of stealthy, low-rate, scanning attacks. Staniford
et al. describe a mechanism for detecting stealthy port
scans [15] arising outside the network, by using a his-
torical probability model for different types of traffic.
Our work focuses on detecting and throttling infected
hosts inside a local network similar to [9, 13]. There are
two compelling reasons for deploying such capabilities.
First, rate limiting can reduce wasteful bandwidth con-

sumption and avoid overloading network and router re-
sources. Second, such approaches can curb the internal
spread of worms that exploit topological locality.

Chen and Tang [2] propose worm detection and con-
tainment based on connection failure rates. Jung et al.
use sequential hypothesis testing [6, 13] to detect scan-
ners by tracking failed connection attempts. Our ap-
proach is agnostic to the scanning strategy since it does
not rely on failed connections.

Several worm containment methods have been sug-
gested in the literature, including rate-limiting, quaran-
tine, and signature-based filtering. Moore et al. [11]
study the limits on the responsiveness of content-
filtering and address-blacklisting as containment mea-
sures, while Wong et al. [18] discuss the effectiveness of
rate-limiting mechanisms. Zou et al. [20] present an an-
alytical framework for reasoning about worm propaga-
tion in the presence of defense mechanisms. Williamson
proposed the virus throttle [17] based on the observa-
tion that the number of connections to previously un-
contacted hosts is fairly low. While the class of contain-
ment measures we evaluate have been proposed earlier
in these contexts, our contribution is the design and eval-
uation of a multi-resolution approach for rate limiting.

Multi-resolution analysis in spatial and temporal di-
mensions, using Fourier and wavelet analysis, has been
suggested for anomaly detection (e.g., [1, 4]). Calculat-
ing the number of unique destinations contacted over
multiple time resolutions necessarily involves taking
unions of the set of destinations contacted over multiple
time bins. Signal analysis techniques are not suitable in
this context as they cannot capture the semantics of such
a union operation for multi-resolution analysis.

3. Motivation

In threshold based anomaly detection, the traffic
monitor identifies abnormal activity by measuring spe-
cific traffic metrics and flagging suspicious observa-
tions which exceed a pre-set threshold within a spe-
cific time window. Commonly used metrics for de-
tecting abnormal host behavior include the total traffic
volume (number of packets or flows) and the number
of unique destination addresses contacted (regardless of
whether the connection was successful or not). Despite
their widespread deployment, threshold-based mecha-
nisms suffer from an inherent inflexibility arising from
the conflicting goals in threshold selection. A large (i.e,
conservative) threshold that accounts for normal traffic
bursts will not be able to detect low-rate attacks, while a
small (i.e., aggressive) threshold will result in high false
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positive rates where even small bursts of legitimate ac-
tivity will be flagged as potentially anomalous.

With respect to worm detection, the metric of inter-
est is the number of unique destination addresses con-
tacted. If the number of unique destination addresses
contacted by a benign host grows as a linear function
of the time window, then a single-resolution approach
operating with a fixed threshold is sufficient, as it will
uniquely identify the (malicious) scanning rates we can
detect. There are two observations which suggest that
the number of unique destinations contacted will grow
slower than a linear function of the time-window size.
First, while normal traffic can be very bursty at short
timescales, such bursts are seldom sustained for a longer
period of time. Second, there is a significant amount of
locality [8, 17] in the connection patterns of end-hosts.
A host is likely to “talk” to destinations it has contacted
before, and the number of new destinations contacted is
low. If the growth trend (as a function of the time win-
dow size) is concave, i.e., the second derivative is less
than or equal to zero,1 then a single-resolution approach
may no longer be sufficient.

Dataset Description: We confirm this intuition re-
garding the nature of end-host behavior, using a week-
long packet-header trace collected between September
28 and October 4, 2003 at the border router of a univer-
sity department. The router observes all traffic between
internal hosts and the rest of the Internet (including other
university hosts, file servers, and mail servers). The
traces were anonymized, by removing packet payloads,
and anonymizing IP addresses using a prefix-preserving
anonymization scheme.2

In our analysis, we assume that each unique valid IP
address inside the network corresponds to a unique end-
host. This assumption is valid as there is no NAT/DHCP
usage within the department. Due to the possibility of
scans to invalid addresses, and the lack of information
on the IP ranges used, we use the following heuristic for
identifying valid addresses from the anonymized trace.
First, we identified the most significant 16 bits of in-
ternal IP addresses space (after anonymization) of hosts
within the network. If a host from within this known /16
network prefix successfully completed a TCP handshake
with an external host (i.e., outside the /16), we select the
host for analysis. Using this heuristic, we identified a set
of 1,133 valid addresses in the week-long trace.

Traffic Analysis: For each of the 1133 identified
hosts, we use the following method to measure the num-

1While the growth may show convex behavior temporarily over
small time ranges, it suffices if the overall (macro) behavior is concave.

2tcpdriv, http://ita.ee.lbl.gov/html/contrib/
tcpdpriv.html.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250  300  350  400  450  500

O
u
td

eg
re

e 
(#

 h
o
st

s 
co

n
ta

ct
ed

)

Window size in seconds

Day 2
Day 4
Day 6

(a) Growth of 99.5th per-
centile for different days

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250  300  350  400  450  500

O
u
td

eg
re

e 
(#

 h
o
st

s 
co

n
ta

ct
ed

)

Window size in seconds

99th percentile
99.1 percentile
99.3 percentile
99.5 percentile

(b) Growth of different statis-
tics for Day 2

Figure 1. Traffic growth is concave, sug-
gesting a multi-resolution approach

ber of distinct destinations it contacts. For TCP con-
nections, we identify the packets with the SYN flag set,
and add the destination to the contact set of the source.
For UDP connections, we use a flow-based approach to
identify the directionality of session initiation, i.e., the
host which sends the first packet in a UDP session (with
a timeout of 300 seconds) is considered the flow initia-
tor, and we add the destination of this flow to the contact
set of the source. We repeated our analysis with an undi-
rected notion of connectivity (without session initiation
semantics) and observed similar results. For the remain-
der of this paper, we use only the directional notion of
connectivity.

The trace was binned into T = 10 second non-
overlapping intervals, and we computed the number of
distinct destination addresses contacted by each identi-
fied host over different window sizes using these binned
observations. For our analysis, we used time window
sizes ranging from 20 seconds to 500 seconds (i.e., from
2 to 50 bins). Given a window of size w seconds, we
consider all possible sliding windows consisting of w/T
bins. The number of destinations contacted by a host
within the window of size w seconds will then be the
union of the set of hosts contacted across w/T consecu-
tive bins, each of duration T seconds.

Figure 1(a) shows the growth of the 99.5th percentile
of the number of distinct destinations contacted for three
different days in the week-long trace. Analyzing the
slope of the curve we find that the growth trend as a
function of the time window size is indeed concave. Fig-
ure 1(b) shows the growth of different statistical per-
centiles of the observed traffic on the second day of the
trace. We observe that the concave trends are consistent
across different statistical percentiles as well.

Next we proceed to analyze the detection capabil-
ities of different time resolutions for different worm
attacks. We characterize an attack in terms of the
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rate r, which is the number of unique destination ad-
dresses contacted by each infected host per second. With
a single-resolution threshold-based scheme, to detect
worms with rate greater than r scans per second using
a window of size w seconds, we would choose a de-
tection threshold (for the number of unique destinations
contacted) to be equal to r × w. For a fixed rate r, a
threshold lower than r × w always detects the worm,
and a higher threshold never does. Thus the notion of a
false negative rate for detection of a fixed worm-rate r
is not relevant for threshold-based detection. Hence, we
focus on the potential false-positive rates of using dif-
ferent window sizes, for detecting different worm-rates.
The false-positive rate for detecting worm-rate r at win-
dow size w is the probability that a normal host contacts
more than r × w unique destination IPs within a w sec-
ond window. Using the week-long trace, we obtain a
conservative3 estimate of the false positive rate by calcu-
lating the number of events where one of the 1133 hosts
within our network exceeds the connection threshold of
r × w unique destinations contacted within a w second
sliding window.

Figure 2 shows the false positive rates using two dif-
ferent views – one fixing w and varying r, and the other
fixing r and varying w. We note that the false posi-
tive rates decrease with larger time windows, suggesting
that the resolution window can be a tunable parameter to
tradeoff false positive rate and detection latency.
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Figure 2. Analyzing false positive rates
Such trends suggest that we can simultaneously use

different threshold values, each applied at a different
time resolution, to detect a wide range of attack rates.
This is the key idea behind a multi-resolution approach.
Using multiple thresholds at multiple time windows, we
should be able to detect fast attacks at small time win-
dows, and low rate attacks at larger time windows. A
multi-resolution approach can ensure not only low de-
tection latency for fast scanning attacks, but also provide
a new capability for exposing stealthy scanning attacks,

3This is a conservative estimate since we might be detecting real
scanning activity as well.

both with low false positive rates. Thus we can detect a
wide spectrum of attack rates, independent of signatures
and scanning strategies, while retaining the ease of use
of threshold-based approaches.

4. Multi-Resolution Detection

The measurement study indicates the potential bene-
fits of using a multi-resolution approach. Figure 3 de-
picts the various steps involved in the systematic design
to realize these benefits. The first step involves iden-
tifying traffic metrics of interest for anomaly detection
and rate-limiting. We use the number of unique destina-
tions contacted, since it is largely independent of worm-
specific properties.

RESOLUTIONS
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FEEDBACK 
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POPULATION
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TO DETECT
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2. SELECT 

MULTIPLE
3. SELECT

1.SELECT 

Figure 3. Design of a system for multi-
resolution detection and containment.

The next two steps involves the identification of dif-
ferent window sizes and deriving detection thresholds
for each different window. The threshold selection step
can be viewed as an optimization procedure, which
given the operating costs and constraints specified by
the network administrator, selects detection thresholds
for the different window sizes optimally. This process
is guided by historical traffic profiles of the host pop-
ulation. Over time, administrators can provide addi-
tional feedback to fine-tune the system parameters, us-
ing deployment-specific expertise.

4.1. Threshold Selection

This section outlines the threshold selection proce-
dure for a multi-resolution detection system, delineating
the set of tradeoffs and constraints involved.
Input:
• The desired detection capability of the sys-

tem, specified by a range of worm-rates R =
[rmin , rmax ]. As a simplifying assumption, we as-
sume that R is a discrete set consisting of all values

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06) 
0-7695-2607-1/06 $20.00 © 2006 IEEE 



between rmin and rmax , in increments of a pre-
defined step value rstep .

• The set of time resolutions W , between wmin and
wmax , over which end-host behavior is monitored.

• The third input to the formulation is a set of differ-
ent fp(ri, wj) values, for each ri ∈ R and wj ∈ W ,
where fp(ri, wj) is the false positive rate associ-
ated with identifying the worm rate ri using a time
resolution of window size wj . Since we adopt a
data-driven approach for parameter selection, we
assume that each administrator has historical traffic
profiles of hosts within their network. For a given
ri and wj , fp(ri, wj) can be obtained from the his-
torical traffic profiles, by computing the number of
hosts that contacted greater than ri × wj unique
destinations in wj seconds (similar to the analysis
in Section 3).

Section 4.4 suggests guidelines on how network admin-
istrators can select these input parameters.
Security Cost: There are two orthogonal objective
functions in the design of a detection system: the false
positive rate and the potential damage done by the attack
before detection. If we wanted the lowest possible false
positive rate and did not care about the damage done
by worms with scanning rates in the spectrum of rates
specified by R, then we would use a single-resolution
approach using the largest window-size in W (wmax )
with a threshold corresponding to rmin × wmax . On
the other hand, if the only concern is with respect to the
damage caused, then a single-resolution approach using
the smallest window-size in W (wmin ) with a threshold
of rmin × wmin would be optimal. There is an inherent
tradeoff between the false positive rate and the damage
done, and the goal is to find an optimal multi-resolution
approach in this design space.

We formalize these two orthogonal cost factors as the
Detection Accuracy Cost (DAC ), which is a function of
the false positive rate, and the Detection Latency Cost
(DLC ), which is a function of the total damage that an
attack causes before it is detected. For worm and scan-
ning attacks, a natural notion of the DLC is in terms
of the number of destination addresses an infected host
contacts before it is detected as an anomaly.

The security cost is a function of the DAC and the
DLC . The goal of this paper is not to construct an ideal
cost model for intrusion detection systems. Rather, we
wish to demonstrate the potential benefits of a multi-
resolution approach. Hence, to model the security cost
of the detection system, we use a simple linear combina-
tion, Cost = DLC +β×DAC . The parameter β (spec-
ified by the network administrator) needs to account for

the possibly different scales over which the two cost fac-
tors are measured, and to possibly normalize the DAC
and the DLC into a uniform dollar-cost. Intuitively, β
lets us achieve the desired tradeoff between latency and
accuracy. Administrators who want a conservative de-
tection system (i.e., lower false positive rate) would se-
lect a high β, while those who desire a more aggressive
detection approach (i.e., lower detection latency) would
select a lower β.
Objective: For a given β, the goal is to minimize the
security cost Cost = DLC + β ×DAC , i.e., to find de-
tection thresholds for the different time windows which
minimizes the overall security cost of the system.
ILP Framework: We present an Integer Linear Pro-
gramming (ILP) formulation modeling cost criteria and
detection constraints.

First, we define {0,1} variables δij , to model the as-
signment of different worm-rates to different windows.

δij =
{

1 if rate ri is assigned to time-window wj

0 otherwise

To represent the fact that each worm rate has to be
assigned to some time window, i.e., the system must de-
tect all rates within the desired spectrum, we have the
following detection constraints:

∀i,

|W |∑
j=1

δij = 1

The false positive rate (fi) associated with the detec-
tion of worm-rate ri can be expressed in terms of the
different fp values available from the historic traffic pro-
files. Since the rate ri is assigned to exactly one of the
windows, we have:

fi =
|W |∑
j=1

fp(ri, wj) × δij

The damage done by the worm rate ri before it is
detected, can be written as:

di =
|W |∑
j=1

ri × wj × δij

The latency cost DLC , caused by the set of worm-
rates R, is expressed as:

DLC =
|R|∑
i=1

di − dmin
i

Here dmin
i represents the damage done if we use the

smallest available time window in the set W for detec-
tion, i.e., dmin

i = ri × wmin. The DLC models the
additional damage that is allowed by possibly choosing
a longer detection latency for each worm-rate.
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The last part of the formulation is to find an ex-
pression for the false positive cost criterion DAC , as a
function of the individual fi values. The overall false
positive rate of a multi-resolution system cannot be ex-
pressed directly as a combination of the false positive
rates of individual resolutions, i.e., we cannot obtain an
analytical closed form due to possible overlap across
alarms from different time resolutions. For example,
a fast scanning host may be flagged as anomalous by
both the smaller window sizes and by the larger window
sizes, even though it is conceptually a single alarm.

It appears that unless we try out every possible com-
bination of time-resolutions and thresholds, we cannot
obtain the DAC . Instead of using a brute-force ap-
proach of trying all possible combinations, we present
two simple alternative models: Conservative and Opti-
mistic, that can be used in the formulation.

For the conservative combination, we take the DAC
to be the sum of the individual false positive rates. The
conservative model assumes that there is no overlap be-
tween the alarms from different time resolutions, and
hence adds up the false positive rate across all the worm
rates. Formally,

DACConservative =
|R|∑
i=1

fi

For the optimistic combination, we take the DAC to be
the maximum of the individual false positive rates. The
optimistic estimate assumes that the alarms across the
different time resolutions overlap completely, and as a
result the overall false alarm cost will be the maximum
across the different worm-rates. This can be formally
expressed using the following linear constraints:

∀i,DACOptimistic ≥ fi

Output: The above formulation4 can then be solved to
obtain the optimal δij assignments. Given the different
δij values, the thresholds for the multi-resolution ap-
proach are easy to obtain. For each window-size wj ,
with at least one δij being non-zero, the threshold is
rmin
j × wj , where rmin

j is the smallest worm-rate as-
signed to wj .

4.2. Analysis

We select R, with rmin = 0.1 scans/second, in incre-
ments of rstep = 0.1, up to rmax = 5 scans/second. For
W , we use a minimum time window of 10 seconds, and
a maximum time window of 500 seconds. The fp esti-
mates are obtained as described in Section 3. We use a

4We have found that in noisy datasets it is necessary to add con-
straints so that thresholds increase monotonically with window size.
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Figure 4. Contributions of different time
resolutions for different β values.

general purpose constraint optimization solver glpsol
to obtain the optimal assignments for the different δij

values, for both the conservative and optimistic mod-
els. Obtaining the optimal solution with glpsol was
fairly efficient – within one second with 50 worm-rates
and 13 window sizes. We observe that for the conserva-
tive DAC model, a simple greedy algorithm can provide
the optimal assignments. Each worm rate ri is assigned
to the window size w∗(i) that minimizes the function
ri × wj + β × fp(ri, wj). It is easy to see why the
greedy assignment is optimal. If in the optimal solution,
ri is assigned to wj �= w∗(i), changing the assignment
of ri to w∗(i) will only reduce the contribution of ri to
the overall cost, and hence will reduce the overall cost.

To study the tradeoff between the DAC and the
DLC , we vary β. Figure 4 shows the number of worm
rates assigned to each window size as a function of β.
This helps visualize the contribution of the different res-
olutions in a multi-resolution approach. With low β we
expect that the latency factor dominates, and a major-
ity of the rates will be assigned to the smaller time-
windows. As β increases, the contribution of the false
positive cost becomes more dominant and the assign-
ment will tend to distribute more evenly across the time
windows. We also observe that for large values of β
the DAC dominates, causing the assignment to be com-
pletely biased toward the largest window size (500 sec-
onds in our analysis). Due to the nature of the optimistic
cost model, we find that the distribution is rather skewed,
and only a small number of time resolutions (4-5) are
used at any given time. With the conservative model,
we observe that the assignments are more evenly dis-
tributed.

4.3. Implementation

A multi-resolution detection system can be deployed
at the access and internal routers of an enterprise, ei-
ther as a stand-alone system or as a module in popular
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MULTIRESOLUTIONDETECTION(W,T,H,M)
// W is the set of time resolutions
// T : W → R is the set of thresholds
// H is the set of hosts
// M : H × W → R is the set of measurements

1 for each host h ∈ |H| do
2 for each window w ∈ |W | do

// Check if it exceeds the threshold
3 if (M(h,w) > T (w))

then
4 A(h) ← 1
5 if (A(h) > 0)

then
// t is the current timestamp

6 Flag 〈h, t〉 as an anomaly

Figure 5. Multi-resolution detection

IDSes (e.g., [12]). We have implemented a proof-of-
concept prototype of the multi-resolution detection sys-
tem, which monitors the network activity of each inter-
nal host using multiple resolutions. Our current imple-
mentation is a stand-alone version, running on a com-
modity desktop (Pentium IV 2.4 GHz, 1 GB RAM),
emulating a real-time detection system by reading in
a packet trace through a libpcap front-end. Even
with very few code optimizations in our implementation,
the CPU and memory requirements for performing such
multi-resolution detection in a network with over a thou-
sand hosts are small, suggesting that such an approach
is feasible for small to medium size enterprise networks.

The procedure for multi-resolution detection is out-
lined in Figure 5. The detection system first obtains
the number of distinct destination addresses contacted
by each host (in the set H) using sliding windows of
different sizes (in the set W ) to obtain the set M of per-
host measurements. T (w) represents the threshold for
the number of unique destinations contacted as a func-
tion of the time window w. These thresholds are ob-
tained from the output of the ILP framework described
in Section 4.1. For each host h, and each window size
w, we check if the measured value is greater than the
detection threshold T (w). A host’s behavior is flagged
as anomalous if its activity exceeds the threshold for
at least one of the constituent resolutions, i.e., concep-
tually we are taking the union of the alarms raised in
each of the window-sizes. Each alarm raised by the sys-
tem is a tuple of the form 〈hostid , timestamp〉, which
means that hostid exceeded the connection threshold for
at least one of the time windows ending at timestamp.

We evaluate our prototype using traces collected on

two additional days (Oct 8th and 9th, 2003) as test data
to evaluate the potential false alarm rates. The threshold
settings were derived from the same input settings used
in Section 4.2, using a conservative cost model with β =
65536. As described in Section 3, we bin the data into
10 second bins, and for each bin we get the set of unique
destination IP addresses contacted by each of the 1133
hosts within the network.

We found it useful to include a reporting mechanism
that coalesces alarms temporally. The temporal aggre-
gation allows us to report a single alarm for anoma-
lies which are localized in time, instead of generating
an alarm for each anomalous observation. The tem-
poral clustering procedure identifies the start and end
of an alarm event, and clusters together anomalous ob-
servations for a given host that are close in time. For
example, if for a given host we have alarms at times
ti, ti+1, .., ti+k1 and tj , tj+1, .., tj+k2 , with j > i +
k1 + 1, we report it as only two alarms at times ti and tj
instead of generating k1 + k2 alarms.

Figure 6 shows the alarms generated by alternative
approaches for specific snapshots on the two differ-
ent days. For purposes of visualization, we aggregate
alarms over five minute time intervals, and show only
a four-hour snapshot. Table 1 summarizes the num-
ber of alarms of a multi-resolution detection approach
and single-resolution approaches of different window
sizes. The multi-resolution approach is denoted as MR,
and a single-resolution approach using a window of size
w is denoted as SR-w. The thresholds for the single-
resolution approaches are chosen to be able to detect all
possible worm rates that the multi-resolution approach
can detect. From our results, we observe that the number
of alarms generated with single-resolution approaches is
up to two orders of magnitude greater than the multi-
resolution approach.

Analyzing the alarms from the multi-resolution ap-
proach, we found that more than 65% of the alarms
are raised by less than 2% of the hosts in the network.
This suggests that the effective workload of a system
administrator to investigate these alarms will be signif-
icantly less than the number of alarms raised. Further,
the number of alarms generated by our system is not
unmanageable for manual or semi-automated diagnosis,
and the alarm rates reported above are in fact conser-
vative estimates of the actual false-positive rate.5 From
these observations, we believe our multi-resolution ap-
proach serves as a practical starting point for detection
of stealthy, low-rate scans.

5Due to trace anonymization and absence of payload information,
we could not independently verify true positives within the alarms.
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Figure 6. Comparing multi-resolution and
single-resolution detection

Number of alarms (per 10-seconds)
Detection Oct 8 Oct 9
Approach Average Maximum Average Maximum

SR-20 3.37 16 3.19 18
SR-100 0.56 6 0.53 8
SR-200 0.17 5 0.15 5

MR 0.04 2 0.04 2

Table 1. Summary of alarms

4.4 Discussion

Section 4.1 assumes that the network administrator
provides R and W values for obtaining the detection
thresholds. R would be selected based on the range of
worm-rates the administrator is interested in, i.e., the de-
sired detection capability of the system. The choice of
W depends on the computation and memory resources
available. The memory requirement is determined by
wmax , the largest window size in W , while the com-
pute load depends on the number of windows chosen
(i.e., |W |). Having a wider spectrum of W and more
fine-grained selection of window sizes can only improve
the threshold selection. If using a small subset of W
gives a solution with better security cost, the optimiza-
tion framework will automatically use only these useful
window sizes. Our experiments indicate that even sim-
ple and coarse-grained selection of W and R yields sub-
stantial performance benefits.

For the fp values, it would be desirable that they are
obtained from “clean” historical traffic profiles. Since
obtaining completely noise-free traffic data is not prac-
tical, in our evaluations we find the use of conservative
false positive estimates (i.e., treating possible true posi-
tives as potential false positives) to be a reasonable ap-
proximation for threshold selection. The reason is that
the effect of a small number of true positives and iso-
lated data anomalies on a large population distribution is
rather minimal. With larger population sizes and lengths
of historical traffic profiles, the effect of data anomalies
can be further minimized.

Section 4.1 finds threshold settings that minimize the
security cost for detecting a given spectrum of worm-
rates. Alternatively, the administrator may desire to
maximize the spectrum of worm-rates that can be de-
tected with a multi-resolution detection system, for a
given constraint on the operating cost. This can in fact
be obtained through a process of iterative refinement
which uses our ILP formulation as a sub-routine. The
administrator can start with rmin = 0, obtain the mini-
mal security cost from the ILP solver, and check if the
parameters returned meet the cost constraints. If the
constraints are not met, then she can adaptively refine
R by increasing rmin , until the security cost meets the
operating cost constraint.

5 Multi-Resolution Rate-Limiting

While detection of infected hosts may help in faster
deployment of patches or generation of worm signa-
tures, it does not have a direct impact on attack con-
tainment. In this section, we describe and evaluate a
multi-resolution approach to worm containment, where
we rate limit the number of distinct destinations that an
infected host connects to.

QuarantineInfection Detection

Detection
Phase

Quarantine 
Phase

d qt t ti

Figure 7. Timeline of an infected host
There are two phases during which an infected host

is active (Figure 7), the detection phase (before its ac-
tivity raises an alarm) and the quarantine phase (be-
fore it stops generating more malicious traffic into the
network). Quarantine typically involves manual or
semi-automated investigation of the detected host by
a network administrator. The administrator can sub-
sequently quarantine the infected host either by isolat-
ing it from the network, or by “cleaning” it and apply-
ing vulnerability-specific patches. While the damage
caused by an infected host during the detection phase
(between ti and td) is unavoidable since it takes a non-
zero amount of time to discern malicious activity, the
damage inflicted during the quarantine phase (td to tq)
can be minimized using rate limiting mechanisms.

Our multi-resolution approach to rate limiting is de-
scribed in Figure 8. The input to the rate limiting mod-
ule is a set of time resolutions W and connection lim-
iting thresholds T , in terms of the number of (unique)
destinations that a host is allowed to contact. Let thd de-
note the detection time for host h. Suppose at time t
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MULTIRESOLUTIONCONTAINMENT(W,T )
// W is the set of time-windows
// T : W → R is the set of containment thresholds

1 Detect possibly anomalous hosts H
2 for each flagged host h ∈ H do
3 Let thd be time at which host h was flagged

// Suppose h attempts to contact x at time t
// Find the nearest, higher time window

4 Upper t−th
d
← minw∈W w ≥ (t − thd)

// AC is number of connections allowed
5 AC ← T (Upper t−th

d
)

// CS is the Contact Set, initially empty
6 if (|CS (h)| > AC )

then
7 Deny this connection

else
8 Allow connection, Add x to CS (h)

Figure 8. Multi-resolution containment

(> thd ), host h attempts to contact destination x. If x is
already in h’s contact set, the connection is allowed. If x
is not in the contact set, then the rate limiting mechanism
checks if this connection can be allowed, i.e., whether h
has exceeded its connection threshold for the next higher
time window. If the threshold has already been exceeded
the connection is denied, otherwise the connection is al-
lowed and x is added to h’s contact set.

To evaluate the effectiveness of a multi-resolution ap-
proach for rate limiting we performed simulation ex-
periments, emulating the spread of a random scanning
worm attack over a host population of size N = 100000
hosts. We assume that the total address space is twice
the size of the host population, and set the fraction of
hosts vulnerable to five percent. We model the duration
of the quarantine phase (tq − td from Figure 7) as being
uniformly distributed between 60 and 500 seconds. We
use the multi-resolution detection system, described in
Section 4.3, as our anomaly detection mechanism. The
length of the detection phase will thus be the smallest
time window at which an infected host exceeds its con-
nection threshold.

We compare the containment capabilities of a
multi-resolution rate-limiting approach against a single-
resolution approach. For the multi-resolution approach
we use the same set of windows used in the detection
module (Section 4.3), while for the single-resolution ap-
proach we use a window of size 20 seconds. To per-
form a fair comparison across the two rate-limiting ap-
proaches, we need to select throttling thresholds such
that the overall false positive rates (i.e., disruption

caused to normal connections) are normalized. We
choose the thresholds for multi-resolution and single-
resolution rate-limiting to be equal to the 99.5th per-
centile of the traffic distributions at different window-
sizes (described in Section 3). This ensures a fair com-
parison, since it normalizes the false positive rates of
both methods to be 100 − 99.5 = 0.5%.

There are six combinations of quarantine and rate
limiting mechanisms. At one extreme, we have a worm
spreading with no containment mechanisms in place,
and at the other extreme we have multi-resolution rate
limiting used in conjunction with quarantine. Figure 9
shows the growth of the different scanning worms, in
terms of the fraction of vulnerable hosts that have been
infected as a function of time. Each simulation ex-
periment was repeated over 20 independent runs, and
we report the average over the 20 runs. We find that
across all three scanning rates, the multi-resolution rate
limiting (MR-RL) mechanism outperforms the single-
resolution rate limiting (SR-RL) and quarantine-based
containment measures. For example, with a scanning
rate of 0.5 scans/second, we find that the fraction of vul-
nerable hosts infected at time t = 1000 seconds, with
MR-RL+Quarantine is only 10%, which is one-third of
the fraction of hosts infected with SR-RL+Quarantine,
and just one-sixth of the fraction of hosts infected us-
ing quarantine alone. Across different scanning rates,
we find that the multi-resolution approach gives at least
a two-fold improvement over a single-resolution ap-
proach. In fact, we notice that the containment effect of
MR-RL is comparable to that of SR-RL and quarantine
used together.

6 Conclusions

The multi-resolution approach presented in this paper
tackles the notion of stealthy scanning attacks along the
dimension of scanning rate, providing the ability to de-
tect and contain attacks across a wide spectrum of scan-
ning rates. By focusing on an attack-agnostic metric, the
number of distinct destinations contacted by a host, our
approach is robust across a large class of worm attacks as
it is independent of scanning strategies and worm signa-
tures. The simple but powerful observation that guided
our design is that this traffic metric grows as a concave
function of time. Our experiments show that such an ap-
proach significantly enhances the detection and contain-
ment capabilities against a wide spectrum of slow prop-
agating worm attacks. As future work, we are adding
more spatial and temporal traffic profiles, and other rele-
vant traffic metrics into the multi-resolution framework.
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Figure 9. Comparing different containment mechanisms for various worm scanning rates
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