
Quorum Placement in Networks to Minimize Access Delays

Anupam Gupta∗ Bruce M. Maggs∗ Florian Oprea† Michael K. Reiter∗†
anupamg@cs.cmu.edu bmm@cs.cmu.edu foprea@ece.cmu.edu reiter@cmu.edu

ABSTRACT
A quorum system is a family of sets (themselves called quo-
rums), each pair of which intersect. In many distributed
algorithms, the basic unit accessed by a client is a quorum
of nodes. Such algorithms are used for applications such as
mutual exclusion, data replication, and dissemination of in-
formation. However, accessing spread-out quorums causes
access delays that we would like to minimize. Furthermore,
every member of the quorum incurs processing load to han-
dle quorum accesses by clients.

In this paper we study the problem of placing quorums in
a physical network so as to minimize the delay that clients
incur by accessing quorums, and while respecting each phys-
ical node’s capacity (in terms of the load of client requests it
can handle). We provide approximation algorithms for this
problem for two natural measures of delay (the max-delay
and total-delay). All our algorithms ensure that each node’s
load is within a constant factor of its capacity, and mini-
mize delay to within a constant factor of the optimal delay
for all capacity-respecting solutions. We also provide better
approximations for several well-known quorum systems.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems - distributed
applications

General Terms: Algorithms, Performance, Theory.

Keywords: Quorum Systems, Location Problems, Approx-
imation Algorithms, LP Rounding.

1. INTRODUCTION
Given a universe U of elements, a quorum system Q =

{Q1, . . . , Qm} on U is a family of subsets of U such that
any two quorums Qi and Qj have a non-empty intersec-
tion. Quorum systems arise naturally in many algorithms in

∗Computer Science Department, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA
†Electrical & Computer Engineering Department, Carnegie
Mellon University, Pittsburgh, PA, USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05, July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-994-2/05/0007 ...$5.00.

distributed systems for achieving mutual exclusion, consis-
tent data replication, and dissemination of information (see,
e.g., [5, 8, 15, 19]). In typical quorum-based algorithms, each
client accesses the system by accessing all the elements in
some quorum Qi ∈ Q. While the intersection property en-
sures that any Qi would suffice, usually the client chooses
Qi from a probability distribution p : Q → [0, 1] over Q; this
p is called the access strategy for the quorum system. The
access strategy p is typically chosen to minimize the load of
the most heavily loaded element u ∈ U , where the load on
u ∈ U is defined by loadp(u) =

�
Qi�u p(Qi). Much research

in the past has led to the development of very good quorum
systems Q and associated access strategies p to minimize
load [18].

1.1 Load versus Delay
Most of this prior research assumes an abstract setting

which does not ascribe any costs or delays to quorum ac-
cesses or heterogeneous limits on the capabilities of differ-
ent elements. However, in many network-based applications,
one has to map the “logical” elements of the universe U on
the “physical” nodes of a given network, which gives rise to
many interesting issues. In practice, the physical nodes may
have different capacities to handle quorum accesses, e.g., due
to different computing capabilities. (For instance, one does
not want a PDA on the network to be using all its comput-
ing resources to serve quorum accesses.) Hence, we want to
ensure that physical nodes handle no more load than their
“capacity”.

Equally importantly, since the accesses of quorums by
clients (which are themselves nodes in the network) have
to be implemented by messages sent along the network,
the performance of quorum-based systems now crucially de-
pends on the delays introduced by these accesses. In fact,
one would like the logical quorums Qi ∈ Q to be mapped to
closely clustered physical nodes in the network so that we
do not incur large delays in trying to reach far-flung parts of
the network. Of course, there is a natural tension between
these two desires of low load and low delay: one can achieve
an excellent clustering by mapping all the universe elements
to a single physical node, but this would create a huge load
on that node!

Only recently have these issues arising from mapping quo-
rum systems to physical networks started to receive atten-
tion in the literature. (See Section 2 for a discussion of
the prior work.) In this paper, we define and investigate
some natural quorum placement problems. We present al-
gorithms to map quorum systems onto physical networks so
as to keep both access delays and loads on physical nodes in

87

© ACM, 2005. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/1073814.1073829.

check. Loosely, our algorithms take as inputs:

• a quorum system Q defined on logical elements U ,
along with an access strategy p for Q,1 and

• a network G = (V, E), where each physical node v ∈ V
prescribes an upper bound cap(v) on the quorum load
it can be assigned.

The output is a mapping of the logical nodes U onto the
physical nodes V that achieves “small delay”—i.e., quorums
are placed close to clients—and such that each physical node
has a “small load”—i.e., a load that does not exceed its
capacity.

1.2 Results
More precisely, we are given an undirected network G =

(V, E), of size |V | = n, with each node having an associated
capacity cap(v) ∈ R

+. There is a positive “length” length(e)
for each edge e ∈ E, which induces a distance function d :
V × V → R

+ obtained by setting d(v, v′) to be the sum of
lengths of the edges comprising the path from v to v′ that
minimizes this sum (i.e., the shortest path). We assume that
the set of clients wanting to make quorum accesses is V .

Load. Given a quorum system Q over U and an access
strategy p, this induces a load on each element u ∈ U , given
by load(u) =

�
Q∈Q:u∈Q p(Q). Our goal is to determine a

map f : U → V (which we call a placement of the quorum
Q on the nodes of G) so that loadf (v) of any node v ∈ V
is at most the upper bound cap(v); we define loadf (v) =�

u∈U:f(u)=v load(u).

Delay. We mainly deal with the following notion of delay,
called the average max-delay. Given a placement f , if a
client v ∈ V accesses a quorum Q, then the time required
to reach all elements of quorum Q is proportional to the
maximum distance from v to any element of the quorum
Q. Hence we model the delay as the distance of v to the
farthest-away element of Q:

δf (v, Q) = maxu∈Q d(v, f(u)). (1)

(We call this the max-delay access cost.) Then, the expected
delay (under p) for v to access Q is

∆f (v) =
�

Q∈Q p(Q) δf (v, Q). (2)

Note that if each client v ∈ V makes quorum accesses at the
same rate, then the average delay of the entire system will
be Avgv∈V [∆f (v)] = 1

n

�
v ∆f (v). (For ease of exposition,

we focus on this uniform-rate case; we can extend our results
to more general cases when different clients make quorum
accesses at different rates.)

We are finally in a position to define our main problem
formally:

Problem 1.1. (Quorum Placement Problem (QPP))
Given a quorum system Q over the universe U , along with an
access strategy p, and also an undirected network G = (V, E)
with capacities cap : V → R

+ and inter-point distances
d(·, ·), find a placement f : U → V that (a) minimizes
Avgv∈V [∆f (v)] (i.e., “low delay”) subject to (b) loadf (v) ≤
cap(v) for all v ∈ V (i.e., “low load”).
1One can imagine choosing the input quorum system Q and
access strategy p from the existing literature to achieve good
load-balancing, say, or high availability, or any other desired
criterion.

Our main result is the following:

Theorem 1.2. Let f∗ be an optimal solution to the Quo-
rum Placement Problem. Then, for any α > 1, we can
find in polynomial time a placement f with loadf (v) ≤ (α +
1) cap(v) for all v ∈ V , and for which

Avgv∈V [∆f (v)] ≤ 5α
α−1

Avgv∈V [∆f∗(v)] (3)

Hence, e.g., we can find a map f that exceeds the capacities
on the nodes by a factor of 4, but ensures that the delay is
within a factor of 7.5 of the optimal delay of f∗.

We then go on to consider some well-known quorum sys-
tems, and show the following:

Theorem 1.3. Consider the Grid [5, 12] or Majority [8,
22] quorum systems on U with the access strategy p being
the uniform distribution over all quorums. Given any graph
G, we can find placements f such that loadf (v) ≤ cap(v) for
each v ∈ V , and where the average max-delay is at most 5
times the optimum among all such solutions.

Finally, we continue with the study of quorum placement
for another natural notion of access cost from a client to a
quorum, the total delay, which captures the delay incurred
if quorum elements are contacted sequentially. Specifically,
if the vertex v accesses the quorum Q, then let γf (v, Q) =�

u∈Q d(v, f(u)) be the total delay for this access. Given

access strategy p, the expected total delay for v is Γf (v) =�
Q∈Q p(Q) γf (v, Q). As before, we will be looking for a

placement f to minimize Avgv∈V [Γf (v)]. Our main result
for this measure is:

Theorem 1.4. We can find, in polynomial time, a place-
ment f : U → V where loadf (v) ≤ 2 cap(v) at each node
v ∈ V and that has average delay Avgv∈V [Γf (v)] at most
the optimal delay among all placements satisfying loadf (v) ≤
cap(v).

1.3 Roadmap and Techniques
Let us give a brief roadmap of the paper, mentioning the

ideas and techniques that we use along the way. In Sec-
tion 3, we prove a crucial structural result that guides the
rest of the paper. We show that, for any placement f that
is a solution to the Quorum Placement Problem for max-
delay, there exists a special node v0, such that even if all
the requests are routed through v0, the average max-delay
is at most 5 times that of f . (Hence the additional delay in-
curred by taking such a detour is not too large, a somewhat
surprising fact.) Of course this is only a structural result:
no practical algorithm would want to route all the requests
through a single node, for fear of creating a bottleneck and
a single point of failure.

However, we can now use this result to derive the fol-
lowing important consequence. The average delay of this
“relay-via-v0” routing strategy can be decomposed into two
parts: (i) the average delay from the clients v ∈ V to v0

(which is a constant), and (ii) the delay from v0 to a random
quorum of Q chosen from p, which is just ∆f (v0). Hence,
minimizing the overall average delay in this relaying strat-
egy is equivalent to minimizing the average delay for the
special case of the Quorum Placement Problem when v0 is
the only client in the system. This allows us to focus, for
the rest of Sections 3 and 4 on this “single-source” version of
QPP; we show that any solution to the Single-Source Quo-
rum Placement Problem can be translated back to a solution

88

for Quorum Placement Problem with only a factor 5 loss in
the average delay.

In Section 3, we formalize the Single-Source Quorum Place-
ment Problem, and show it is NP-hard. We then present an
approximation algorithm for it that achieves an average de-
lay of at most (α

α−1
) times the optimal, if we allow the load

on each node to violate the given capacities by a factor of
(α + 1). Combining this with our structural lemma (and
hence incurring a loss of a factor of 5), we get the algorithm
claimed in Theorem 1.2.

In Section 4, we present optimal solutions for the Single-
Source Quorum Placement Problem for two well-known quo-
rum systems, the Grid [5, 12] and the Majority [8, 22].
Combining this with the above reduction, we immediately
get Theorem 1.3.

In Section 5, we address the total delay measure and prove
Theorem 1.4. Finally, in section 6, we summarize and dis-
cuss extensions of our results.

2. RELATED WORK
Despite being over twenty years old, research on quorum

systems remains an active and rich area; see, e.g., [1, 2, 3,
16, 17, 26] and the references therein. Previous work on
quorum placement problems in graphs to minimize delays
is scarcer; in particular, most previous work does not take
into consideration network-oblivious measures such as load,
and the natural trade-offs arising between delay and load.
Specifically, Fu [7] introduced the following problem: given a
graph G = (V, E), find a quorum system Q over universe V
to minimize Avgv∈V [minQ∈Q δ(v,Q)], i.e., the average cost
for each client to reach its “closest” quorum. That work
presented optimal algorithms when G has certain character-
istics, e.g., G is a tree, cycle or cluster network.

Problems of quorum design and placement on general
graphs were then considered by Tsuchyia et al. [23], who
gave an efficient algorithm to find Q so as to minimize
maxv∈V minQ∈Q δ(v, Q), i.e., the maximum cost any client
pays to reach its closest quorum. Kobayashi et al. [11] looked
at the problem of designing quorums Q to minimize Avgv∈V

[minQ∈Q δ(v, Q)]. They gave a branch-and-bound algorithm
for it, which could be evaluated only on topologies with up
to 20 nodes due to its exponential running time, and they
also conjectured that the problem is NP-hard. Following up
on this work, Lin [14] showed that the problem is indeed
NP-hard; this work, which directly motivated our research,
also gives a 2-approximation for the problem.

At this point, let us mention that none of these works
considered the load of the quorum system; indeed, Lin’s 2-
approximation [14] yields a quorum system with very high
load—the output consists of only a single quorum contain-
ing a single element which is placed at a single node v0 ∈ V
which minimizes

�
v′∈V d(v, v′). Such a solution is not very

desirable, since it eliminates the advantages (such as load
dispersion and fault tolerance) of any distributed quorum-
based algorithm. As discussed in the introduction, main-
taining a low load and preserving this load dispersion capa-
bility is an essential requirement in the problems we study.

Independently of our work, Gilbert and Malewicz [9] con-
sider a problem they call the “partial quorum deployment
problem”. As in all the problems we study, their problem
also takes as inputs a graph G = (V, E) and a quorum sys-
tem Q over a universe U . However, they restrict the inputs
so that |Q| = |V | = |U |, and so that each client v ∈ V

selects only a single, distinct quorum to access. In this
setting, they provide a polynomial-time algorithm to com-
pute bijections f : U → V and q : V → Q that minimize
Avgv∈V γ(v, f(q(v))), where f(Q) = {f(u)}u∈Q. They also
offer a number of negative results for other variations of
the Quorum Placement problem, all of which are related to
Avgv∈V [Γf (v)]. Our results for the same objective function
(given in Section 5) generalize the scenario they consider:
we weaken the restrictions on the inputs, and consider more
general restrictions on the load of the system.

In more distantly related work, Carmi et al. [4] study the
following problem, which we call the geographic partition
problem: given a set X of n points in a closed region R of
the plane, find a partition Q of X into clusters of size k
so as to minimize maxv∈R minQ∈Q δ(v, Q). (Here, distances
are in the plane.) They also address the issue of load balanc-
ing when the geographic partition Q is given: assuming that
the clients are uniformly distributed across the region R, the
problem is to find a partition of R into subregions of equal
area such that each Q ∈ Q is contained in exactly one such
subregion. Carmi et al. present efficient approximation al-
gorithms for these problems, and using techniques in Dolev
et al. [6] these can be utilized to implement intersecting quo-
rums. However, this conversion does not preserve the delay
properties of the underlying partition, and so does not solve
the problem that we consider here (even in the plane).

3. MAXIMUM DELAY ACCESS COST
In this section we address the Quorum Placement Prob-

lem, and give our results for the max-delay access cost.
Our first result is the following simple yet crucial struc-
tural result. Imagine that we are given a quorum placement
f : U → V for the quorum system Q. Then we find a spe-
cial node v0, such that routing all the requests to elements
in f(U) via the node v0 causes the average access delay to
be ≤ 5 times the delay when we route the requests to f(U)
along shortest paths. In other words, even though each mes-
sage in the system takes a detour via v0, the average delay
does not increase by much, which we feel is a somewhat
surprising fact.

Although this result seems to have no practical relevance
(because we clearly don’t want to route all the traffic through
a single node), it gives us a way of accounting for, and ap-
proximately minimizing the average delay in the Quorum
Placement Problem: we can split the delay ∆f (v) for any
vertex v when using this “relay-via-v0” strategy into two
components—the first corresponding to the delay in getting
from v to v0, and the other corresponding to the delay from
v0 to the quorums of Q. But the former contribution, when
averaging over all the clients, is a constant. Hence to min-
imize delay, it suffices to search for placements of Q that
minimize the average delay incurred when the single node
v0 issues all the requests, which is ∆f (v0). To this end, we
define the Single-Source Quorum Placement Problem at the
end of Section 3.1.

We show that minimizing the delay in this new single-
client problem is NP-hard for general quorum systems; the
proof of this theorem appears in Section 3.2. We then give
an algorithm in Section 3.3 which gives a placement that
approximates the delay within a factor of α

α−1
, but violates

the load on each node by a factor of α + 1. Combining this
with the factor-5 loss in the reduction to the single-client
case gives us Theorem 1.2. Finally, Section 4 gives efficient

89

algorithms for placing some well-known quorum system con-
structions when the access strategies yielding optimal load
on them are used.

3.1 Reduction to the Single Client Case
The following structural lemma shows that there is a sin-

gle node v0 in the graph G such that even if all the messages
to the quorum elements were sent via the node v0, the access
delay would not increase by more than a factor of 5.

Lemma 3.1. Consider any placement f : U → V of a
quorum system Q on the nodes of G, and an access strategy
p. Then there exists a vertex v0 ∈ V such that

Avgv∈V [
�
Q∈Q

p(Q)
�
d(v, v0) + δf (v0, Q)

�
] ≤ 5Avgv∈V [∆f (v)].

(4)

Proof. Before we begin the proof, note that the expres-
sion on the left in (4) is the average max-delay incurred
if each message from v to the elements of Q first goes to
v0 (giving the d(v, v0) term) and then onto Q (giving the
δf (v0, Q) term).

For the proof, consider two vertices v and v′ in V , and let
us choose quorums Q and Q′ independently at random from
the distribution p. Recall that δf (v, Q) = maxu∈Q d(v, f(u))
is the maximum distance from v to any nodes in f(Q). By
the quorum intersection property, Q ∩ Q′ �= ∅, and the tri-
angle inequality, we get that d(v, v′) ≤ δf (v, Q)+ δf (v′, Q′).
Since the quorums Q and Q′ were chosen from the distribu-
tion p independently, taking expectations over the distribu-
tion we get

d(v, v′) ≤ ∆f (v) + ∆f (v′).

Let v0 be the node that minimizes ∆f (v′); that is, v0 =
argminv′∈V ∆f (v′). We then have:

d(v, v0) ≤ ∆f (v) + ∆f (v0) ≤ 2 · ∆f (v) (5)

(Note that, given an f , the node v0 can be determined in
time polynomial in |V | just by trying all possible nodes v′.)
We can now use the triangle inequality to bound the max-
delay of messages sent via v0 from the node v to the quorum
Q (i.e., the “relay-via-v0” strategy) by

d(v, v0) + δf (v0, Q) ≤ d(v, v0) + d(v0, v) + δf (v, Q)

≤ 4 · ∆f (v) + δf (v, Q), (6)

where we have used (5) in the second line. Now taking
expectations over p, and taking an average over v ∈ V , we
get

Avgv∈V [
�
Q∈Q

p(Q)
�
d(v, v0) + δf (v0, Q)

�
] ≤

4 Avgv∈V [∆f (v)] + Avgv∈V [
�
Q∈Q

p(Q)δf(v, Q)], (7)

which simplifies to the claimed expression (4) using the def-
inition (2) of ∆f (v).

Hence, even if the messages sent from each node v to quo-
rum elements are relayed via node v0, the resulting average
delay is still less than 5 times the optimal. Moreover, the
expression on the left hand side of (4), which is the average
delay of this “relay-via-v0” strategy simplifies to

Avgv∈V [d(v, v0)] + ∆f (v0). (8)

Hence, it makes sense to try and find a placement that min-
imizes ∆f (v0), and solve the following problem:

Problem 3.2. (Single-Source Quorum Placement
Problem (SSQPP)) Given a quorum system Q over a uni-
verse U , a graph G = (V, E) with a special node v0, an ac-
cess strategy p0 with which v0 accesses quorums in Q and
for each node v ∈ V an upper bound cap(v) on the load it
can support, find a placement f : U → V that (a) minimizes
the average delay ∆f (v0) subject to (b) loadf (v) ≤ cap(v)
at each node.

The following theorem summarizes the above discussion,
and formalizes the reduction from the QPP to the Single-
Source Quorum Placement Problem:

Theorem 3.3. There exists a node v0 such that a place-
ment f : U → V that is a β-approximation for the Single-
Source Quorum Placement Problem (with source v0) is also
a 5 β-approximation to the general Quorum Placement Prob-
lem.

Proof. Consider the best placement f∗ for the original
Quorum Placement Problem instance, and find the node
v0 promised by Lemma 3.1 when given the placement f∗.
Note that the placement f∗ is also a solution for the Single-
Source Quorum Placement Problem with special node v0,
and hence any β-approximate solution f to the Single-Source
Quorum Placement Problem instance would have ∆f (v0) ≤
β ∆f∗(v0). Thus the delay of a “route-via-v0” strategy with
this map f would have average delay

Avgv∈V [d(v, v0)] + β ∆f∗(v0) ≤ 5βAvgv∈V [∆f∗(v)],

which follows from (4) and proves the result.

Since we do not know the identity of the node v0, we can run
the Single-Source Quorum Placement Problem algorithm
with each node in V , and pick the best placement among
these.

3.2 NP-hardness of Problem 3.2
In this section, we show that the Single-Source Quorum

Placement Problem is NP-hard, via a reduction from a clas-
sical NP-hard scheduling problem 1|prec|�wjCj [21].

Definition 3.4. The input to the problem 1|prec|�wjCj

consists of n jobs {J1, J2, . . . , Jn} with job Jj having process-
ing time Tj and weight wj . Furthermore, there are prece-
dence constraints given by a partial order ≺ on the jobs,
such that if Ji ≺ Jj , then any feasible schedule must put
job Ji before Jj . The objective is to find a feasible schedule
of the jobs on a single machine so that, if the completion
time of job Jj is Cj, the weighted completion time

�
wjCj

is minimized.

In fact, a theorem of Woeginger [25] implies that it suffices
to consider only a special case of this scheduling problem:

Theorem 3.5. [25] The following statements are equiva-
lent:

(a) There exists a ρ-approximation for the general problem
1|prec|�wjCj .

(b) There exists a ρ-approximation for the special case of
1|prec|�wjCj where every job has either Tj = 0 and
wj = 1, or Tj = 1 and wj = 0, and where the existence
of a precedence constraint Ji ≺ Jj implies that Ti = 1
and wi = 0, and that Tj = 0 and wj = 1.

90

The following theorem shows a polynomial time reduction
of the scheduling problem 1|prec|�wjCj given in Theo-
rem 3.5(b) to the Single-Source Quorum Placement Prob-
lem.

Theorem 3.6. The Single-Source Quorum Placement
Problem 3.2 is NP-hard.

Proof. Consider an instance of the scheduling problem
with jobs {J1, J2, . . . , Jn}; let us reorder the jobs so that all
the ones with zero weight appear before those with non-zero
weight. Let there be m jobs with unit weight, and hence
{J1, J2, . . . , Jn−m} have zero weight.

For each Jj with Tj = 1 (and hence wj = 0), let us con-
struct an element ej in the universe U ; we add an extra
element e0 to U—hence |U | = n−m+1. Let 0 < ε < 1 be a
constant to be fixed later. The quorums and access strategy
p are defined thus:

• For each of the m unit-weight jobs Jj (with Tj = 0
and wj = 1), define a quorum Qj = {e0} ∪ {ej′ ∈
U | Jj′ ≺ Jj}. Each of these quorums Qj is accessed
with probability p(Qj) = ε

m
. (Call these the type-1

quorums.)

• For each element u ∈ U such that u �= e0, define a
quorum Qu = {u, e0}. Each of these quorums Qu is
accessed with probability p(Qu) = 1−ε

n−m
. (Call these

type-2 quorums.)

Note that all the quorums intersect in e0; furthermore, since
there are m quorums Qj and (n − m) quorums Qu, the
access strategy p is indeed a probability distribution over
the quorum system Q. Note that the load on element e0

is load(e0) = 1; for any other element u ∈ U , if u belongs
to nu ≤ m type-1 quorums Qj , then its load is load(u) =

ε · nu
m

+ (1 − ε) · 1
n−m

. Choosing ε such that ε < (1−ε)
n−m

, the

load for any u ∈ U \ {e0} is load(u) ∈ [1−ε
n−m

, 2(1−ε)
n−m

).

Finally, the graph G = (V, E) is just a path with a node
vj ∈ V for each element ej ∈ U (hence ensuring that |V | =
|U | = n − m + 1), and edges (vi, vi+1) for 0 ≤ i < n − m
of unit length. The capacity of each node vj with j �= 0 is

cap(vj) = 2(1−ε)
n−m

− ε, and the capacity of v0 is cap(v0) = 1 =

load(e0). This completes the construction of an instance of
the Single-Source Quorum Placement Problem.

Let us note some useful properties of the construction:
since the capacity of any node vj �= v0 is strictly less than 1 =
load(e0), the element e0 can only be placed on v0. Moreover,

since the load of any element u �= e0 lies in [1−ε
n−m

, 2(1−ε)
n−m

),

and the capacity of any vj �= v0 is strictly less than 2× 1−ε
n−m

,
any feasible placement must place exactly one element in U
on a node of G. Furthermore, any permutation of the ele-
ments in U − {e0} can be placed on the vertices V − {v0}.
Thus, any placement f can be converted into a schedule in
the natural way: if f(ej) = vt for ej �= e0 we schedule the
zero-weight job Jj at time t. We also schedule unit-weight
jobs Jj′ at the earliest time possible subject to the prece-
dence constraints.

It suffices now to show that the optimal solution to the
SSQPP instance gives us an optimal solution to the schedul-
ing problem. Denote by πf the schedule constructed from
a placement f as described above. Let tj be the time when
zero-weight job Jj is scheduled and let tj′ be the time when
unit-weight job Jj′ is scheduled. The completion time of

schedule πf is then: cost(πf) =
�

wjCj =
�

j′:wj′=1 tj′ .

The average delay of the placement f is:

∆f (v0) =
�

type-1 Qj

p0(Qj)tj +
�

type-2 Qj′

p0(Qj′)tj′

=
�

type-1 Qj

ε

m
tj +

�
type-2 Qj′

1 − ε

n − m
tj′

=
ε

m
· cost(πf) +

1 − ε

n − m
·

n−m�
i=1

i

Now it becomes easy to see that the completion time of the
schedule πf is minimized if and only if the average delay of
the placement f is also minimized.

3.3 A Linear Program Rounding Solution
In light of the intractability result in Theorem 3.6, our

goal is now to find an approximation algorithm for the Single-
Source Quorum Placement Problem. To this end, we formu-
late Problem 3.2 as an integer linear program, consider its
linear programming (LP) relaxation, and round this LP to
get an integral solution. Unfortunately, this linear program
has a large integrality gap of O(

√
n)—see Appendix A for

the definition of this concept, as well as the example showing
the integrality gap. However, we show that one can still get
a 2-approximation algorithm from it by a resource augmen-
tation argument [10], i.e., if we allow ourselves to violate the
capacity at any node v by a small factor.

Some useful notation: since we are interested only in dis-
tances from the node v0, let us rename nodes as {v0, v1, v2

, . . . , vn−1} so that d(v0, v1) ≤ d(v0, v2) ≤ · · · ≤ d(v0, vn−1).
Let us also denote d(v0, vt) by dt, and hence 0 = d0 ≤ d1 ≤
. . . ≤ dn−1. Let f∗ : U → V be an optimal solution to Prob-
lem 3.2; i.e., a placement that minimizes ∆f∗(v0) subject to
the constraints

�
u:f∗(u)=v load(u) ≤ cap(v).

To write an integer linear programming formulation for
the problem, let us denote by xtu the indicator for whether
the element u ∈ U is placed on the physical node vt. Simi-
larly, given vt ∈ V and Q ∈ Q, the variable xtQ = 1 indicates
that all elements u ∈ Q are placed on some subset of the
nodes {v0, . . . , vt}. The LP is given by:

minimize Z∗ =
�

Q p0(Q)
�n

t=1 dt xtQ (9)�
t xtu = 1 ∀ u ∈ U (10)�
t xtQ = 1 ∀ Q ∈ Q (11)�

u load(u)xtu ≤ cap(vt) ∀ vt ∈ V (12)

xtu = 0 ∀ u ∈ U, ∀ vt ∈ V

s.t. load(u) > cap(vt) (13)�
s≤t xsQ ≤�s≤t xsu ∀ u ∈ Q, ∀ vt ∈ V, ∀ Q ∈ Q

(14)

The constraint (10) implies that each element u is assigned
to one node, and (12) implies that no node vt has too much
load assigned to it. Constraints (14) and (11) ensure that
if xtQ = 1 then all the elements in Q are indeed placed on
some subset of {v0, . . . , vt}, and that there is indeed one such
value of t. Finally, (13) ensures that no node vt is assigned
an element u with load(u) more than vt’s capacity cap(vt).

Note that if the variables are all either 0 or 1, we could
get the placement f : U → V by setting f(u) = vt ⇐⇒
xtu = 1; indeed, it is easy to see that this would be an exact

91

formulation of the Single-Source Quorum Placement Prob-
lem. However, finding such an integral solution is NP-hard,
and thus we consider the LP relaxation where the variables
can take fractional values between 0 and 1: such a solution
can be obtained in polynomial time. Since we have taken a
relaxation of the problem, it follows that Z∗ ≤ ∆f∗(v0).

We now show how to round the fractional solution x to
obtain a map f which has an average delay at most 2Z∗ ≤
2∆f∗(v0), but where the load at any node vt is load(vt) =�

u:f(u)=vt
load(u) ≤ 3 cap(vt). One can then generalize this

result and trade off the losses in the delay and load seam-
lessly to get the following:

Theorem 3.7. For any α > 1, we can find a solution
f : U → V to the Single-Source Quorum Placement Prob-
lem, with delay ∆f (v0) ≤ α

α−1
and load on any node v ∈ V

satisfying
�

u:f(u)=v load(u) ≤ (α + 1) cap(v).

Note that the proof below is just the case α = 2 of this
theorem; the extension is not difficult, and we postpone the
details until after Theorem 3.12.

3.3.1 Rounding the Fractional LP Solution
The process of rounding the fractional solution to obtain

the integral solution (and hence the map f) consists of two
conceptual steps. Let us give the high-level sketch before we
give the details.

Filtering. In this step, we alter the LP solution to obtain
a “good” (fractional) solution in which no element u is
fractionally assigned to nodes that are “too far away”
from v0. Formally, after this step, if Su is the set of
nodes vt such that xtu > 0, then any map f satis-
fying f(u) ∈ Su will still allow us to guarantee that
∆f (v0) ≤ 2Z∗ ≤ 2∆f∗(v0).

Rounding. We now view the good fractional solution ob-
tained from the above step as a solution to the gener-
alized assignment problem (GAP) and use a rounding
procedure for this problem to convert the fractional
solution into an integral solution such that the total
load assigned to any node vt is at most 3 cap(vt).

Filtering. For each element u, let �xtu be the largest pos-
sible value subject to the constraints that �xtu ≤ 2xtu and�

t≤s �xtu ≤ 1. More precisely we set �xtu = 2xtu for all t’s

such that
�

s≤t xsu < 1
2

and �xtu = 1 −�s<t �xsu for the

first t such that
�

s≤t xsu > 1
2
. We change the values �xtQ

similarly. (Intuitively, we are “moving mass” to the lower
values of t.) Note that these new values �x satisfy (10); and
they violate (12) by a factor of at most 2. Moreover, for any
values of t and u ∈ Q,

�
s≤t xsQ ≤ �

s≤t xsu: hence when
going from x to �x, either both the left and right sides of the
inequality double, or the right side becomes equal to 1—in
both cases, (14) holds. Note that the modified value of the
objective function satisfies

�
Q p0(Q)

�n
t=1 dt �xtQ ≤ Z∗.

We now formalize the statement that no element u is as-
signed to vt which is “too far”. Consider the objective func-
tion (9) of the LP: define DQ =

�
t dtxtQ for any quorum

Q, and thus the LP value is Z∗ =
�

Q p0(Q)DQ.

Claim 3.8. All elements of quorum Q are fractionally as-
signed to nodes vt with dt = d(v0, vt) at most 2 DQ. In other
words, if �xtQ > 0 for some t, then dt ≤ 2 DQ.

Proof. This is just Markov’s inequality, but here is the
longer explanation. Look at the largest value t for which�xtQ > 0; this must be a value such that

�
s<t xsQ < 1

2

and
�

s≤t xsQ ≥ 1
2
. If dt > 2DQ, then Q is assigned

to values larger than dt > 2DQ for at least a fraction of
(1 −�s<t xsQ) > 1

2
, which violates the fact that DQ is the

average
�

s xsQds.

Lemma 3.9. For any element u ∈ U , let Su = {vt ∈
V | �xtu > 0}. Then for any map f that places elements
u ∈ U on nodes in the corresponding set Su, we have that
∆f (v0) ≤ 2Z∗.

Proof. If f(u) ∈ Su then �xtu > 0 and so Claim 3.8
says that δf (v0, Q) = maxu∈Q d(v0, f(u)) ≤ 2 DQ. There-
fore ∆f (v0) =

�
Q p0(Q)δf (v0, Q) ≤ �

Q p0(Q) × 2 DQ ≤
2Z∗.

Rounding. We will now view the modified solution �x for
the LP as a fractional solution to a suitable instance of the
so-called Generalized Assignment Problem (GAP), and use
techniques for that problem to round the fractional �x’s to an
integral solution that satisfies the assumptions of Lemma 3.9.

Definition 3.10 (GAP). The GAP problem takes as
input a set U of “jobs” and a set V of “machines”, and
for each (j, i) ∈ U × V two positive values: cij being the
cost of assigning job j to machine i, and pij being the load
imposed by such an assignment to machine i. The output
is an assignment f of the jobs to the machines, of min-
imum cost

�
j∈U cf(j)j , subject to constraints on the load�

j∈f−1(i) pij ≤ Ti, ∀i ∈ V , given constants Ti ∈ R
+ for

each i ∈ V .

Consider the following natural LP relaxation of GAP:

minimize Y ∗ =
�

j∈U

�
i∈V cijyij (15)�

j∈U pijyij ≤ Ti ∀ i ∈ V (16)�
i∈V yij = 1 ∀ j ∈ U (17)

yij ≥ 0 ∀ j ∈ U, i ∈ V (18)

This relaxation was studied by Lenstra et al. [13] and Shmoys
and Tardos [20], who proved the following result. (Here pmax

i

is the largest load of any job assigned to machine i.)

Theorem 3.11. [20] Any fractional solution for the LP
relaxation of GAP can be rounded into an integral solution
with cost no more than Y ∗, with the load on machine i being
at most Ti + pmax

i ≤ 2 Ti.

We can use this powerful result to round our LP with the
new variables �x by the following translation: the elements
u ∈ U correspond to the jobs j = u; the nodes vt ∈ V
correspond to the machines i = t; the load ptu for machine
t and job u is load(u) if �xtu > 0 and ptu = ∞ otherwise;
the cost ctu is the delay dt; finally, the upper bound Tt for
machine t is 2cap(vt).

Since we ensure that no element u can be fractionally
assigned to node vt if load(u) > cap(vt), this implies that
the solution produced by applying Theorem 3.11 to the�x’s places load at most Tt + pmax

t ≤ 2cap(vt) + cap(vt) =
3cap(vt). Hence the capacity is violated by at most a factor
of 2, which implies the following theorem:

92

Theorem 3.12. We can find a solution f : U → V to the
Single-Source Quorum Placement Problem, where the delay
∆f (v0) is at most twice the LP optimum Z∗ ≤ ∆f∗(v0).
Furthermore, the load on any node vt ∈ V is violated by at
most a factor of three; i.e.,

�
u:f(u)=vt

load(u) ≤ 3 cap(vt).

To obtain Theorem 3.7, we only need to change the factor
of 2 from the filtering step above to an arbitrary α > 1.
Variables �xtu become the largest possible, subject to the
constraints �xtu ≤ αxtu and

�
t≤s �xtu ≤ 1. This will increase

the load on each node vt for which �xtu > 0 by no more than
a factor of α. With the additional loss from GAP we obtain
the bound of (α + 1)cap(v) on the load of each node v ∈ V .
The delay of any node vt on which some element of quorum
Q is placed (i.e., for which �xtQ > 0) becomes dt ≤ α

α−1
DQ.

The factor of α
α−1

propagates further through Lemma 3.9
leading to the bound on delay claimed in Theorem 3.7.

4. OPTIMAL LAYOUTS FOR SPECIFIC
CONSTRUCTIONS

In this section we address the Single-Source Quorum Place-
ment Problem for some specific quorum systems, and give
explicit placements that respect the capacities cap(v) at the
nodes while minimizing the average delay ∆f (v0). The spe-
cific quorum systems considered here are the well-known
Grid [5, 12] and the Majority [8, 22] quorum systems.

Note that the results here give us Theorem 1.3, since we
can use the reduction of the Quorum Placement Problem
to the Single-Source Quorum Placement Problem from Sec-
tion 3.1 (with the attendant loss of a factor of 5 in the delay).

4.1 The Grid Construction
Consider the Grid quorum system [5, 12] on a universe U

of k2 elements. The k2 elements are laid out on a k by k
square grid M , and each quorum Q ∈ Q is formed by tak-
ing all the elements from some row and some column of M .
Hence each quorum has 2k − 1 elements, and there are k2

quorums in Q. We assume that p0 is the uniform access
strategy, since this yields the optimal load for the Grid [18].
Due to this uniformity, we can rephrase the objective func-

tion ∆f (v0) as
�k2

i=1 max
u∈Qi

{d(v0, f(u))}.
For simplicity, let us consider the case where the capacity

cap(v) of each node v ∈ V is equal to the load(u) of any ele-
ment u ∈ U (which is the same for all elements u ∈ U when
the uniform access strategy is being used). We can easily
extend our results to the general case by suppressing nodes
with capacity less than load(u) and making multiple copies
of nodes with a capacity large enough to fit multiple amounts
of load(u) (this is equivalent to greedily packing amounts of
load(u) into nodes with capacity cap(v) ≥ load(u)). The
problem then becomes one of matching U to the k2 nearest
nodes to v0; let τ1 ≥ . . . ≥ τk2 be the distances from v0 to
these k2 nodes to v0 in decreasing order (i.e., the distances
d1, . . . , dk2 in reverse order).

A convenient way of visualizing a placement f is to look at
a k × k matrix M where each entry is one of the τ1, . . . , τk2

distances; the correspondence between such matrices and
placements f is given by setting f((i, j)) = v ⇐⇒ Mij =
d(v0, v), breaking ties arbitrarily. The problem is now to
place the values τ1, . . . , τk2 in a k × k matrix M that min-
imizes the sum over all quorums of the maximum distance
τi in each quorum.

The general strategy is to place the largest l2 distances
on the top-left l × l square of M . The next l distances,
(i.e.,τl2+1, τl2+2, . . . , τl2+l) are placed on positions M1,l+1,
M2,l+1, . . . , Ml,l+1, and the l+1 after them (i.e., τl2+l+1, . . . ,
τl2+2l+1) on cells Ml+1,1, . . . , Ml+1,l+1. This gets us from a
l × l square to a (l + 1) × (l + 1) square, and having started
with τ1 in M1,1, we can complete the placement inductively.
In Appendix B, we give a proof that this intuitive strategy
is optimal.

4.2 The Majority Construction
We now consider the following simple generalization of

the well-known Majority construction. Given a universe U
of size n and a parameter t ≥ �n

2
�, the quorum system

consists of all the subsets of U of size t. We claim that
any placement of this quorum system on the nodes of the
graph has the same average delay under the uniform access
strategy, which is

1�
n
t

� ×
n−t+1�

i=1

τi ×
�

n − i

t − 1

�
. (19)

This is easy to see, since there are
�

n−1
t−1

�
quorums contain-

ing τ1,
�

n−2
t−1

�
quorums containing τ2 but not τ1,

�
n−3
t−1

�
quo-

rums containing τ3 but not the preceding two, and so on
until there is a single quorum containing τn−t+1 but not
τ1, . . . , τn−t.

5. TOTAL DELAY ACCESS COST
In this section, we present a polynomial time algorithm for

the problem of minimizing the total-delay objective function
Avgv∈V [Γf (v)] introduced in Section 1, where the access cost
from a client v to a quorum Q is the sum of distances from v
to all the elements of the quorum Q. This turns out to be a
somewhat more tractable problem, and we can directly use
techniques based on the Generalized Assignment Problem
(cf. Definition 3.10 and Theorem 3.11) to give us a placement
f with total-delay within a factor of two of optimum.

Theorem 5.1. Consider a quorum system Q over a uni-
verse U with an access strategy p, and an undirected graph
G = (V, E) with its associated metric d and capacities cap(v)
for each v ∈ V . If f∗ : U → V is a placement that mini-
mizes Avgv∈V [Γf (v)] subject to loadf∗(v) ≤ cap(v), then we
can find in polynomial time, a placement f with loadf (v) ≤
2 cap(v) on v ∈ V , and where

Avgv∈V [Γf (v)] ≤ Avgv∈V [Γf∗(v)] (20)

I.e., the placement minimizes the average access cost, but
violates the capacity of each node by at most a factor of two.

Proof. Recall the LP relaxation 15-18 of GAP and The-
orem 3.11. We will reduce our problem to the GAP problem,
which will allow us to use the rounding technique of Theo-
rem 3.11 to achieve our results.

In our problem, each element corresponds to a job in GAP
(and hence we replace all j’s by u’s), and each graph node
corresponds to a machine (thus replacing i’s by v’s). Also,
if an element u ∈ U is assigned to a graph node v ∈ V ,
its contribution to the load on v is load(u), and thus we set
pvu = load(u). Furthermore, the contribution to the average
total-delay is 1

n

�
v′∈V

�
Q:Q�u p(Q)d(v′, v), and this we set

to be the “cost” cvu. Of course, we set the upper bound Tv

for each v ∈ V to be the capacity cap(v).

93

We can now solve the GAP LP, and use the rounding
result to ensure that the cost of the resulting solution is no
more than Avgv∈V [Γf∗(v)], and the load placed on any node
is at most 2Tv = 2cap(v), thus proving the theorem.

6. SUMMARY AND DISCUSSION
In this paper we have introduced problems requiring the

placement of quorums in a network so as to (approximately)
minimize the average delay that clients incur to contact quo-
rums, while (approximately) limiting the load each network
node suffers to a predefined capacity. As quorums underlie
numerous distributed algorithms, we believe our results are
a step toward the use of such algorithms in wide-area net-
works, where different placements can result in varied delays
for quorum access.

Numerous extensions of our results are possible. For ex-
ample, a more general formulation of our Quorum Place-
ment Problem allows clients to use different access strate-
gies when contacting a quorum. We remark here that the
proof of Lemma 3.1 still holds in this more general case.
Furthermore, suppose that each client v ∈ V has its own ac-
cess strategy pv. Assigning to each node an access strategy
equal to the average of all the pv’s achieves the same average
delay as the left-hand side of (4). Hence Theorem 1.2 holds
for this more general version of the problem as well.

Another important observation regards the access rates
made by different clients when accessing the quorum system.
For the sake of simplicity we assumed these to be uniform.
We emphasize here however, that our results hold even when
clients use different access rates when contacting a quorum
system.

7. REFERENCES
[1] Y. Amir and A. Wool. Optimal availability quorum

systems: theory and practice. Inform. Process. Lett.,
65(5):223–228, 1998.

[2] R. A. Bazzi. Planar quorums. Theoret. Comput. Sci.,
243(1-2):243–268, 2000.

[3] R. A. Bazzi. Access cost for asynchronous byzantine
quorum systems. Dist. Comp., 14(1):41–48, 2001.

[4] P. Carmi, S. Dolev, S. Har-Peled, M. J. Katz, and
M. Segal. Geographic quorum system approximations.
Algorithmica, 41(4):233–244, 2005.

[5] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The
grid protocol: A high performance scheme for
maintaining replicated data. Knowledge and Data
Engineering, 4(6):582–592, 1992.

[6] S. Dolev, S. Gilbert, N.A. Lynch, A.A. Shvartsman,
and J.L. Welch. Geoquorums: Implementing atomic
memory in mobile d hoc networks. In DISC, pages
306–320, 2003.

[7] A.W. Fu. Delay-optimal quorum consensus for
distributed systems. IEEE Transactions on Parallel
and Distributed Systems, 8(1):59–69, 1997.

[8] D. K. Gifford. Weighted voting for replicated data. In
Proceedings of the 7th ACM Symposium on Operating
Systems Principles (SOSP), pages 150–162, 1979.

[9] S. Gilbert and G. Malewicz. The quorum deployment
problem. In 8th International Conference on
Principles of Distributed Systems (OPODIS’04), 2004.

[10] B. Kalyanasundaram and K. Pruhs. Speed is as

powerful as clairvoyance. J. ACM, 47(4):617–643,
2000.

[11] N. Kobayashi, T. Tsuchiya, and T. Kikuno.
Minimizing the mean delay of quorum-based mutual
exclusion schemes. Journal of Systems and Software,
58(1):1–9, 2001.

[12] A. Kumar, M. Rabinovich, and R. K. Sinha. A
performance study of general grid structures for
replicated data. In Proceedings 13th International
Conference on Distributed Computing Systems, pages
178–185, 1993.

[13] J. K. Lenstra, D. B. Shmoys, and É. Tardos.
Approximation algorithms for scheduling unrelated
parallel machines. Math. Programming, 46(3, (Ser.
A)):259–271, 1990.

[14] X. Lin. Delay optimizations in quorum consensus. In
Proceedings of the 12th International Symposium on
Algorithms and Computation, pages 575–586.
Springer-Verlag, 2001.

[15] M. Maekawa. A
√

n algorithm for mutual exclusion in
decentralized systems. ACM Transactions on
Computer Systems, 3:145–159, 1985.

[16] D. Malkhi, M. K. Reiter, and A. Wool. The load and
availability of Byzantine quorum systems. SIAM J.
Comput., 29(6):1889–1906 (electronic), 2000.

[17] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright.
Probabilistic quorum systems. Inform. and Comput.,
170(2):184–206, 2001.

[18] M. Naor and A. Wool. The load, capacity, and
availability of quorum systems. SIAM J. Comput.,
27(2):423–447 (electronic), 1998.

[19] D. Peleg and A. Wool. Crumbling walls: A class of
practical and efficient quorum systems. Distributed
Computing, 10(2):87–97, 1997.

[20] D. B. Shmoys and É. Tardos. An approximation
algorithm for the generalized assignment problem.
Math. Programming, 62(3, Ser. A):461–474, 1993.

[21] J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity of
scheduling under precedence constraints. Operations
Research, 26(1):22-35, 1978.

[22] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases. ACM
Transactions on Database Systems, 4(2):180–209,
1979.

[23] T. Tsuchiya, M. Yamaguchi, and T. Kikuno.
Minimizing the maximum delay for reaching consensus
in quorum-based mutual exclusion schemes. IEEE
Transactions on Parallel and Distributed Systems,
10(4):337–345, 1999.

[24] V. V. Vazirani. Approximation algorithms.
Springer-Verlag, Berlin, 2001.

[25] G. J. Woeginger. On the approximability of average
completion time scheduling under precedence
constraints. In Proceedings of the 28th International
Colloquium on Automata, Languages and
Programming (ICALP’ 2001), LNCS 2076, pages
862–874. Springer, 2001.

[26] H. Yu. Signed quorum systems. In Proceedings of the
Twenty-Third Annual ACM Symposium on Principles
of Distributed Computing, pages 246–255. ACM Press,
2004.

94

k nodes

|V | = k2

v0

Figure 1: Graph with k2 nodes

APPENDIX

A. INTEGRALITY GAP OF THE LP
In this section, we show that the integrality gap of the LP

relaxation (9–14) is very large—even for distances that arise
from a simple unweighted graph. This shows that that we
cannot use this LP relaxation to bound the delay if we do
not relax the node capacities cap(v).

Let us recall the definition of Integrality Gap (see, e.g., [24]).
Given a linear programming relaxation for a minimization
problem Π, let LP (I) be the objective function value of
an optimal fractional solution for the LP-relaxation. Let
OPT (I) denote the cost of an optimal (integral) solution
for instance I . We define the integrality gap (or integrality

ratio) of the LP-relaxation to be supI
OPT (I)
LP (I)

.

Claim A.1. The LP (9)- (14) has an integrality gap of at
least n for general metric spaces, and at least

√
n even for

metric spaces induced by unweighted graphs.

Proof. For the former result, consider the following in-
stance: the quorum system Q has only one quorum Q con-
taining all the n elements. The values dt are 1 for all
0 ≤ t < n − 1, and dn−1 = M � 1. In this case the
only integral solution has ∆f (v0) = M . However, we can
set xtQ = xtu = 1/n for all u ∈ U and 0 ≤ t < n; the LP
objective function (9) is now just 1

n

�
t dt = n−1+M

n
≈ M

n
for M � n, and hence the integrality gap is about n.

Note that some of the edges of G have non-unit length
in the above example; let us now present our result for the
case when the underlying graph has all edges of unit length.
Again assume that we have a single quorum Q containing
all the elements, and consider the graph from Figure 1 with
n = k2 nodes. Setting the values di to be the distances from
v0 to all the other nodes of the graph G, we have di = 1 for
2 ≤ i ≤ n − k + 1, dn−k+2 = 2, dn−k+3 = 3, . . . , dn = k.
In this case, the only integral solution has average delay k.
However, if we set xtQ = xtj = 1/n for all 1 ≤ t, j ≤ n, the
LP objective function has a value of

(n−k+1)
1

n
+2

1

n
+· · ·+k

1

n
=

1

n

�
n − k +

k(k + 1)

2

	
≈ 3

2
.

Thus, the integrality gap is at least O(k) = O(
√

n).

B. DETAILS OF THE GRID LAYOUT

Theorem B.1. The placement f given in Section 4.1 for
the k × k grid is an optimal solution for the Single-Source
Quorum Placement Problem when the uniform access strat-
egy is used.

Proof. We start with any optimal placement g and per-
form a number of transformations to it that do not increase

A B

CD

l + 1

l + 1

r

Figure 2: Partition of matrix M by row l + 1 and
column l + 1 into regions A, B, C, D

its cost, at the end of which g will look as if obtained by us-
ing our strategy. This will prove that our placement strategy
is optimal.

Recall that the cost of a placement for the Single-Source
Quorum Placement Problem is the average delay from the
client v0 to all the quorums in the quorum system. For the
case of the Grid quorum system, the delay from v0 to a
quorum Qij formed by taking the union of the elements in
row i and column j, is the maximum distance τmaxij placed
by the map g on one of the cells of row i or column j of
M . Since Mi,j uniquely determines quorum Qij , we also
assign to cell Mi,j a cost equal to the delay of quorum Qij :
cellcost(Mi,j) = δg(v0, Qij) = τmaxij . Thus the average
delay of the placement g can also be written as ∆g(v0) =
1

k2

�k
i,j=1 cellcost(Mi,j).

Let us begin with several simple observations. First, any
swapping of rows or columns of M does not change the cost
of the placement g. Second, a swap of two elements τi ≤ τj

placed at the intersection of two rows i and j with the same
column, does not increase the cost of the placement g if
τj is less than the maximum distance placed on row i. A
similar statement can be made for elements placed at the
intersection of two columns with one row.

Consider now the placement g. By swapping rows or
columns we can bring element τ1 on position (1, 1) of M
without changing the cost of the placement. Now assume
that we have changed the position of elements τ1, . . . , τl2

starting from the initial placement g to arrive at a place-
ment consistent with our strategy and such that the cost
has not increased. This implies that τ1, . . . , τl2 are placed
in the top left l × l square. We now show how to reposition
τl2+1, . . . , τ(l+1)2 according to our strategy without increas-
ing the cost.

To make the exposition easier to follow we use the follow-
ing notation: row l+1 and column l+1 partition matrix M
into four regions A, B, C, D, where A and B are the inter-
sections of the first l rows with the first l columns and the
last k − l columns respectively, while D and C are intersec-
tions of the last k − l rows with the first l columns and the
last k − l columns respectively, as in Figure 2. At the end
of the previous step, each of the elements τl2+1, . . . , τ(l+1)2

can only be in one of the B, C, D regions. Note that all of
them are less than the maximums of rows 1 through l and
columns 1 through l, since we placed elements τ1, . . . , τl2 in
region A.

Now look at element τl2+1. If it is in one of the B or
D regions, we can easily bring it on a cell adjacent to A
by swapping rows or columns. If it is in region C, we can

95

swap it with any of the elements from B that are on the
same column without increasing the cost, since any of the
first l rows has a maximum greater than τl2+1 and τl2+1 is
greater than any of the elements from its column. After this
move we can swap columns as before to bring τl2+1 to a cell
adjacent to A. Let us assume, without loss of generality,
that the position of this cell is M1,l+1.

Consider now element τl2+2. Assume position M2,l+1 is
occupied by τi ≤ τl2+2. Then swapping the two elements
will not increase the cost, since placing τl2+2 on M2,l+1 does
not change the cost, while placing τi ≤ τl2+2 on the old po-
sition of τl2+2 might only decrease the cost. By a similar
argument one can bring τl2+3, . . . , τl2+l to the right posi-
tions.

Finally, look at element τl2+l+1. If it is in regions C or
D we can bring it on a cell adjacent to A as before: either
by a swap of elements that are on the same row followed by
a swapping of rows (if τl2+l+1 is in region C), or just by a
swapping of rows (if τl2+l+1 is in region D). If τl2+l+1 is
in region B, denote by r its column, and let τmax be the
maximum of the elements in regions C and D. By a swap of
τmax with an element at the intersection of one of the first l
columns with the row of τmax, we can bring τmax in region
D without increasing the cost. By swapping rows we can
then bring τmax on a cell adjacent to A without changing
the cost.

Now we show that by an arbitrary swapping of the ele-
ments placed at the intersection of column r with the first
l rows with the elements placed at the intersection of row
l + 1 with the first l columns, the cost of the placement g
does not increase (see Figure 2). Note that, by this swap,
τl2+l+1 arrives on a cell of row l+1 adjacent to region A, as
required by our placement strategy.

To compare the costs of the two placements (before and
after the swap), we only need to look at the cells for which
the associated cost might change after this operation. These
are the cells from column r below row l + 1 as well as the
cells from row l + 1, situated to the right of column l + 1,
with the exception of cell Ml+1,r. The sum of their costs
before the swap is:

(k − l − 1) · τl2+l+1 + (k − l − 2) · τmax

while the sum of their costs after the swap is:

(k − l − 1) · τmax + (k − l − 2) · τl2+l+1

which is smaller than the first one, since τmax ≤ τl2+l+1.
Thus we can bring τl2+l+1 on a cell of row l + 1 adja-

cent to A without increasing the cost. By direct swaps we
can bring the rest of the elements up to τ(l+1)2 on positions
Ml+1,2, . . . , Ml+1,l+1 without increasing the cost. This com-
pletes the proof that g can be converted to a placement
according to our strategy up to the first (l + 1)2 elements.
By induction this shows that g can be completely converted
to a placement according to our strategy without increasing
the cost. Therefore our placement strategy is optimal.

96

