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Abstract

Numerous techniques have been proposed by which an
end-system, subjected to a denial-of-service flood, filters
the offending traffic. In this paper, we provide an empirical
analysis of several such proposals, using traffic recorded at
the border of a large network and including real DoS traf-
fic. We focus our analysis on four filtering techniques, two
based on the addresses from which the victim server typ-
ically receives traffic (static clustering and network-aware
clustering), and two based on coarse indications of the path
each packet traverses (hop-count filtering and path identi-
fiers). Our analysis reveals challenges facing the proposed
techniques in practice, and the implications of these is-
sues for effective filtering. In addition, we compare tech-
niques on equal footing, by evaluating the performance of
one scheme under assumptions made by another. We con-
clude with an interpretation of the results and suggestions
for further analysis.

1. Introduction

Denial-of-service (DoS) attacks are among the most
prominent types of attack on the internet today, and those
that overwhelm a victim by flooding it with large num-
bers of packets constitute a substantial fraction of all
DoS attacks. Today, such DoS attacks are conducted
by large-scale networked applications capable of flood-
ing a victim from thousands of compromised computers.
In addition to the number of attacking computers, DoS at-
tacks vary on a number of axes (e.g., see [19, 11]). One
axis of interest here is whether traffic is spoofed or not, i.e.,
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whether the source addresses of attack packets bear the cor-
rect IP address of the attacking machine. Spoofed traf-
fic hinders the ability to identify the originating hosts—a
problem for which “traceback” has been widely stud-
ied to address (e.g., [4, 25, 17, 1, 7, 26]). However,
spoofing is of less utility when the attack is launched in-
directly through compromised computers, since these
computers do not expose the location of the original at-
tacker, and can interfere with the attack traffic reaching
its target due to increased deployment of ingress filter-
ing [9].

Given the inertia of the deployed network infrastructure,
several proposed DoS defenses have advocated a victim-
centered approach in which the victim host (or an ingress
router at the border of the victim’s network) filters DoS
traffic, with no or small change to the networking infras-
tructure itself. Here we focus on two classes of such tech-
niques. In the first, which we call address based, the victim
profiles the source IP addresses of traffic it receives under
normal conditions to produce a model of “expected” traf-
fic. It then applies this model to the IP addresses of incom-
ing traffic during times of abnormally heavy load or other-
wise anomalous traffic characteristics (which may indicate
a DoS attack) to filter out packets with addresses not con-
sistent with the model [14]. In the second, which we call
path based, the victim gleans from each packet an indica-
tor of the path the packet traversed, either the length (hop
count) of the path [13] or a “path marker” that is created by
the routers on the path to the victim [31], and filters traffic
based on whether this indicator is consistent with a previ-
ously formed model of either the network itself or of paths
that attackers are known to use.

In this paper we undertake an empirical analysis of these
filters, based on data collected at the border of a large
(greater than one million host) network. Data was col-
lected in the form of NetFlow records from multiple bor-
der routers; since the routers cover all known interfaces be-
tween the client network and the internet proper, the col-
lection system provides access to all incoming traffic. In the
course of collecting this data, we have recorded several DoS
attacks, both spoofed and non-spoofed, in situ. This permits
us to analyze the traffic targeted at the victim before, dur-
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ing, and after the DoS and, in particular, to simulate the be-
havior of the aforementioned proposed filtering techniques
against these attacks.

In this extended abstract, we report on this analysis using
a representative DoS attack. In an effort to generalize some-
what from this one attack, however, we simulate this attack
against ten different servers for which we have records of
normal traffic (one of which is the actually attacked server),
to determine the filters’ abilities to distinguish attack ad-
dresses from normal addresses for each of these servers.
Moreover, since path-based filters are sensitive to the topol-
ogy of routes to the attacked server, we also evaluate the at-
tack (and normal) traffic as it would have been “seen” at
each of these ten servers, had it traveled to the server over
one of 26 different, real route topologies. We thus believe
that our analysis offers insight beyond the behavior of these
filters against this particular attack on one server. Still, we
caution the reader from inferring too much from our study:
as is any empirical study, ours is influenced by the partic-
ulars of the environment in which it is conducted. For this
reason, we intend to replicate this analysis to multiple at-
tacks in the full version of this paper.

Throughout this paper, the primary measures by which
we quantify the efficacy of a filtering scheme are the false
positive rate (the percentage of normal addresses from
which traffic is filtered out) and the false negative rate (the
percentage of attacker addresses from which traffic is ac-
cepted, or in a spoofed attack, the percentage of such traf-
fic accepted). We use these measures to clarify the impact
of several factors on the efficacy of these filtering tech-
niques, many of which are not adequately explored in
previous work. For example, each of these filtering tech-
niques requires a learning period in which normal or attack
traffic is modeled. We evaluate the impact of this learn-
ing period on the effectiveness of these filtering techniques.
In addition, different techniques employ different assump-
tions during their learning phases, e.g., that it is possible
to identify a packet as an attack packet based on its con-
tents. A component of our analysis is to evaluate the effect
of such an assumption even for techniques that did not pre-
viously employ it, thereby comparing these techniques on
equal footing. This analysis leads us to preliminary com-
parison of these approaches and recommendations for
further study.

The remainder of this paper is structured as follows. We
survey related work in Section 2, and we describe the filter-
ing techniques that we evaluate in Section 3. We describe
our data set in Section 4. Section 5 constitutes the main por-
tion of our analysis. We interpret our results in Section 6,
and describe future work in Section 7.

2. Related Work

The dearth of widely accessible network-level traces that
are appropriate for evaluating DoS filters has forced most
analyses to simulate attacker locations and traffic character-
istics artificially (e.g., as in [31, 13]), or to utilize less suited
data sources (e.g., HTTP logs and worm traffic, as in [14]).
To our knowledge, our study is the first direct comparison
of target-resident DoS filters in which they are trained on
recorded network traffic and tested against a recorded DoS
event. The use of a recorded attack frees our analysis from
assumptions about traffic characteristics or attacker loca-
tions that are often required in studies lacking appropriate
data.

Outside the focus of evaluating filtering techniques,
though within the related realm of characterizing net-
work traffic anomalies and DoS attacks, a number of stud-
ies have been performed utilizing recorded data sets.
Moore et al. utilize “backscatter” resulting from spoofed at-
tacks to evaluate the prevalence of these attacks and to
characterize them on several axes [20]. Barford et al. uti-
lize NetFlow records (as we do, see Section 4) collected
on the University of Wisconsin–Madison network to pro-
vide statistical descriptions of outages, flash crowds, DoS
attacks and measurement failures [2, 3]. Hussain et al. uti-
lize a large data set capturing numerous attacks to char-
acterize and classify DoS attacks, and to explain the rea-
sons underlying their behavior [11]. We reiterate that our
goal is different from these studies: we strive to evaluate fil-
tering techniques on representative DoS attacks, rather than
to characterize DoS attacks more broadly.

More distantly related are empirical studies of common-
case network packet traffic (e.g., [5, 21, 22, 30]), in con-
trast to the anomalous events we consider here; of network
fault detection methods, i.e., that focus on accurate detec-
tion of anomalies induced by failures (e.g., [15, 10, 29]),
rather than filtering DoS attacks as we consider here; and of
malicious network activity other than the DoS variety that
we consider here (e.g., [28, 33]).

As a first effort at comparing techniques, our analysis fo-
cuses on a few techniques within a narrow segment of pro-
posed DoS defenses, namely those that filter at the target
with no change (or, in one case we consider, a small change)
to routers within the network. We have not considered nu-
merous, more ambitious approaches to filtering DoS traffic
within the network (e.g., [18, 27, 12, 23]). It is possible that
our results can form a baseline measure against which these
more ambitious approaches can be compared.

3. Filtering Techniques

In this section we summarize the DoS filters that we eval-
uate. We describe these techniques in the context of IPv4
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and use corresponding terminology, in particular the use of
CIDR notation, i.e., /x to denote the x high-order bits of
IPv4 addresses. We note, however, that these approaches
can extend to IPv6 and other networking regimes.

Each of these techniques operates on the basis of a fil-
tering attribute that the target extracts from each packet it
receives. Recall that we informally separate filtering tech-
niques into address based and path based. Address based
filtering utilizes only the source address of a packet to gen-
erate its filtering attribute value. The address based tech-
niques that we explore in this work are the following:

Network-aware clusters (NAC) [14] NAC character-
izes networks by grouping IP addresses into clusters.
These clusters are not uniform size, but rather are de-
rived from CIDR blocks determined by examining BGP ta-
bles [16]. More precisely, when a target receives a packet
with source address s, it clusters this packet by examin-
ing BGP tables to determine the longest (most specific) pre-
fix that matches s; i.e., this prefix is the attribute value of
this packet.

Static clusters (SC) [16] SC is a simpler form of cluster-
ing discussed in [16], though the authors discard this tech-
nique because static clusters are not an accurate reflection
of the administrative relationships between networks. How-
ever, it is the simplest of the techniques we consider. SC
uses clusters defined by a fixed constant x ∈ [1, 32]. For ex-
ample, if x = 16, then upon receiving a packet from
source address 192.143.14.7, the corresponding cluster (at-
tribute value) is 192.143.14.7/16 = 192.143. ∗ .∗.

Path based techniques work on the premise that packets
from the same network and sent to the same destination will
typically travel the same path. As such, these techniques ex-
tract a (possibly coarse) indicator of the path taken by the
packet and use this as the filtering attribute value. We con-
sider the following path based filtering attributes:

Hop counts (HCF) [13] If packets from the same network
and sent to the same destination travel the same path, then
the distance (hops) the packets travel will be the same. HCF
estimates the hop count of each packet it receives based on
its time-to-live field (TTL). (The TTL permits only an es-
timation of the hop count, since initial TTL values differ
across platforms.) The filtering attribute for this algorithm
is the pair consisting of the /24 prefix of the received packet,
and its hop count estimate.1

Path identifiers (PI) [31] This is the only technique
we study that presumes changes to routers in the net-
work. In this approach, each network router contributes to
a fixed-size marker field (e.g., 16 bits) in the IP header of

1 [13] considered finer-grained clustering of the IP address component
of the attribute value, as well, though this will not be important to our
analysis.

each packet that traverses the router. The router’s contri-
bution is b bits (e.g., b = 1 or b = 2) that are computed
deterministically from a combination of the router’s IP ad-
dress and the previous router’s address. The router inserts
these bits into the marker field either in a location deter-
mined by the TTL value of the packet [31] or by shifting
the current marker value and slotting this router’s contri-
bution in the low-order bits vacated by the shift [32]. As
such, packets that traverse identically the same path will
bear the same marker field upon receipt; this marker field
is the filtering attribute. It is important to note that be-
cause of limited space for the marker field, which is
created by co-opting portions of the IPv4 header, dis-
tinct paths can induce the same marker value. In particu-
lar, for a k-bit marker field, any path ending with the same
k/b routers will bear the same marker.

Each of the filtering attributes described above are used
as input to train a model of network traffic and then to filter
based upon it. During learning, the target develops a model
of network traffic based upon the attribute values of pack-
ets received. Afterward, the target filters traffic based upon
this model and packets’ attribute values, with the goals of
eliminating as much DoS traffic as possible and accepting
as much legitimate traffic as possible.

A coarse characterization of filters that we will find use-
ful later is whether the learning algorithm learns on the basis
of only legitimate (negative) traffic—which we call a nor-
malcy learning algorithm—or if it presumes to be given la-
beled examples of both legitimate (negative) traffic and at-
tack (positive) traffic—which we call an attacker learning
algorithm. The distinction between normalcy and attacker
learning has significant ramifications to both the feasibil-
ity of the learning algorithm and to the posture of the fil-
tering algorithm. First, an attacker learning algorithm re-
quires some means of correctly distinguishing between le-
gitimate packets and attack packets, presumably via an au-
tomatic classifier if learning is to involve traffic of any sig-
nificant quantity. So, in some measure an attacker learning
algorithm already solves the filtering problem, and thus con-
stitutes a powerful assumption. Second, an attacker learning
algorithm permits the filter to deny a packet on the grounds
that it possesses the same attribute value as attack packets
seen during learning, provided that the attacker does not (as
in a non-spoofed attack) or cannot (as in PI) forge attribute
values. Though different filters were proposed using differ-
ent types of learning—NAC, SC, and HCF presume nor-
malcy learning; PI assumes attacker learning—one aspect
of our analysis is to consider the performance of, e.g., NAC,
against non-spoofed attacks when given the benefit of an at-
tacker learner.
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4. Attacks

In this section we describe the attack that we use to eval-
uate the DoS filtering techniques described in Section 3. We
begin with an overview of the system we use to collect the
traffic, and then describe the attack that we utilize for eval-
uation.

4.1. Attack collection system

Our data collection was performed using a system called
SiLK (System for Internet-level Knowledge), developed by
the CERT. SiLK is a data collection and analysis system for
monitoring large volumes of network traffic. SiLK provides
tools to analyze traffic over large networks (currently over
1 million nodes) and long periods of time (several months).
By installing SiLK on a client network, we have been able
to collect network traffic before, during and after attacks.

The SiLK system collects CISCO NetFlow records
and converts them into a space-efficient format. Net-
Flow is a collection system developed by CISCO to cap-
ture flows, i.e., summaries of traffic consisting of packets
closely grouped over time [6]. These flow records con-
sist of a characteristic 5-tuple of (source IP address, des-
tination IP address, protocol, source port, destination
port2). CISCO NetFlow is a commercially available pack-
age for reporting this flow traffic using a well-defined data
format.

While NetFlow is a traffic analysis tool, it provides fea-
tures that make it desirable for security analysis. In particu-
lar, NetFlow records are collected at the router: by collect-
ing flows it is possible to see all traffic crossing a network’s
border, including traffic which the router drops because of
ACL violations and overflows. Flow analysis is used else-
where for security purposes, e.g., [24].

SiLK optimizes NetFlow data for rapid analysis. The
records are compressed to a more space-efficient form and
then recorded in flat files that are accessed using a special-
ized collection of tools. Given the volume of data collected
by SiLK (in excess of 60 GB and 300 million records per
day on the network we monitor), traditional database solu-
tions would require a far more expensive implementation to
provide the same access speed.

DoS attacks are unpredictable; the best way to acquire
data on a DoS attack is to instrument a sufficiently large
network and lie in wait. SiLK’s primary strength is its ca-
pacity to manage large volumes of traffic data over long pe-
riods of time, making a long wait feasible.

Protocol UDP
Packet Size 34 bytes
Duration 6h, 1m
Bytes 22,009,778,272
Packets 687,805,571
Source addresses 3,102

Table 1. Traffic characteristics of attack

4.2. Attack data set

For the purposes of this paper, we discuss a represen-
tative DoS attack from the SiLK data. This attack targeted
a web server, but the attack was not itself HTTP-specific
and was not aimed at a specific service: it struck at a range
of destination ports that are largely unrelated to specific ser-
vices. This attack was aimed at either the IP stack or the net-
work infrastructure surrounding the targeted machine. The
attack was identified after the fact: analysts notified us of
the basic characteristics of the event, and relevant traffic was
then extracted from the SiLK data warehouse.

The basic characteristics of the attacks are given in Ta-
ble 1, and progression of the attack over time is shown Fig-
ure 1. The attack packets originated from a limited set of
IP addresses: throughout the attack, 3102 previously un-
seen addresses repeatedly sent 32-byte UDP packets at ran-
dom destination ports. While it is impossible to say defini-
tively whether these attacks were spoofed, there is evidence
to suggest that the attacker addresses are authentic. First, the
addresses all originated from used address spaces.3 Second,
the ephemeral port assignments for the attackers are consis-
tent with single addresses: for each address, the port num-
bers increase linearly and then cycle back to an initial port.4

During the course of the attack, certain addresses appear
and disappear from the set of attackers; see Figure 1(iii). We
hypothesize three reasons for these changes: data lost by the
router dropping reports (see below), user intervention to re-
move DoS attackers, and attacker intervention to add addi-
tional attackers. At this point, there appears to be no consis-
tent pattern to why an address appears or disappears: when
new addresses appear, address changes do not appear to be
grouped uniformly together in time and addresses that stop
do not appear to be from the same networks.

As shown in Figure 1(ii), approximately half of the traf-
fic hitting the server was dropped by the router. This exces-
sive drop rate is likely a result of the severity of the attack.

2 For ICMP traffic, type and code are stored in the destination port field.
3 Used addresses are those assigned an authority at http://

www.iana.org/assignments/ipv4-address-space. At
the time of this writing, roughly 120 of the 255 /8’s available are listed
as reserved or otherwise unroutable.

4 While the IP specification dictates that ephemeral port numbers should
be assigned randomly, very few stack implementations actually do so.
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Figure 1. Attack

In addition, the heightened drop rate in the latter half of Fig-
ure 1(ii) is the result of an ACL modification to protect the
target.

NetFlow reporting is a secondary process for routers, and
so during stress, routers will naturally drop a certain per-
centage of NetFlow records before sending them for collec-
tion. As such, the information conveyed in Table 1 and Fig-
ure 1 does not represent the entirety of attack traffic. Ap-
proximately 8% of NetFlow records are lost every day off
of the router adjacent to the target and, during the attack,
the router drops a larger percentage, up to 17%, undoubt-
edly due to the impact of the attack. This implies that the
volume, and possibly the sources, of the attack are underre-
ported.

4.3. Network map reconstruction

The traffic records collected by SiLK provide IP ad-
dresses, times and volumes. However, for three of the tech-
niques discussed (PI, NAC and HCF), we require informa-
tion about the network in order to evaluate them. To gener-
ate this information, we used two forms of network maps.

4.3.1. Networks maps for path-based filters Evaluating
PI requires the most detailed network information: an in-
ventory of routers between the sources and the targets. To
build this inventory, we constructed partial internet maps
from the Skitter internet map data.5 Skitter collects rout-
ing information by regularly issuing traceroute calls
from sensors across the internet. From this information, we
constructed a table of routes to each of 26 Skitter sensors
and, in each evaluation run of a path-based filter, treated
one of these sensors as the machine targeted in the attack.
(Mapping routes to the network we monitor was not per-
missible.) As such, this experiment more precisely evalu-
ates how a server at this sensor (rather than the actually at-
tacked server) would fare under the attack.

HCF also uses route-specific information, but this infor-
mation is less detailed than that used by PI: the length (hop
count) of the route from the source to the target. To develop
a table of lengths, we used the lengths of the paths derived
from Skitter.

Since the exact IP addresses of the attackers in the at-
tack are not in the Skitter dataset, we reduced the Skitter
maps to a /24 resolution. More precisely, suppose we fix a
Skitter sensor. For this sensor, each attacking IP address is
treated as the node mapped by the Skitter sensor with the
same /24 prefix as the attack IP address, if such a node ex-
ists. Even then, the Skitter map covered a very limited por-
tion of the addresses contacting the server: e.g., on aver-
age, the route map to a Skitter sensor contained nodes with

5 http://www.caida.org/tools/measurement/skitter
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IP addresses matching the /24 prefixes of 4.63% of the at-
tack addresses, with a standard deviation of 2.33%. As a
result of this address reduction, we used a reduced inter-
net when evaluating PI and HCF. In this reduced internet,
the only IP addresses available are ones found in the Skit-
ter maps (using the /24 rule above). Addresses which do not
appear in the map are not used. Furthermore, when spoof-
ing traffic for evaluating HCF and PI, spoofed addresses are
drawn only from the networks in the reduced internet, but
otherwise are chosen uniformly at random.
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4.3.2. Network maps for address-based filters NAC
uses BGP tables to determine the filtering attribute value
for a packet. Though NAC recommends drawing BGP ta-
bles from across the internet [16], we used a more limited
set of tables for this evaluation, drawn from an ATT Canada
route server6, a Telus route server7, and a CERFnet route
server8. The information provided by the union of these ta-
bles is incomplete, providing routing prefixes of at least
16 bits for only roughly 10% of the total internet ad-
dress space. Given the limits of this data, we implemented
an approach where the cluster table was initialized with
“default” static clusters to use if no network-aware clus-
ter (routing prefix) was available. Figure 2 shows the
distribution of cluster lengths in the tables; since the over-
whelming majority of clusters are 16 bits or more, we ini-
tialized the network-aware cluster space using default

6 route-server.east.attcanada.com
7 route-views.on.bb.telus.com
8 route-server.cerf.net

16 bit static clusters. Due to this approximation, we be-
lieve our results give a moderately pessimistic view of the
performance of NAC.

5. Evaluation

In this section we evaluate each of the filtering ap-
proaches described in Section 3 using the attack data de-
scribed in Section 4. In addition to this attack data, our eval-
uation employs two weeks of normal traffic records for each
of ten different HTTP servers (one of which is the server ac-
tually attacked). At a high level, in our evaluation we build
a model of normal traffic (in normalcy learning) based upon
thirteen days of normal traffic for a server, or a model of at-
tack traffic (in attacker learning) based upon the attack data
set. Once this model is built, we determine a false nega-
tive and false positive rate as described below. By averag-
ing over the models constructed using the sets of normal
server data from 10 different servers and, for path-based
filters, over the 26 network maps corresponding to the 26
Skitter sensors (260 combinations in total), we obtain av-
erage false positive and false negative rates for each filter
against the attack we consider. Since each scheme provides
parameters that can be tuned, tuning these parameters in
fact yields a curve of false positive rate versus false neg-
ative rate, that characterizes the points that can be achieved
by varying these parameters.

In all of our evaluations, the false positive percentage
for a server is the percentage of addresses in a day of nor-
mal traffic other than the thirteen used to train that server’s
model that would be discarded by the filter. The false nega-
tive percentage for a server in a non-spoofed attack is anal-
ogous, i.e., the percentage of attacker addresses in our at-
tacker data set that the filter would permit to pass. In a
spoofed attack, the false negative percentage is computed
to be the percentage of spoofed packets that the filter would
permit to pass, assuming that each attacking computer emit-
ted traffic at the same rate and spoofed the source address
of each packet by selecting it uniformly at random.

5.1. HCF

The filtering attribute of HCF is the pair consisting of the
/24 prefix of the packet and its hop count, i.e., the length of
the path it traversed. As described in [13], this hop count
is an estimate only, though for the purposes of our analysis
here, we ignore the potential for error in this value and as-
sume that the target can exactly determine the hop count of
the packet. We revisit this (generous) assumption below.

HCF assumes normalcy learning only. The filter drops
packets for which the hop count does not match the hop
count seen for the same /24 during learning. A more per-
missive version drops only packets for which the hop count
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differs from that seen for the same /24 by greater than ε,
where ε = 1 and ε = 2 are considered by the authors [13].

In our experiment, we trained the HCF learning algo-
rithm on thirteen days of normal traffic. For the servers
we considered, thirteen days of normal traffic (without
map reduction) permitted the filter to observe only a rela-
tively small portion of the internet. For example, Figure 3(i)
demonstrates that in thirteen days, the actually attacked
server was exposed to a maximum of 160,000 /24’s, assum-
ing no map reduction, and that the number of new /24’s the
target saw per day generally decreased. Since the internet
consists of approximately 16 million /24 blocks, roughly 8
million of which are used, servers handling this much ac-
tivity would require well over a year to see even half of the
used internet space. We note that this learning time is an or-
der of magnitude longer than that projected in the original
HCF paper, which is roughly consistent with the thirteen
days of training that we chose for our experiment.9

Such a learning period has dramatic implications for
HCF. During a spoofed attack, the server typically sees a
huge number of previously unseen addresses (/24s). HCF
will drop such packets, leading to a very low false negative
rate. In this way, however, HCF induces a significant false
positive rate, dropping traffic from roughly 25% of normal
addresses on average in our tests, even in the most permis-
sive configuration recommended by the authors (ε = 2); see
Figure 3(ii). Here and throughout this paper, error bars show
one standard deviation.

Figure 3(ii) also shows a false negative rate for HCF for
ε ∈ {0, 1, 2}. This false negative rate reflects the optimistic
assumption, described above, that the filter can determine
the accurate hop count of each packet. In reality, and as
noted in [13], an attacker can intelligently modify the ini-
tial TTLs of the packets it sends to achieve roughly a 10%
false negative rate, even without detailed knowledge of the
network topology.

A final point about HCF regards the recommended al-
gorithm to prevent an attacker from “poisoning” the hop
count data during training with forged packets. The authors
of HCF recommend that during learning, only hop counts
associated with packets received on a completed TCP con-
nection be used to learn the hop count of a new /24. In this
way, forged TCP SYN packets will not poison the hop count
data; presumably the attacker will be unable to complete
the TCP handshake for a forged SYN. While reasonable,
we comment that this approach is effective only for servers
for which TCP connections are the dominant form of inter-
action. This is true for most, but certainly not all, types of
servers; for example, DNS servers communicate with the
majority of their clients using UDP.

9 “For a very busy site, a collection period of a few days could be suf-
ficient, while for a lightly-loaded site, a few weeks might be more ap-
propriate.” [13, Section 5.2]

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2 4 6 8 10 12 14

N
ew

 /2
4’

s

Days

Total Seen

(i) New /24s seen per day at attacked server, without map
reduction (example)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 5  10  15  20  25  30  35  40

F
al

se
 N

eg
at

iv
e 

P
er

ce
nt

ag
e

False Positive Percentage

ε = 2

ε = 0

Hop Count Filtering

(ii) False negative vs. false positive rate

Figure 3. HCF Results

As a spoof detection mechanism, HCF does not defend
against non-spoofed attacks, and so we did not evaluate it
under such conditions.

5.2. PI

In PI, recall that the filtering attribute is a path marker
field in the IP header that is determined as a function of
the path the packet traversed. As noted in [31], PI improves
when paths taken by attack packets intersect paths taken by
legitimate packets as little as possible. Since paths tend to
intersect as they aggregate close to the target, Yaar et al. rec-
ommend placing PI filters several hops away from the tar-
get, so as to minimize the effects of this aggregation on the
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PI marks. This observation is consistent with the reduced
internet maps we described in Section 4.3, and as such, we
evaluate the PI algorithm assuming that the filter is placed
the recommended three hops in front of the target.

This improvement does come with a cost (also discussed
in [31]), however, since this effectively reduces the distance
of each attacker to the filter by three hops. For those attack-
ers at a distance d < k/b hops to the filter—where k is the
bit length of the marker field and b is the bit length of each
router’s contribution to that field; we take these as k = 16
and b = 2 as in [31]—this means that k/b − d bits of the
marker will not be set by any router. These bits can thus be
set by the attacker randomly, for example, and thereby in-
duce collisions with the markers of legitimate packets. It is
thus in an attacker’s interest to initialize the marker field to
a random value.

The effect of these collisions, unchecked, would be sig-
nificant in our attacks. Figure 4(i) shows example false pos-
itive and negative rates for PI (though simplified; see be-
low) after training on both attack traffic and normal traffic,
labeled accordingly. Here, the error rates are plotted as a
function of the number of attack packets seen from each at-
tacking computer during learning. If attackers were to send
packets during learning at the rate they send during the real
attack, then receiving 1,000 packets per attacker computer
would take a relatively short period of time, e.g., roughly
20 seconds. In addition, if the attackers are initiating het-
erogenously, as Figure 1(iii) implies, a filter would have to
learn for at least that long before all attackers have been ob-
served. Under these conditions, and assuming that markers
associated with attacker traffic during training are rejected,
the false positive and negative rates would result as in the
right edge of Figure 4(i). Intuitively, the large false posi-
tive rate results from attackers inducing collisions with the
markers of legitimate packets.

To compensate for collisions, PI permits relaxing its
strategy for rejecting packets. In this strategy, a packet will
be dropped iff it bears a mark for which at least x% of
the traffic during learning was attacker traffic. That is, Fig-
ure 4(i) shows results for small x, though varying x be-
tween 95% and 100% yields the plot in Figure 4(ii). This
plot shows false negative versus false positive results after
training that includes 1000 packets from each compromised
computer; i.e., this plot corresponds to the rightmost values
in Figure 4(i), though as x is increased. As this graph shows,
tuning x is of significant benefit for PI in our tests. A com-
parison of these results to other approaches will be given in
Section 6.

5.3. NAC and SC

As described in Section 3, the filtering attribute of a
packet utilized by NAC and SC is a “cluster” determined as
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Figure 4. PI results

a prefix of the source IP address of the packet. In NAC, this
prefix is a CIDR block determined as the longest (most spe-
cific) BGP routing prefix for the IP address. In SC, this pre-
fix is simply a fixed-length prefix, for which we consider /8,
/16 and /24 in this section.

Learning for NAC and SC is envisioned in [14] to be
normalcy learning, and so to test these algorithms under
this assumption, we utilized our thirteen-day training set to
train these approaches. After training, we employ the fol-
lowing filtering approach, based on a suggestion in [14]:
let v1, v2, . . . denote the attribute values (clusters) sorted so
that %(vi) > %(vj) if i < j, where %(vi) denotes the
percentage of packets received during training that have at-
tribute value vi. Then, for a fixed percentage x, we say that
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Figure 5. SC (normalcy learning)

an attribute value (cluster) v� is common if

� ≤ arg min
i




i∑
j=1

%(vi) ≥ x


 . (1)

Intuitively, v� is common if the smallest set of attribute val-
ues that account for a total of x% of the learning packets
contains value v�. During filtering (given a fixed percent-
age x), packets received bearing a common attribute value
are accepted; others are rejected. We tested this algorithm
for both spoofed attacks and non-spoofed ones. The per-
centage x was varied to exhibit its effect on false positive
and false negative rates.

The performance of SC for 8-bit, 16-bit and 24-bit clus-
tering is shown in Figure 5. Figure 5(i) shows performance
against spoofed attacks, and Figure 5(ii) shows performance
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Figure 6. NAC (normalcy learning)

against nonspoofed attacks. The extreme performance of
static clustering based on /24-bit clusters is at least par-
tially due to the fact that the attacker addresses (in both the
spoofed and non-spoofed cases) virtually never appeared in
common clusters for the servers we considered, and so the
false negative rate was very close to zero.

It is also interesting to compare static clustering to NAC,
shown in Figure 6. There we can see that NAC performs
very similarly to 16-bit SC in the ranges where both are
plotted, probably owing to the fact that if the most specific
BGP routing prefix in our routing tables that matched an in-
coming packet was of length less than 16 bits, then we still
utilized the full 16 bits of the packet address as its attribute
value. That said, NAC does slightly outperform 16-bit SC
on average as x is increased. A plausible explanation is the
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hypothesis that larger clusters (16-bit prefixes) tended to ac-
count for the largest portions of normal traffic in NAC, and
as x was increased, smaller clusters (of prefix length greater
than 16 bits) became common according to definition (1). In
16-bit SC, however, these clusters were represented more
coarsely (still by 16-bit prefixes), thus permitting more traf-
fic and a higher false negative rate. Presumably with a more
precise set of routing tables, this difference would become
more pronounced.

As discussed in Section 3, other approaches, notably PI,
have been proposed for use with attacker learning. As a
point of comparison, we also tested NAC, 16-bit SC and
24-bit SC under an attacker learning scenario. In this case,
we utilized attacker and normal traffic (as in Section 5.2)
to train the NAC and SC filters, with attack packets labeled
as such. Now, for a fixed percentage x, we say that an at-
tribute value (cluster) v� is corrupt if the smallest set of at-
tribute values that account for a total of x% of the attacker
packets contains value v�, or more precisely, if � satisfies
(1) where %(vi) now is the percentage of attacker packets
seen during training that bear attribute value vi. During fil-
tering (for a fixed percentage x), each packet bearing a cor-
rupt attribute value is rejected; others are admitted.

The results of this test are shown in Figure 7. In this
case, NAC performs slightly better than 16-bit SC in rea-
sonable ranges for both false positives and false negatives.
In addition, the availability of attacker learning induces a
far smaller false positive rate for both NAC and SC than
did normalcy learning. In the case of 24-bit SC, this differ-
ence is extreme. The performance of 24-bit SC is presum-
ably due to the fact that, with filtering attributes of this level
of granularity, attacker addresses almost never overlapped

normal addresses for the server.
An alternative form of filtering after attacker learning

would be to utilize a threshold as in PI. That is, a packet with
a certain filter attribute value is kept only if attack pack-
ets bearing the same filter attribute value constitute below a
threshold percentage of all traffic bearing that filter attribute
value. We will report on this evaluation in the full paper.

6. Discussion

In the course of Section 5, several observations about
factors that affect the performance of these various filters
became apparent. A factor of some significance was the
learning time afforded to each filter. For example, for the
scenario we studied, a learning period adequate to support
HCF was far longer than predicted by the authors of that
technique. Another significant factor was the type of learn-
ing permitted, i.e., attacker learning as assumed by PI, or
merely normalcy learning as assumed by other techniques.

A comparison of the various techniques is summarized
in Figure 8, which is obtained by merging selected re-
sults from Section 5. For readability, we have omitted er-
ror bars from Figure 8, though we caution the reader that
these error bars are important in determining whether there
is a statistically significant difference between various ap-
proaches. Figure 8(i) summarizes filter effectiveness against
spoofed attacks, and Figure 8(ii) summarizes filter effec-
tiveness against non-spoofed attacks.

We first discuss Figure 8(i). Though HCF yielded very
low false negative rates in our evaluations as shown in Fig-
ure 3, we remind the reader that our analysis there was
performed under the optimistic assumption that the true
hop count of each packet could be reliably determined; see
Section 5.1. As already noted in [13], however, corrupted
computers conducting spoofed attacks can manipulate hop
count measurement (by manipulating initial TTL values)
and thereby achieve roughly a 10% false negative rate. As
such, in Figure 8(i) we have shifted the HCF curve upward
to account for this attack. In light of this, the PI and 16-bit
SC curves reach closest to the origin. For PI, this can be ex-
plained since PI marks are immune to spoofing. The success
of 16-bit SC (and the similar performance of NAC) can pre-
sumably be attributed to the fact that spoofed addresses in-
duce a very different address distribution from normalcy,
and thus can be filtered relatively easily based on address
alone.

The dramatic impact of attacker learning (versus nor-
malcy learning) is a central conclusion from Figure 8(ii).
The plot demonstrates that attacker learning in the case of
non-spoofed attacks yields vastly superior performance for
each of NAC and SC.

Finally, we again caution the reader from concluding too
much from Figure 8. Though we believe these graphs con-
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Figure 8. Summary

tain useful commentary on the relative performance of these
filtering techniques, our results are obviously dependent on
the situation in which our data was recorded and on the par-
ticulars of our methodology. Further studies are required to
confirm these results.

7. Future Work

We recognize that as an initial study of target-resident
filtering techniques, our evaluation has several limitations.
One is the small degree to which attacker addresses and nor-
mal addresses were represented in the network maps that
we were able to gather for evaluating path-based filters; see
Section 4.3.1. A second is the fact that our evaluation is
based on a single attack event. Improving these aspects of

our analysis are topics of ongoing work.
We have also left several parameters for future study. For

example, for path based schemes, it is important to consider
changes in network topology and their effect on the perfor-
mance of these schemes. Specifically, as the network adapts
to outages and load—possibly DoS-induced—the resulting
changes to paths will affect filters such as HCF and PI.

Another topic for future study is motivated by Fig-
ure 1(iii), which shows the variation over time with which
compromised computers entered this attack. A more pro-
nounced variation was recently employed by the My-
Doom viruses, each copy of which launched its DoS at-
tack (against a web server) according to the local time on
the computer on which it was residing. As such, comput-
ers in different time zones entered the attack at different
global times. Such a prolonged, staged entry of attack-
ers could pose challenges to learning algorithms.

The changes to routers that PI requires suggests another
topic of work, namely evaluating the relative performance
of this technique when only partially deployed. Our analy-
sis here utilized the assumption of total deployment.

Finally, we intend to systematically evaluate combina-
tions of filters that we have studied here. An example of
such a combination is described in [32].
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