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ABSTRACT
No matter how well designed and engineered, a mix server
offers little protection if its administrator can be convinced
to log and selectively disclose correspondences between its
input and output messages, either for profit or to cooperate
with an investigation. In this paper we propose a technique,
fragile mixing, to discourage an administrator from revealing
such correspondences, assuming he is motivated to protect
the unlinkability of other communications that flow through
the mix (e.g., his own). Briefly, fragile mixing implements
the property that any disclosure of an input-message-to-
output-message correspondence discloses all such correspon-
dences for that batch of output messages. We detail this
technique in the context of a re-encryption mix, its integra-
tion with a mix network, and incentive and efficiency issues.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection

General Terms
Security
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1. INTRODUCTION
A mix [5] is a server that accepts input messages, trans-

forms them, and outputs them in a permuted order. The
intention of a mix is to prevent an observer from linking
which output message corresponds to which input message,
a property often called unlinkability. When no single mix
server can be trusted to behave correctly and hide the cor-
respondences between its input and output messages, it is
common to route messages through a chain of mix servers (a
“mix network”, or “mix-net”), so that if any of the mixes is
trustworthy, unlinkability of the inputs and outputs of the
mix-net can still be achieved. A number of mechanisms have
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been developed to enhance the robustness of this paradigm
to servers actively deviating from the prescribed protocol,
e.g., [18, 24, 1, 17, 2, 23, 22, 11, 14, 7, 18].

In contrast, the threat with which we are primarily con-
cerned in this paper is a purely passive attack, in which a
mix administrator is convinced to reveal the mapping be-
tween an input message and an output message, e.g., to an
investigator or buyer. Such a passive disclosure is immi-
nently undetectable by the users of the mix. Moreover, in
a world of self-interested mix administrators, it is not clear
that lengthening the mix chain, the typical defense against
outright compromises, will be effective. That is, without
some means of discouraging mix administrators from selling
input-to-output message correspondences, it is conceivable
that entire mix chains could be “bought out” or otherwise
coerced.

Here we introduce a technique designed to better motivate
a mix administrator to resist divulging correspondences be-
tween input messages and output messages. Our approach
is premised on the assumption that the mix administrator is
motivated to protect unlinkability for certain messages that
traverse the mix, though not necessarily all the messages.
For example, if the organization hosting the mix sends its
own messages through the mix-net, starting at its own mix—
a setup that others argue is likely due to the assurances it
provides to the mix owner [3]—then the mix administrator
will be motivated to protect his organization’s communica-
tion. The contribution of our approach is to leverage the
administrator’s desire to protect certain information, mag-
nifying it into a desire to protect all information. We do so
by making the secrecy of many input-output message corre-
spondences dependent on, e.g., the secrecy of each of them;
so, if one is revealed, they all are, and in this sense the
mixing is fragile.

In this paper we provide implementations of fragile mixing
for mixes that work in batch mode, i.e., that collect a batch
of n input messages before emitting them (transformed and
permuted). In this context, we implement fragile mixing
that makes the secrecy of the input-output mappings for
all messages in the batch depend on the secrecy of each of
them. A consequence of this goal is that a sender who sends
a message through a mix and who can recognize the output
of the mix that corresponds to his message—as could occur if
the mix transform is private-key decryption [5]—would learn
all input-output correspondences for that batch. As such,
here we focus on re-encryption mixes so as to eliminate this
threat, and specifically detail a fragile mix implementation
in which the message transform is ElGamal re-encryption.
A technical challenge that remains in this context, however,
is that the mix administrator could modify the mix to per-
mute “normally”, i.e., in a non-fragile way, so as to reserve
the right to sell input-output correspondences without risk
of disclosing those he wants to protect. To overcome this
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challenge, we detail protocols by which the mix proves, non-
interactively and in zero-knowledge, that the mix operates
as specified, permitting anyone to detect (with overwhelm-
ing probability) if the mix cheats.

Finally, we discuss the use of a fragile mix in a larger
mix-net. For the implementations of a fragile mix that we
offer, we do not recommend that all mixes in the mix-net
be fragile, as this would render the end-to-end permuta-
tion fragile, as well. As such, we explore a mix-net that
interleaves fragile mixes and normal mixes, and show that it
works effectively against passive threats without significant
degradation of other properties offered by typical mix-nets.
We also discuss the incentive structure that this establishes
for mix server administrators, and argue that it should lead
to the preservation of privacy.

2. RELATED WORK
In this section we review mix-nets and then discuss known

countermeasures to defend against misbehaving mixes.

2.1 Mix-nets
As originally introduced by Chaum [5], a mix transforms

each input message before forwarding it, by decrypting it
with a private key known only to the mix. Consequently, in
such a decryption mix, the inputs must be encrypted under
the mix’s public key, leading to a situation in which a mes-
sage prepared to traverse a mix-net is multiply encrypted
and is thus typically of length proportional to the number
of hops in the mix-net. More importantly for our work,
however, the transmission of a decrypted input permits the
creator of that input to learn the position in which his mes-
sage was output by this mix; as we will see, this would be
problematic for our scheme.

For these reasons, the form of mix that we employ here is
a re-encryption mix [26]. In a re-encryption mix-net, every
mix randomly re-encrypts its input messages, and a group
of mixes collaboratively decrypts the messages later using
a secret key shared among them. The size of the message
in a re-encryption mix-net typically does not depend on the
number of mixes. And, most importantly for our work, a
re-encryption mix can conceal the input/output mapping of
each message in a batch, even from its original sender.

In decryption mix-nets, it is generally possible for a user
to choose mixes arbitrarily to form her message-forwarding
path. Re-encryption mixes, on the other hand, are typically
designed for all traffic to traverse a single fixed path, or
mix cascade, which is a specific form of mix-net. Existing
mix-nets that employ cascades include Flash Mixes [15, 20],
hybrid mixes [25] and real-time mixes [19].

Mix-nets have been proposed as a foundational technique
for electronic voting schemes [5, 10, 26, 30, 18]. They have
also been used to build anonymous email systems, e.g., Mix-
master [21], Mixminion [6], and Babel [13]. More recently,
mix-nets have been used for connection-based, low-latency
communication (e.g., SSH connections and web browsing).
Examples include Onion Routing [27], Web MIXes [4], and
Morphmix [28].

2.2 Mix-nets robust against misbehaving mixes
The forms of misbehavior considered in prior works have

been active in nature. Active deviation refers to the misbe-
havior of a mix so as to not conform to the protocol (Byzan-
tine failure). For example, the mix may deliberately drop

some messages from an input batch. Countermeasures to
this threat have been studied under the rubric of mix-net
robustness. Roughly, robustness means that each mix is
asked to provide a proof or strong evidence for its honest
behavior. Some robust mix-nets are also capable of success-
fully delivering messages even when k < � out of the � mixes
on a user’s path do not follow the protocol. Most of the
proposed approaches have been built upon zero-knowledge
proofs and secret sharing in re-encryption mix-nets. For
example, Ogata et al. present a robust mix-net based on
cut-and-choose methods [24]. Both Abe [1] and Jakobsson
and Juels [17] propose more efficient zero-knowledge proofs
which achieve universal verifiability [1, 2]. This property al-
lows a third-party to verify the proof of correct behavior.
Verifiable shuffling schemes [23, 22, 11] and Millimix [16]
also have this property. Other proposals include repetition
robustness [14], layer redundancy [7], and random partial
checking [18].

When a mix’s misbehavior is detectable, other approaches
can be used to help users avoid misbehaving mixes and
thereby to encourage individual mixes to behave honestly.
For example, Dingledine et al. [8, 29] propose to use a repu-
tation system to record every mix’s previous performance, in
order to help users to choose a reliable path through a mix-
net. Our work differs by addressing an undetectable attack,
i.e., a mix administrator’s selective disclosure of input-to-
output message correspondences.

Finally, Acquisti et al. built the first economic model for
mix-nets [3]. Their research argues principles for the behav-
ior of individual mixes based on self-interest and rationality.
This has been influential in our research, as described below.

3. PRELIMINARIES
In this section, we describe the assumptions and concepts

on which our approach rests.

3.1 Attack model
Here, we list several assumptions we employ:

Mixes (i.e., mix administrators) value the anonymity of their
own messages over benefits to be gained by disclosing input-
to-output message correspondences.

Research on the economics of anonymity argues that a
strong incentive for one to run a mix is to keep its own com-
munication private [3]. This suggests that a mix’s valuation
of anonymity could be higher than other users’. Therefore,
it is reasonable to expect that a fragile mix that ties the
anonymity of its own messages to that of others’, as we pro-
pose here, will be motivated to keep all input-to-output cor-
respondences secret, and that this will counterbalance any
benefits the mix might be offered for divulging an input-
output correspondence.

This assumption is not intended to rule out the possi-
bility of mix compromise, after which we presume it dis-
closes all input-to-output correspondences to its attacker.
As with other mix-nets, mix-nets that employ fragile mixes
(Section 6) still offer anonymity provided that compromised
mixes do not make up too much of the mix-net.

In addition, in our security analysis we will permit mixes
that trade a small degradation of its anonymity for profit.
For example, a normal (non-fragile) mix may choose to ex-
pose to a third party some of its input-to-output correspon-
dences, though within limits so as to not reduce the privacy
of its own messages too substantially.
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Mixes send out their own messages frequently. In other
words, there is significant fraction of mixes in a mix cascade
transmitting their own messages in every message batch.

As pointed out by previous research [3], acting as a mix
incurs costs. To justify such costs, it is reasonable to believe
that the mix has high demand from the organization running
it for the anonymity services it provides.

That said, our approach is still effective when a small
number of mixes do not send their own messages in some
batch, and thus are willing to divulge their permutations
completely; we will discuss this in Section 6. Note that
this can hurt these mixes’ own privacy because it signals to
others the batches in which this mix sent messages.
Adversaries are capable of observing all communications be-
tween any two mixes in a mix cascade, submitting messages
to the cascade, and controlling (compromising) some number
of mixes.

3.2 Bulletin board model
A “bulletin board” model is a widely-used model for re-

encryption mix-nets, and we also adopt it here. In the
bulletin board model, there are three types of participants:
users, a bulletin board and mixes. The users post encrypted
messages to the bulletin board. After the number of mes-
sages reaches a predetermined quota n, these messages are
transmitted as a batch through a mix-cascade. We assume
that not only the output batch of the mix-cascade, but
all the intermediate batches forwarded by every mix to its
neighbor, appear on the bulletin board. This models our as-
sumption of the adversary’s capability: It observes all com-
munication in the mix-cascade.

An individual mix can be a user of the mix-net, and typ-
ically is [3]. Here, we describe two models that allow mixes
to insert their own messages into a batch.

• Common mode: In common mode, every mix in a
cascade is required to write κ messages to the bulletin
board before transmission starts. A mix can either
post messages it wants to dispatch, or dummy mes-
sages, to the bulletin board.

• Attach mode: In the attach mode, the initial batch
reserves mκ slots for mixes, where m is the number
of mixes. During transmission, every mix adds κ mes-
sages to the batch it receives, i.e., emitting κ more
messages than it takes in.

The common mode can be less efficient than the attach
mode, as individual mixes must route their messages to the
head of the cascade for transmission. However, in the com-
mon mode, an adversary must convince a mix that a mes-
sage the adversary is asking the mix’s help to trace is not
the mix’s own message, because the mix cannot recognize
its own messages in a re-encryption mix-net [1].

Unless we specify otherwise, in the rest of the paper we
will assume that common mode is employed. However, our
scheme can also work in the attach mode.

3.3 ElGamal encryption
Let Gq be a multiplicative group of prime order q in which

the Decisional Diffie-Hellman problem is hard. Let g be
a generator of Gq. In the ElGamal encryption scheme, a

secret key is x
R← Zq (“

R← S” denotes selection uniformly at
random from the set S), and the corresponding public key h

is computed as h ← gx (where multiplication is performed
in the group).

The encryption of a message m ∈ Gq is (G, M) = (gγ , mhγ)

where γ
R← Zq is chosen anew per encryption. Decryption of

the ciphertext (G, M) returns M(G)−x. A mix with private
key x and public key h = gx re-encrypts an ElGamal cipher-

text (G, M) by choosing γ
R← Zq and forming (Ggγ , Mhγ).

Tsiounis and Yung [31], and Jakobsson [14] independently
propose an extension to ElGamal encryption to render it
non-malleable, by using γ as a secret key to generate a
Schnorr signature on (G, M); this signature can be verified
using G as the public key. This construction prevents an ad-
versary from using a copied or mauled ciphertext to trace an
honest user’s message through a mix. We omit these details
here, but we note that this technique is compatible with our
protocols.

3.4 Zero-knowledge proofs
Our fragile mixing protocols require zero-knowledge proofs.

A zero-knowledge proof is a protocol in which a computa-
tionally unbounded prover P convinces a probabilistic poly-
nomial time verifier V of an assertion while giving the veri-
fier no additional information beyond the validity of the as-
sertion. Formal definitions are available in, e.g., [12]. Here
we remind the reader of their definition informally, consist-
ing of completeness, soundness and zero-knowledge.

• Completeness A proof protocol is complete if an honest
prover convinces the verifier with overwhelming prob-
ability.

• Soundness A proof protocol is sound if any prover suc-
ceeds in convincing the verifier of a false assertion with
negligible probability.

• Zero-knowledge A proof protocol is zero-knowledge if
there exists a probabilistic polynomial-time algorithm
(a simulator) whose output (without interacting with
P ) is indistinguishable from the transcript of V ’s in-
teraction with P .

We assume that the verifier is honest, i.e., it always follows
the protocol.

4. FRAGILE MIXING
The basic idea of fragile mixing is to bind the anonymity

of a batch of messages together: As soon as the permutation
has been revealed partially, it is disclosed completely. This
gives individual mix administrators a disincentive to reveal
input-to-output message correspondences, since doing so re-
veals the correspondences for all the messages (including the
mix adminstrators’, for example). In this section, we more
carefully define a fragile mix and its properties.

Let Zn = {0, 1, 2, . . . , n − 1}. A permutation π on Zn is
a bijection π : Zn → Zn. A permutation family is a set of
permutations with the same domain and range Zn.

Definition 1. Fragile permutation. A permutation
family F is fragile if for any π, π′ ∈ F and x ∈ Zn, π(x) =
π′(x) only when π = π′. We call every member of F a fragile
permutation.

In the space Zn×Zn, a fragile permutation will be uniquely
identified in its family by revealing any single point. Intu-
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itively, knowing any input/output pair of a fragile permu-
tation, one can determine the rest of permutation. Some
fragile permutation families are listed below:

• Loop permutation (LP): LP = {πb | πb(x) =
x + b mod n; x, b ∈ Zn}. For example, a permutation
{0, 1, 2, 3, 4, 5} �→ {5, 0, 1, 2, 3, 4} is a member of LP .
It is easily to see that the cardinality of LP is n.

• Multiplicative permutation (MP): MP = {πa |
πa(x) = ax mod n; a, x ∈ Zn \ {0}, n prime}. MP is a
fragile permutation family on Zn \ {0}. Its cardinality
is n− 1.

• Key permutation (KP): KP = {πK | πK(x) =
x⊕K; x, K ∈ Z2η}. KP is a fragile permutation family
on Z2η , where η ∈ N. Its cardinality is 2η , the size of
its domain.

Since any two members of a fragile permutation family F
map any input of their domain to different output, the car-
dinality of F is at most n, i.e., a fragile permutation family
contains no more than n permutations. We can increase the
number of permutations in the permutation family at the
cost of fragility, by generalizing to a k-fragile permutation.

Definition 2. k-fragile permutation. A permutation
family F(k) is a k-fragile permutation if for any D ⊆ Zn

with |D| = k and π, π′ ∈ F(k), π(x) = π′(x) for all x ∈ D
only when π = π′.

For example, the pair-wise permutation family PP =
{πa,b | πa,b(x) = ax+b mod n; a ∈ Zn\{0}; b ∈ Zn; n prime}
is a 2-fragile permutation.

k-fragile permutations may be useful in permitting a lim-
ited number (less than k) of input-output message corre-
spondences to be exposed without imposing on the privacy
of other messages not being investigated. The cardinality of
a k-fragile permutation family is bounded by the number of
ordered subsets of size k in the set of n elements, which is

n!
(n−k)!

. In the rest of this paper, we focus our attention on

(1-)fragile permutations. However, k-fragile permutations
also can be utilized in the protocols we propose.

Many fragile permutation families form groups under com-
position (◦), and it is easy to verify that the above exam-
ples do. In particular, when a fragile permutation family is
closed under composition, a mix-cascade completely made
by fragile mixes could be vulnerable: An active adversary
only need insert a message to the batch, find the output cor-
responding to its input message, and use this to determine
the combined permutation performed by the cascade. We
address this problem in Section 6.

5. PROOF OF FRAGILE MIXING
Unless a mix is forced to utilize a fragile permutation

when reordering a batch of messages, it may simply use
any permutation and therefore gain flexibility to disclose
certain input-to-output message correspondences. In this
section, we therefore show how a mix server can prove in
zero knowledge that it has utilized a fragile permutation,
which it should be required to do by its clients.

Specifically, let 0 ≤ j < n. The input batch of the mix
is {(Gj , Mj)} and its output batch is {(G′

j , M
′
j)}. Let F be

a public fragile permutation family. An honest mix knows

values {γj} in Zq and a permutation π such that for all
0 ≤ j < n

π ∈ F (1)

(G′
π(j), M

′
π(j)) = (Gjg

γj , Mjh
γj ) (2)

The mix (the prover) is required to convince a verifier V of
the existence of such a π and {γj} without revealing any
information about {γj} and π. In this section, we present
two zero-knowledge proof protocols by which the mix can
prove this.

5.1 A general proof
We first describe a general proof that works when the frag-

ile permutation family F forms a group under composition.
This protocol is based on the well-known cut-and-choose
technique.

Protocol 1

• Repeat the following steps σ times.

1. The mix chooses γ̄j
R← Zq for 0 ≤ j < n and

π̄
R←F . Then, the mix publishes

Ḡπ̄(j) = Gjg
γ̄j (3)

M̄π̄(j) = Mjh
γ̄j (4)

2. The verifier V flips a public coin: b
R←{0, 1}

3. If b = 0, then:

– Mix publishes π̄ and {γ̄j}.
– V accepts iff π̄ ∈ F and (3) and (4) hold.

4. If b = 1, then:

– Mix publishes πd = π ◦ π̄−1 and
{dj = −γ̄π̄−1(j) + γπ̄−1(j) mod q}.

– Verifier V accepts iff

πd ∈ F (5)

G′
πd(j) = Ḡjg

dj (6)

M ′
πd(j) = M̄jh

dj (7)

This protocol can be made noninteractive in the random
oracle model by using the Fiat-Shamir heuristic [9].

Theorem 1. For any fragile permutation family F that
forms a group under composition, Protocol 1 is an honest
verifier zero-knowledge proof of the existence of π and {γj}
satisfying (1) and (2).

Proof.

• Completeness. Since F forms a group under composi-
tion, F is closed under composition and inverses ex-
ist. Thus, the prover (mix) can compute π̄−1 and
πd = π ◦ π̄−1 in F , and so can complete the proof.

• Soundness. Suppose that a prover is capable of an-
swering both b = 0 and b = 1 queries, i.e., of publish-
ing π̄ ∈ F and {γ̄j} satisfying (3) and (4), and πd ∈ F
and {dj} satisfying (6) and (7). Define π = πd ◦ π̄ and
γj = dπ̄j + γ̄j mod q. It is easily verified that π and
{γj} satisfy (1) and (2), and so the assertion that such
a π and {γj} exist is true. By the contrapositive, if this
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assertion is false, then any prover is capable of answer-
ing at most one of the b = 0 and b = 1 queries, and
so convinces the verifier with probability at most 1/2.
Since this is repeated σ times, the prover convinces the
verifier with probability at most 1/2σ .

• Zero-knowledge. The simulator selects b
R←{0, 1}. If

b = 0, it selects π̄
R←F and γ̄j

R← Zq, and outputs
({(Ḡπ̄(j), M̄π̄(j))}, 0, (π̄, {γ̄j})), where {(Ḡπ̄(j), M̄π̄(j))}
are computed as in (3)–(4). If b = 1, the simulator se-

lects πd
R←F and dj

R← Zq, and outputs (({(G′
πd(j)g

−dj ,

M ′
πd(j)h

−dj )}), 1, (πd, {dj})). Repeating σ times, the
simulator generates a transcript that is perfectly indis-
tinguishable from that of the real protocol.

�

We denote Protocol 1 by PFG({(Gj , Mj)}, {(G′
j , M

′
j)}).

5.2 A more efficient proof for LP
We now present a more efficient protocol by which a mix

can prove in zero knowledge that it employed a fragile per-
mutation. This protocol requires that the fragile permu-
tation family be LP (the loop permutation family). Our
approach builds upon protocols for proving verifiable shuf-
fling [23, 11]. The problem of verifiable shuffling is as follows:

Let 0 ≤ j < n. Let Π be the set of all permutations on
Zn. There are two sequences of pairs {(Xj , Yj)} (input) and
{(X̄j , Ȳj)} (output), and the prover knows values {γj} from
Zq and π ∈ Π such that for all 0 ≤ j < n

(X̄π(j), Ȳπ(j)) = (Xjg
γj , Yjh

γj ) (8)

The prover is required to convince a verifier V of the ex-
istence of {γj} and π satisfying (8), without revealing any
information about {γj} and π. We denote a proof for this
problem by PRS({(Xj , Yj)}, {(X̄j , Ȳj)}).

Our proof protocol is built upon a proof protocol for ver-
ifiable shuffling, e.g., [23, 11].

Protocol 2: Proof for loop permutations

1. The mix knows a permutation π ∈ LP and a sequence
{γj} which satisfy (2). Using this knowledge, the mix
runs PRS({(Gj , Mj)}, {(G′

j , M
′
j)}) to V .

2. Verifier V generates aj
R←Gq and bj

R←Gq for 0 ≤ j <
n. V gives {aj} and {bj} to the mix.

3. The mix and V each compute the new list:

(Ĝj , M̂j) = (Gjaj , Mjbj) (9)

Then, the mix generates secret values γ̂j
R← Zq for 0 ≤

j < n and uses these and the loop permutation π (the
permutation on {(Gj , Mj)}) to compute the following
list:

(Ĝ′
π(j), M̂

′
π(j)) = (Ĝjg

γ̂j , M̂jh
γ̂j ) (10)

The mix gives (10) to V .

4. The mix runs a zero-knowledge proof for shuffling
PRS({(Ĝj , M̂j)}, {(Ĝ′

j , M̂
′
j)}) to V .

5. The mix and V each compute the following lists:

(Ḡj , M̄j) = (Ĝj/Ĝj+1 mod n, M̂j/M̂j+1 mod n) (11)

(Ḡ′
j , M̄

′
j) = (Ĝ′

j/Ĝ′
j+1 mod n, M̂ ′

j/M̂ ′
j+1 mod n) (12)

6. The mix uses its knowledge of π and {γ̂j − γ̂j+1 mod n}
to run a proof PRS({(Ḡj , M̄j)}, {(Ḡ′

j , M̄
′
j)}) to V .

7. The mix and V each compute:

(a′
j , b

′
j) = (Ĝ′

j/G′
j , M̂

′
j/M

′
j) (13)

8. The mix uses the knowledge of π and {γ̂j − γj} to run
PRS({(aj , bj)}, {(a′

j , b
′
j)}) to V .

9. Verifier V accepts if Steps 1, 4, 6, 8 are all correct.

Intuitively, this protocol proceeds as follows. In Steps 2-
3, the mix generates a new list {(Ĝj , M̂j)} with the random
challenges from verifier V and permutes this new list in the
same way as the list {(Gj , Mj)} using another set of ran-
dom exponents {γ̂j}. Then, in Steps 4-6, it proves that the
permutation on the new list is a loop permutation. Finally,
using Steps 1, 7-8, the mix proves that this permutation, in
fact, is the permutation mapping {(Gj , Mj)} to {(G′

j , M
′
j)}.

Lemma 1. A permutation π ∈ LP if and only if for all
x ∈ Zn, π(x + 1 mod n) = π(x) + 1 mod n.

Proof. The “only if” direction is straightforward, and so we
detail only the “if” part. With the above property, we have:

π(1) = π(0) + 1 mod n

π(2) = π(1) + 1 mod n

= π(0) + 2 mod n

. . .

π(x) = π(0) + x mod n

By the definition of a loop permutation, π ∈ LP. �

Theorem 2. The above protocol is a honest-verifier zero-
knowledge proof of the existence of π and {γj} satisfying
π ∈ LP and (2).

Proof (sketch).

• Completeness. For an honest mix that performs a loop
permutation on the input batch, the protocol will be
completed given the completeness of PRS . Both [23]
and [11] offer schemes with proved completeness.

• Soundness. We prove the soundness in the following
way. We first prove that the permutation π̂ on the new
list {(Ĝj , M̂j)} is a loop permutation. Then we show
that that for each j, (G′

π̂(j), M
′
π̂(j)) is an encryption of

the same plaintext as (Gj , Mj), and so π̂ demonstrates
the existence of the needed permutation.

If the verifier V accepts the proof in Step 4, the mix
proves

(Ĝ′
π̂(j), M̂

′
π̂(j)) = (Ĝjg

γ̂j , M̂jh
γ̂j ) (14)

After completing Step 6, the mix proves there exists a
permutation π̄ and a sequence {γ̄j}, such that

(Ḡ′
π̄(j), M̄

′
π̄(j)) = (Ḡjg

γ̄j , M̄jh
γ̄j ) (15)
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According to (15), we know:

(Ĝ′
π̄(j)/Ĝ′

π̄(j)+1 mod n, M̂ ′
π̄(j)/M̂ ′

π̄(j)+1 mod n) (16)

= (Ĝjg
γ̄j /Ĝj+1 mod n, M̂jh

γ̄j /M̂j+1 mod n)

From (16) and (14), we have:

logg

�
Ĝj

Ĝj+1 mod n

· Ĝπ̂−1(π̄(j)+1 mod n)

Ĝπ̂−1(π̄(j))

�
= (17)

logh

�
M̂j

M̂j+1 mod n

· M̂π̂−1(π̄(j)+1 mod n)

M̂π̂−1(π̄(j))

�

There are four cases to consider in (17):

1. j 	= π̂−1(π̄(j)) and j + 1 mod n 	= π̂−1(π̄(j) +
1 mod n)

2. j = π̂−1(π̄(j)) and j + 1 mod n 	= π̂−1(π̄(j) +
1 mod n)

3. j 	= π̂−1(π̄(j)) and j + 1 mod n = π̂−1(π̄(j) +
1 mod n)

4. j = π̂−1(π̄(j)) and j + 1 mod n = π̂−1(π̄(j) +
1 mod n)

Recall that Ĝs and M̂s in (17) are randomly and in-
dependently distributed in Gq due to the random chal-
lenges {aj} and {bj}. Thus, in case 1, given a pair

(Ĝj , Ĝj+1 mod n), the probability that there exists an-

other pair (Ĝπ̂−1(π̄(j)+1 mod n), Ĝπ̂−1(π̄(j))) such that
the corresponding random M tuple

(M̂j , M̂j+1 mod n, M̂π̂−1(π̄(j)+1 mod n), M̂π̂−1(π̄(j)))

satisfies (17) is at most n2

q
, which is negligible given

n
 q. In a similar way, in both case 2 and case 3, the
probabilities that (17) holds are upper-bounded by n

q
which is also negligible. The only case which allows
(17) to always hold is case 4. Therefore we have:

π̂(j) = π̄(j) (18)

π̂(j + 1 mod n) = π̄(j) + 1 mod n (19)

This gives us π̂(j+1 mod n) = π̂(j)+1 mod n. There-
fore, Lemma 1 applies, and we have π̂ ∈ LP .

We now prove that for each j, (G′
π̂(j), M

′
π̂(j)) is an en-

cryption of the same plaintext as (Gj , Mj), completing
the proof of soundness. Let π be the permutation on
{(Gj , Mj)} that is proved in Step 1, i.e.,

(G′
π(j), M

′
π(j)) = (Gjg

γj , Mjh
γj ) (20)

Given (14) and (a′
j , b

′
j) = (Ĝ′

j/G′
j , M̂

′
j/M

′
j), we have

(a′
j , b

′
j) =

�
Gπ̂−1(j)aπ̂−1(j)g

γ̂
π̂−1(j)

Gπ−1(j)g
γ

π−1(j)
,
Mπ̂−1(j)bπ̂−1(j)h

γ̂
π̂−1(j)

Mπ−1(j)h
γ

π−1(j)

�

If Step 8 holds, we know that (a′
j , b

′
j) = (akgγ̃k , bkhγ̃k )

for some 0 ≤ k < n and some γ̃k. Therefore, we have

logg

�
Gπ̂−1(j)aπ̂−1(j)

Gπ−1(j)ak

�
= logh

�
Mπ̂−1(j)bπ̂−1(j)

Mπ−1(j)bk

�

Recall that each aj and bj is drawn randomly from Gq.
So, for any (Gπ̂−1(j), Mπ̂−1(j)) and (Gπ−1(j), Mπ−1(j)),
the probability that there exist pairs (aπ̂−1(j), bπ̂−1(j))
and (ak, bk) that satisfy the above equation is negli-

gible, bounded from above by n2

q
, unless k = π̂−1(j).

So,

logg(Gπ̂−1(j)/Gπ−1(j)) = logh(Mπ̂−1(j)/Mπ−1(j)),

i.e., (Gπ̂−1(j), Mπ̂−1(j)) and (Gπ−1(j), Mπ−1(j)) are en-
cryptions of the same plaintext, for each j. Since we
additionally know that (G′

j , M
′
j) and (Gπ−1(j), Mπ−1(j))

are encryptions of the same plaintext (by Step 1), per-
mutation π̂ demonstrates the existence of a loop per-
mutation meeting the requirements of the proof.

• Zero-knowledge. The zero-knowledge property of this
proof depends on the zero-knowledge of the PRS pro-
tocol. Informally, the simulator randomly generates
the outputs for steps 2 and 3, and then runs the simu-
lator for PRS to produce those transcripts. If the PRS
protocol is zero-knowledge, the transcript produced is
indistinguishable from the real protocol run.

�

The complexity of the proof protocol depends on the com-
plexity of the underneath PRS protocol. For example, run-
ning Neff’s verifiable shuffling protocol [23], we need 32n
group exponentiations for generating a proof and 48n + 8
for verifying the proofs.

We denote Protocol 2 by PLP({(Gj , Mj), (G
′
j , M

′
j)}).

6. A MIX NETWORK USING
FRAGILE MIXES

In this section, we discuss the impact of fragile mixing in
the context of a larger mix-net. Ideally our techniques could
be combined with a standard mix-net so as to retain the
properties of the original mix-net construction, and to add
the additional properties that fragility is intended to provide
(i.e., discouraging mix administrators from disclosing input-
to-output message correspondences).

As mentioned previously, however, a mix-cascade built
solely from fragile mixes can significantly constrain the end-
to-end permutation implemented by the mix-net, if the frag-
ile permutation family is closed under composition. In this
case, an active adversary capable of inserting messages to
the input can easily reveal this end-to-end permutation. Al-
though this problem does not happen when mixes are not
constrained to perform fragile permutations, these mixes are
less trustworthy, in the sense that they are less motivated to
protect all their input-to-output message correspondences.

FM NM FM FM NM FM

1            2           3                    m-2      m-1        m

Figure 1: Fragile mix cascade. FM denotes a fragile mix,
and NM denotes a normal mix.
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We observe that these two types of mixes complement
each other, which motivates us to propose the cascade con-
struction illustrated in Figure 1. This mix-cascade inter-
leaves two types of mixes, fragile mixes and normal mixes;
we call this a hybrid cascade. This design results from the
observation that adjacent mixes of the same type may not
significantly improve the security of the cascade: On one
hand, messages can presumably be traced through two ad-
jacent normal mixes roughly as easily as tracing through
one normal mix, since these mixes, not being motivated to
keep private all of their input-to-output message mappings,
may easily be convinced to disclose them. On the other
hand, successive fragile mixes (assuming a fragile permuta-
tion family closed under composition) implement the same
permutation as a single fragile mix could. Moreover, note
that both the head and the tail of the cascade are frag-
ile mix servers, in order to provide greater strength at the
head and tail against these servers being convinced to di-
vulge input-to-output mappings. This hybrid cascade con-
struction thus strikes a balance between defending against
passive attacks to disclose mixes’ input-to-output message
correspondences, and ensuring that the end-to-end permuta-
tion implemenated by the mix is an arbitrary permutation.

For completeness, here we illustrate a mix-cascade pro-
tocol built on this idea, using Abe’s scheme [1]. The mix-
cascade operates in two stages, an encryption stage and a
decryption stage. During the encryption stage, the mix cas-
cade performs re-encryptions and permutations on the in-
put batch; fragile mixes also run a proof protocol for their
permutations, as discussed in Section 5. In the decryption
stage, all mixes in the cascade collaborate to decrypt the
output batch and forward these decryptions to the receivers.
The protocol is presented below, in which m denotes the
length of a cascade. We assume that mix i has a private key
xi ∈ Zq, and that h = gx where x =

�
1≤i≤m xi mod q.

Protocol 3: Fragile mixing cascade protocol

• Encryption stage:

1. A user (who could be a mix) chooses γj
R← Zq and

posts an encryption of her message Mj to the bul-
letin board:

G0,j = gγj (21)

M0,j = Mjh
γj (22)

After collecting n messages on the bulletin board,
the mix cascade starts to transfer the message
batch.

2. Upon receiving {(Gi−1,0, Mi−1,0), . . . , (Gi−1,n−1,

Mi−1,n−1)}, mix i first draws γi,j
R← Zq for 0 ≤

j < n. Then, if mix i is a fragile mix, it draws a

fragile permutation πi
R←F , where F is a public

fragile permutation family. Otherwise, it chooses

πi
R←Π where Π is the space of all permutations

on Zn. Finally, the mix re-encrypts the batch as:

Gi,πi(j) = Gi−1,jg
γi,j (23)

Mi,πi(j) = Mi−1,jh
γi,j (24)

where 0 ≤ j < n, and sends out the batch to mix
i + 1. This process continues until the batch has
been re-encrypted by the last mix m.

3. Every fragile mix i runs either
PFG({(Gi−1,j , Mi−1,j)}, {(Gi,j , Mi,j)}) or
PLP({(Gi−1,j , Mi−1,j)}, {(Gi,j , Mi,j)}) as appro-
poriate, to prove its correct performance of fragile
mixing. Any verifier can check these proofs.

• Decryption stage:

1. The mix cascade starts decryption from the first
mix. Every mix i computes Wi,j = Wi−1,jG

xi
m,j

for each j, where W0,j = 1.

2. Mix m computes the batch {Mm,j/Wm,j}, and
deliveries the batch.

In the attach mode, the input batch contains n−mκ mes-
sages. Every mix i generates κ ciphertexts {(gγl , Mlh

γl )}
(l = 0, . . . , κ− 1), and attaches them to the end of the mes-
sage batch it receives. Then, i permutes and re-encrypts all
n− (m− i)κ messages as Step 2 in the encryption stage of
the above protocol.

6.1 Security
In this section, we discuss the security of the hybrid cas-

cade described above. For passive adversaries who monitor
the bulletin board, we simply note that due to the use of
normal mixes, the end-to-end permutation implemented by
the hybrid cascade is not constrained to be a fragile per-
mutation. Thus, the strength of the hybrid cascade should
be similar to that of a traditional cascade against passive
adversaries.

The more interesting scenarios result from various active
adversaries, particularly when we combine the possibility
of some mixes being compromised, and other normal mixes
being convinced to divulge a portion of their input-to-output
message correspondences. More generally, in a hybrid mix
cascade, not only will the compromised mixes divulge their
full permutations to the attacker, but so may normal and
fragile mixes that did not submit a message in the batch the
adversary is interested in. We call these exposed mixes. For
the purpose of our analysis for a single batch of messages,
we can remove exposed mixes from the cascade, combine
two consecutive mixes of the same type (normal or fragile)
together and remove the head or tail of the cascade if they
are normal mixes. This results in a mix cascade with the
same construction as in Figure 1. We call this cascade the
base cascade.

To trace a message through the base cascade, the adver-
sary must determine the fragile permutations performed. It
could persuade normal mixes to give out part of their permu-
tations. However, since these mixes have their own messages
in the batch (else they are exposed and thus removed from
the base cascade), it is reasonable to assume that they will
reveal only a portion of their input/output pairs, in order
to ensure adequate anonymity for their own messages.1 Us-
ing such disclosures, the adversary can conceivably insert a
pool of test messages to the input batch, and then determine
whether the output pattern of his own messages at the end

1In common mode, the existence of the fragile mixes renders
the adversary incapable of convincing a normal mix that the
message being traced is not its own, though the mix may
nevertheless cooperate if it trusts the adversary or is forced
to. This, however, is not a problem in the attach mode
because each mix knows exactly where in the batch its own
messages are.
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of the cascade is consistent with a hypothesized set of fragile
permutations used by the fragile mixes.

Somewhat more specifically, in a base cascade with m
mixes, mixes 1, 3, . . . , m are fragile mixes. Let (π1, π3, . . . ,
πm−2) be a vector of permutations representing the fragile
permutations that all but the last fragile mix performed on
a single batch.2 Let τ be the cardinality of the fragile per-
mutation family. The size of the permutation vector space

is τ
m−1

2 .
Now suppose that the adversary can convince each nor-

mal mix to divulge ρ of its input-to-output message pairs
for the batch of interest. Assume pessimistically (optimisti-
cally for the attacker) that the attacker is able to confirm
whether a hypothesized path passing through a divulged
mapping at each normal mix is, in fact, a path traveled by
one of his test messages through the cascade. We stress that
this seems to be a generous advantage to give the attacker;
we do not know how to confirm this ourselves. We note,
however, that such a confirmation immediately determines
the vector (π1, π3, . . . , πm−2)—what the adversary wants to
determine—since each fragile mix is uniquely determined by
any single input-output mapping.

We informally claim in this setting that if ρ < τ , the prob-
ability that the adversary can find the vector (π1, π3, . . . ,
πm−2) is negligible in m, the length of the base cascade. In-
tuitively, this follows from the fact that the total number of
paths through normal mixes that the adversary can consider

is at most ρ
m−1

2 , which correspond to at most ρ
m−1

2 permu-

tation vectors of a total of τ
m−1

2 such vectors. Therefore,
the probability that these vectors include a correct one is at

most by ( ρ
τ
)

m−1
2 .

For example, consider a hybrid mix-net utilizing loop per-
mutations. Suppose that the size of a batch is 1000, the
length of a base cascade is 9 and a normal mix is willing to
give up at most 10% of its input-to-output mappings. By
the reasoning above, the probability that an adversary de-
termines the correct fragile permutation vector to trace a
message is no more than 0.14 = 0.0001.

6.2 Incentives
The privacy guarantees of a hybrid mix network hinge on

the assumption that a fragile mix will not disclose any in-
formation about its permutation for batches that include its
own messages. This could be problematic in the presence
of strategic players who speculate about others’ strategies
and adapt their behavior accordingly. That is, assuming
that others will not disclose their permutations and thus
also protect the anonymity of its own messages, a strate-
gic fragile mix may decide to sell its permutation. If every
fragile mix in a mix-net adopted this strategy, the system
would collapse. Here, we sketch a simple model based on
game theory by which we can mitigate this problem.

From the last section, we know that the adversary’s chance
to successfully trace a message relates to the number of frag-
ile mixes in the hybrid cascade. A mix may expect its own
messages to be protected by enough mixes. For example,
assume that each fragile mix will be confident of the privacy
of its own messages in a base cascade of L ≥ T fragile mixes,

2Here, we do not consider the permutation of the last mix m.
Since the adversary knows the output of its test messages,
the last fragile permutation is completely determined by all
previous fragile permutations.

where T is a threshold. Suppose further that each mix sends
a message in each batch with probability p, and that both
p and T are public knowledge.

Every mix can estimate L = m̄p, where m̄ is the number
of fragile mixes in the hybrid cascade. To encourage frag-
ile mixes to protect their own messages, we set m̄ = T/p.
Thus, a mix will find that its optimal strategy is to keep its
permutation secret for batches in which it sends messages,
and to disclose (e.g., sell) its permutations for other batches.
The mix must do the former, since otherwise the expected
number of servers L in the base cascade will go below the
threshold T . Via this strategy, individual fragile mixes will
lock their behavior to a Nash equilibrium, in which no one
benefits from unilaterally deviating from this strategy.

6.3 Efficiency
The efficiency of our protocol depends primarily on the

complexity of zero-knowledge proofs, which we presented in
Section 5. Since every fragile mix runs a proof protocol,
the verifier’s work is linear in the number of fragile mixes in
a mix cascade. With a long mix-cascade, such a workload
could be substantial.

One approach to improve verifier efficiency builds from the
feature of our approach that checking a fragile mix’s proof
protects not only the verifier but also every other sender’s
privacy. This allows us to explore a verification strategy in
which every fragile mix posts (in a non-interactive manner)
its proof. Every verifier, instead of checking all these proofs,
only randomly checks a constant number of proofs. Given
sufficiently many verifiers, the probability that a proof has
not been left unverified will be small.

7. CONCLUSION AND FUTURE WORK
In this paper we have addressed a threat in the context

of mix networks that has, to date, been largely ignored:
the possibility that a mix administrator can be convinced
to log and selectively disclose certain input-to-output mes-
sage mappings. Our approach to mitigating this threat is
fragility, i.e., requiring that the secrecy of all input-to-output
mappings depends on the secrecy of each of them. Thus,
this approach leverages the presumption that the mix ad-
ministrator is interested in protecting the privacy of some
messages (e.g., his own); our approach requires him to pro-
tect all the messages to do so. We defined the concept of
fragile mixing and identified some fragile permutation fam-
ilies; we proposed zero-knowledge proofs that permit any
verifier to confirm that a mix used a fragile permutation;
and described the integration of fragile mixing into a larger
mix cascade.

Our work introduces a new research direction, and offers
several opportunities for future research. For example, one
may ask if a similar approach can be implemented in de-
cryption mix-nets. Unfortunately, it seems that a straight-
forward extension is not likely: re-encryption mix-nets al-
low a mix to conceal its permutation on a batch of messages
from any observers, including the senders of these messages,
while decryption mix-nets do not—and this fact is fatal to
a fragile permutation. A way around this problem is to use
link encryption to hide the communication flows between
two decryption mixes, though since the receiving mix may
collaborate with a message originator to expose its prede-
cessor’s fragile permutation, this solution is not especially
effective. Another potential direction is to improve the effi-
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ciency of the zero-knowledge proofs proposed, or use strong
evidence [18] instead of a proof to make the protocol easier
to implement.

8. REFERENCES
[1] M. Abe. Universally verifiable MIX with verification

work independent of the number of MIX servers. In
Proceedings of EUROCRYPT 1998, volume 1403 of
Lecture Notes in Computer Science. Springer-Verlag,
1998.

[2] M. Abe. Mix-networks on permutation networks. In
Proceedings of ASIACRYPT 1999, volume 1716 of
Lecture Notes in Computer Science. Springer-Verlag,
1999.

[3] A. Acquisti, R. Dingledine, and P. Syverson. On the
Economics of Anonymity. In Financial Cryptography
(FC ’03), 2003.

[4] O. Berthold, H. Federrath, and M. Kohntopp. Project
anonymity and unobservability in the internet. In
Computers Freedom and Privacy Conference 2000
(CFP 2000) Workshop on Freedom and Privacy by
Design, April 2000.

[5] D. Chaum. Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms. Communications
of the ACM, 24(2):84–88, February 1981.

[6] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: Design of a Type III Anonymous
Remailer Protocol. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, May 2003.

[7] Y. Desmedt and K. Kurosawa. How to break a
practical MIX and design a new one. In Proceedings of
EUROCRYPT 2000, volume 1803 of Lecture Notes in
Computer Science. Springer-Verlag, 2000.

[8] R. Dingledine, M. J. Freedman, D. Hopwood, and
D. Molnar. A Reputation System to Increase MIX-net
Reliability. In Proc. Financial Cryptography (FC ’02).
Springer-Verlag, 2002.

[9] A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to identification and signature
problems. In Advances in Cryptology — Crypto ’86,
pages 186–194, New York, 1987. Springer-Verlag.

[10] A. Fujioka, T. Okamoto, and K. Ohta. A practical
secret voting scheme for large scale elections. In Proc.
1992 AUSCRYPT, 1992.

[11] J. Furukawa and K. Sako. An efficient scheme for
proving a shuffling. In Proc. 2001 CRYPTO, volume
2139 of Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[12] O. Goldreich. The Foundations of Cryptography,
volume 1. Cambridge University Press, 2001.
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