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AbstractÐIn this paper, we investigate the k-set consensus problem in asynchronous distributed systems. In this problem, each

participating process begins the protocol with an input value and by the end of the protocol must decide on one value so that at most

k total values are decided by all correct processes. We extend previous work by exploring several variations of the problem definition

and model, including for the first time investigation of Byzantine failures. We show that the precise definition of the validity requirement,

which characterizes what decision values are allowed as a function of the input values and whether failures occur, is crucial to the

solvability of the problem. For example, we show that allowing default decisions in case of failures makes the problem solvable for most

values of k despite a minority of failures, even in face of the most severe type of failures (Byzantine). We introduce six validity

conditions for this problem (all considered in various contexts in the literature), and demarcate the line between possible and

impossible for each case. In many cases, this line is different from the one of the originally studied k-set consensus problem.

Index TermsÐAgreement problems, Byzantine failures, consensus, crash failures, distributed systems, validity conditions.

æ

1 INTRODUCTION

THE consensus problem is an abstraction of many
coordination problems in a distributed system that

can suffer process failures. Roughly speaking, the consen-
sus problem is to have processes of a distributed system
agree on a common decision. Because of the many practical
problems that can be reduced to this simple primitive,
consensus has been thoroughly studied. We refer the reader
to [25] for a detailed discussion of consensus.

A fundamental result about consensus is that there is no

deterministic algorithm for solving it in asynchronous

distributed systems subject to process failures [17], [24].

Spurred by this result, much research has focused on

demarcating the line between possible and impossible by

varying the problem on a number of axes, such as by

imposing some degree of synchrony on the system (e.g., [3],

[15], [16], [12]) or by weakening the liveness (e.g., [8], [10],

[29]) or safety conditions of consensus itself. A work of the

latter type is k-set consensus [13], which weakens the safety

conditions of consensus to allow the set of process decision

values to be of cardinality up to k > 1 (versus k � 1 for

consensus). It is known that to solve k-set consensus in an

asynchronous system subject to at most t process failures,

the condition t < k is both sufficient [13] and necessary [9],

[20], [30], [18], [6], [1], [19].
Besides requiring processes to agree on at most k decision

values, k-set consensus (and consensus when k � 1)

imposes a ªvalidityº condition that expresses the allowable
set of decision values as some function of process' input
values. For example, the validity condition adopted for k-set
consensus requires that each correct process decide on a
value that is equal to some process' input value [13]. While
consensus remains impossible for any nontrivial validity
condition (i.e., that allows for two possible decision values)
[17], [24], in this paper, we show for the first time that the
validity condition has a profound impact on when k-set
consensus is solvable.

More precisely, in this paper we provide a systematic
investigation of the impact of the validity condition on the
solvability of the k-set consensus problem in asynchronous
distributed systems. Our investigation includes six varia-
tions of the validity condition, most of which have appeared
before in the literature on consensus or related problems.
Moreover, we explore these validity conditions in the
context of four different asynchronous models of distrib-
uted computing, as characterized by the following two axes:

. Type of process failures: We consider two models of
process failures, namely crash and Byzantine. Prior
work has considered k-set consensus only in the
context of crash failures; our work is the first
exploration of this problem for Byzantine failures.

. Communication model: We consider two models of
communication between processes. In the first,
processes communicate by sending messages to
one another over a completely connected network.
In the second, processes communicate by modifying
shared memory.

Thus, we consider the k-set consensus problem in
24 variations (four models � six validity conditions). In
several cases, we completely characterize solvability. In
some, we characterize solvability with very little uncer-
tainty (i.e., a small gap between computable and impos-
sible), and in a few cases we leave a substantial gap. The
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main lesson to take from our results is that unlike for

consensus, the solvability of k-set consensus is very

sensitive to the particular validity condition used.
The rest of this paper is structured as follows: In

Section 2, we define the problem. We study the k-set

consensus problem for message passing systems in

Section 3. Section 4 presents the results for shared memory

systems. Section 5 concludes and raises open problems.

2 THE PROBLEM

We consider a distributed system consisting of n processes

denoted by p1; p2; . . . ; pn. A process that follows its

algorithmic specification throughout an execution is said

to be correct, and a process that departs from its specifica-

tion is said to be faulty. In a crash model, faulty processes are

allowed to prematurely halt execution only. A correct

process executes infinitely many instructions (at most one

of which is the designated ªdecideº instruction). A faulty

process executes only finitely many instructions. In a

Byzantine model, a faulty process can deviate from its

program arbitrarily. We assume that at most t processes fail,

where t � 1 is a known, positive integer. We study two

communication models, asynchronous message passing

and asynchronous shared memory. Their precise specifica-

tion is given below in Sections 3 and 4, respectively. We will

use the following shorthands: MP/CR to denote the

message-passing crash model, MP/Byz to denote the

message-passing Byzantine model, SM/CR to denote the

shared memory crash model and SM/Byz to denote the

shared memory Byzantine model.
For any k, 1 � k � n, we denote a k-set consensus

problem by SC�k� or simply SC when k is not relevant.

The SC�k�problem is defined as follows. Each process pi
starts the computation with an input value vi. We allow the

set of possible input values from which pi chooses vi to be

unconstrained, and in particular to have cardinality of size

n or larger. Each correct process has to irreversibly ªdecideº

on a value in such a way that three conditions, called

termination, agreement, and validity, hold. These conditions

are:

. Termination: Every correct process eventually
decides.

. Agreement: The set of values decided by correct
processes has size at most k.

. Validity: One of the following conditions.

- SV1 (strong V1): The decision of any correct
process is equal to the input of some correct
process.

- SV2 (strong V2): If all correct processes start
with v then correct processes decide v.

- RV1 (regular V1): The decision of any correct
process is equal to the input of some process.

- RV2 (regular V2): If all processes start with v
then correct processes decide v.

- WV1 (weak V1): If there are no failures, then the
decision of any process is equal to the input of
some process.

- WV2 (weak V2): If there are no failures and all
processes start with v, then the decision of any
process is equal to v.

Given a validity condition C, we denote by SC�k; C� the
SC�k� problem defined with validity C. We also use the
notation SC�C� if k is not relevant. We use the notation
SC�k; t� to denote a SC�k� consensus problem with at most t
failures allowed. The notation SC�k; t; C� denotes SC�k; t�
with validity C.

We define a partial order on the SC problems based on
the strength of the validity conditions. We say that SC�C� is
weaker than SC�D� if the validity condition of SC�C� is
logically implied by the validity condition of SC�D�. If
SC�C� is weaker than SC�D�, then any run of a protocol that
solves SC�D� also solves SC�C�. Clearly, this also implies
that any impossibility result that holds for SC�C� holds also
for SC�D�. Conversely, we say that SC�C� is stronger than
SC�D� if SC�D� is weaker than SC�C�. Fig. 1 shows the
ªweaker thanº relation between the validity conditions.
SC�k; RV1� is the consensus problem as considered by

Chaudhuri [13]. SC�1; RV1� and SC�1; RV2� are classical
consensus problems (see, e.g., [25, chapter 6]. SC�1; SV2�
has been considered in the Byzantine setting [23], [28].
SC�1;WV2� is a weak Byzantine agreement [21].

It is well-known that the case k � 1 cannot be solved for
any nontrivial validity condition and, in particular, for any
of the validity conditions that we consider here, or for any
t � 1, both in the MP/CR model [17] and in the SM/CR
model [24]. On the other hand, if k � n, then SC�k� is
trivially solvable (each process decides its own value), even
in the Byzantine setting, for any t and with the strongest
validity condition we are considering, that is, validity SV1.
Thus, we will henceforth be concerned only for the cases
2 � k � nÿ 1. Since the problem is easily solvable for t � 0,
we also assume that t � 1.

2.1 Summary of Results and Discussion

We have studied the six variations of the validity conditions
presented in the previous section in four different models
(MP/CR, MP/Byz, SM/CR, and SM/Byz). The results are
summarized in four figures, one for each of the models that
we consider. In particular, Fig. 2 summarizes the results for
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the MP/CR model. Fig. 4 summarizes the results for the

MP/Byz model. Fig. 5 summarizes the results for the

SM/CR model and Fig. 6 summarizes the results for the

SM/Byz model. These figures appear in the corresponding

sections. Each figure contains six graphs, one for each

validity condition, showing the solvability region and the

impossibility region. Each region in the graphs has a label

that provides a reference to the lemma proving the

corresponding result where the reader can find the

mathematical definition of the solvability or impossibility

region.
The rest of the paper will provide the proofs of these

results, beginning with the proofs for message passing

models in Section 3 and then moving to shared memory

models in Section 4. Because our message passing models

and shared memory models are standard, in a few cases we

can employ previous results relating the two models in the

derivation of our results. In particular, because there are

known translations from any message passing algorithm to

a shared memory algorithm for the same problem [9], [26]

(see also [7] for a more accessible description of these

results), in some cases, we can use the algorithms we

develop for message passing models (Section 3) in shared

memory models (Section 4). It is also the case that

impossibilities in the shared memory model apply in the

message-passing models. We exploit this fact by utilizing
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known impossibilities for k-set consensus in the shared
memory model [9], [20], [30], [6], [1] to derive negative
results in the message passing model. To avoid intermixing
our treatment of message passing and shared memory
models, however, in some cases we will directly prove
negative results for message passing models in Section 3
even though a more general result is proven in Section 4.

A benefit of utilizing previous results in our impossi-
bility proofs is that we can avoid the complex topological
arguments that have characterized most prior impossibility
proofs in this area [9], [20], [30]. Rather, in many cases we
show that known impossibilities imply impossibilities for
the new problem variants that we consider.

3 MESSAGE PASSING MODELS

In this section, we consider SC in a message-passing model.
Processes communicate by sending messages. We assume
that the underlying communication network is complete,
that is, there is a communication channel for each pair of
processes. Moreover, communication is reliable: messages
are not lost, duplicated, forged, or generated by the
network. Processes may take an arbitrary (but finite) time
to execute a step and message delivery can have an
arbitrary (but finite) delay over the communication net-
work. That is, the system is asynchronous.

3.1 Message Passing Model with Crash Failures

In this section, we consider the message-passing crash
(MP/CR) model. As noted in Section 1, for these systems
we already know the line between computable and
impossible for SC�k; t; RV1�:
Lemma 3.1 ([13]). In the message-passing crash model (MP/CR),

there is a protocol for SC�k; t; RV1�, for t < k.

Lemma 3.2 ([9], [20], [30]). In the crash models, there is no
protocol for SC�k; t; RV1�, for t � k.

We remark that Lemma 3.2 holds for both MP/CR and
SM/CR models.

By Lemma 3.1, we know that SC�k; t; RV2�, SC�k; t;WV1�,
and SC�k; t;WV2� are solvable for t < k because these SC
problems are weaker than SC�k; t; RV1�. By Lemma 3.2,

SC�k; t; SV1� cannot be solved for t � k because SC�k; t; SV1�
is stronger than SC�k; t; RV1�.

In Sections 3.1.1 and 3.1.2, we provide further impossi-
bility results and protocols, respectively. Fig. 2 shows a
graphical representation of the results provided in this
section.

For SC�RV2� and SC�WV2�, there is a very tiny gap
between our possibility and impossibility results
(Lemmas 3.3 and 3.7), formed by the cases where n is a
multiple of k. These are isolated points on the line that
separates possible from impossible. For SC�SV2� there is also
small gap between our possibility and impossibility results
(Lemmas 3.6 and 3.8).

3.1.1 Impossibilities

In this section, we provide impossibility results for the
MP/CR model. An ingredient in most of our impossibility
results is the fact that in any protocol tolerating t failures, a
process must be able to decide after communicating with at
most nÿ t processes (including itself). Indeed, if a process
waited to communicate with more than nÿ t processes,
termination could not be achieved: the runs in which there
were exactly t faulty processes that do not send any
messages, would not terminate.

Lemma 3.3. In the MP/CR model, there is no protocol for

SC�k; t;WV2�, for t � �kÿ1�n�1
k .

Proof. For a contradiction, assume that such a protocol A
exists (see Fig. 3). In the rest of the proof, we use the
notation SCP �k; t; C� to explicitly state the set P of
processes among which k-set consensus is to be solved.
Denoting by P the set of all processes, we have that A
solves SC�k; t;WV2�.

Since t � ��kÿ 1�n� 1�=k implies n � k�nÿ t� � 1, we
can partition the n processes into k groups g1; g2; . . . ; gk of
disjoint processes with g1; ; . . . ; gkÿ1 containing exactly
nÿ t processes and gk containing at least nÿ t� 1
processes. If t � n, we let g1; g2; . . . ; gkÿ1 be singleton sets
of processes and we let gk contain at least two processes
(this is possible because we only consider k < n).

First, we claim that there is a run of A where only
processes in gk take steps and such that two values are
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decided. To see why, assume that all the runs involving
only processes of gk are such that only one value is
decided. Then we could use A to solve SCgk�1; 1;WV2�: gk
contains at least nÿ t� 1 processes, so that even if one of
them is faulty, we still have at least nÿ t correct
processes in gk, and hence the protocol has to terminate.
Moreover, validity WV2 is ensured because any run of A
on gk in which all processes in gk begin with the same
input value is indistinguishable to processes in gk from a
run of A on P in which all processes in P begin with that
input value but processes in gk receive no messages from
processes outside gk before deciding. However, this
contradicts [17], since no such protocol can exist. Hence,
there is a run �k in which only processes in gk take steps
and they decide on at least two different values, say
vk; vk�1. Let v1; . . . ; vkÿ1 be kÿ 1 values different from
vk; vk�1.

Fix i, i 2 f1; 2; . . . ; kÿ 1g and consider a run �i
constructed as follows: All processes are correct, all start
with vi, and all messages sent to processes in gj, j �
1; 2; . . . :; k by processes not in gj are delayed until all
processes in gj make a decision (they eventually make a
decision because gj contains at least nÿ t processes and
they are all correct). Since we had assumed that A can
solve SCP�k; t;WV2�, we have by the validity condition
WV2 that all processes, in particular those in group gi,
decide vi.

Now consider a run � constructed as follows: All
processes are correct, for each i, i � 1; 2; . . . ; kÿ 1, every
process in gi starts with vi and processes in gk start with
the same values they start in �k. Moreover, for each i,
i � 1; 2; . . . ; k, all messages sent to processes in group gi
by processes not in gi are delayed until all processes in gi
have decided (they eventually decide because there are
nÿ t processes in gi and all of them are correct). We can
use A to solve SCP�k; t;WV2� in �. However, for each i,
i � 1; 2; . . . ; k, processes in gi cannot distinguish between
run �i and run �. Indeed, in both runs they only
communicate with processes in gi before making a
decision and in both runs processes in gi start with the
same value. Since, for i � 1; 2; . . . ; kÿ 1, in run �i
processes in gi decide vi, they must decide vi also in �.
Since in run �k processes in gk decide on vk and vk�1, they
must decide vk and vk�1 also in �. Hence, we have that
k� 1 values are decided in �. Thus, the agreement
condition is violated and this contradicts the hypothesis
that A solves SCP�k; t;WV2�. tu

Lemma 3.4. In the MP/CR model, there is no protocol for
SC�k; t;WV1�, for t � k.

Proof. For a contradiction assume that there exists such a
protocol A. We claim that A can be used to solve
SC�k; t; RV1� for t � k. To see why, consider any run � in
which f � t processes are faulty and let g be the set of
correct processes and g0 be the set of faulty processes.
Now consider a run �0 that is identical to � except that all
processes are correct and any message sent by any p 2 g0
in �0 after the time that p failed in � is delayed until after
all processes in g decide. That is, for each pi 2 g and each
pj 2 g0, pi receives a message from pj at time T in �0 iff pi
receives the same message at time T from pj in �. By the

validity condition WV1, each process decides on some
process' input in �0. Clearly, processes in g cannot
distinguish between � and �0. Hence, processes in g
decide the same value in � as they decide in �0, and so
validity RV1 is satisfied in �. In other words, protocol A
solves SC�k; t; RV1� for t � k, contradicting Lemma 3.2.tu

Lemma 3.5. In the MP/CR model, there is no protocol for
SC�k; t; SV1�.

Proof. For a contradiction, assume that there exists such a
protocol A. Let � be an execution of A in which all
processes are correct and they all start with different
values. Let v a decision made by at least two processes
(there is always such a decision since k < n). Because of
validity SV1, v is the input of some process pi, and since
all inputs are different only pi has v as input. Now con±
sider the run �0 that is the same as � except that process
pi fails right after sending its last message. Clearly � and
�0 are indistinguishable, and thus each process (maybe
with the exception of pi) makes the same decision in both
runs. Hence, in �0 value v is decided by at least one
process pj, j 6� i. But only pi has v as input and pi is not
correct in �0, and so validity SV1 is violated. tu

Lemma 3.6 In the MP/CR model, there is no protocol for
SC�k; t; SV2�, for t � k

2k�1n.

Proof. For a contradiction assume that there exists such a
protocol A. Consider first the case t � n

2 . Partition
the system into two non-intersecting sets of processes,
g, g0, each containing at least nÿ t processes (e.g.,
jgj � jg0j � n=2). This is always possible because
t � n=2. Let � be a run of A in which all processes are
correct, all start with different initial values denoted
v1; v2; . . . ; vn, and all communication between g and g0 is
delayed until after the decisions are made. We claim that
n values are decided in �. To see this, fix any process
pi 2 g, and consider a run �i constructed as follows. The
processes in g start with the same values as in �, and all
except pi crash after pi reaches a decision. All the
processes in g0 start with vi, but communication between
g and g0 is delayed until after pi makes a decision. By SV2,
pi must decide vi in �i, and by indistinguishability of �
from �i, pi must decide vi in �. Similarly, runs �0i can be
constructed for every process p0i 2 g0, and hence, all
processes must decide their own values in �. This
contradicts the hypothesis that A solves the problem (for
k < n).

Now consider the case t < n
2 . In this case, nÿ 2t > 0

and the condition t � n k
2k�1 is equivalent to k � nÿt

nÿ2tÿ 1.
Let g be a subset of the system containing nÿ t processes,
and let g1; . . . ; gb nÿtnÿ2tc be a partition of g into disjoint sets of
size at least nÿ 2t each. Let � be a run of A in which all
the processes are correct, communication between g and
the rest of the system is delayed until after all processes
have decided and, for each i, processes in gi start with a
distinct value vi. Fix i, and let pi 2 gi be some process.
Consider a run �i of A as follows: Processes in gi are
correct, all processes in g n gi are faulty, and crash after pi
decides. All communication between g and the rest of the
system is delayed until after pi decides. By SV2, pi must
decide vi, but since � is indistinguishable to pi from �i, pi
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must decide vi in �. Therefore, in �, at least b nÿtnÿ2tc
different values are decided on. This contradicts the
hypothesis that A solves the problem since
k � nÿt

nÿ2tÿ 1 < b nÿtnÿ2tc. tu

3.1.2 Protocols

In this section, we provide two protocols for the MP/CR
model.

PROTOCOL A. Each process broadcasts its input and waits
for nÿ t messages. If all nÿ t messages contain the same
value v, then the process decides v, else it decides a default
value v0.

Lemma 3.7. PROTOCOL A solves SC�k; t; RV2� in the MP/CR
model for t < kÿ1

k n.

Proof. We start by proving termination. The number of
actual failures is less or equal to t. Hence, there are at
least nÿ t correct processes. Thus, each correct process
eventually receives at least nÿ t messages and is able to
make a decision.

Now we prove agreement. By the sake of contra-
diction, assume that k� 1 values are decided. One of
them could be the default value, but at least k values,
different from the default value, are decided. By the
protocol, it is necessary that there be k disjoint sets
g1; g2; . . . ; gk, each consisting of at least nÿ t processes
such that each process in gi sends a value vi (with vi 6� vj
for i 6� j). Hence, there must be at least k�nÿ t�
processes. However, since t < kÿ1

k n, we have that
nÿ t > n=k, and that k�nÿ t� > n, which implies that
there must be more than n processes. This is impossible,
since we have n processes.

Finally, we prove validity. Assume that all processes
start with value v. Clearly, a process cannot receive two
different values, since v is the only value being sent.
Hence, by the protocol, each process that makes a
decision decides v. tu

PROTOCOL B. Each process broadcasts its input and waits
for nÿ t messages. One of these nÿ t messages is the
process' own message. If nÿ 2t messages contain the same
value as its own, say v, the process decides v, else it decides a
default value v0.

Lemma 3.8. PROTOCOL B solves SC�k; t; SV2� in the MP/CR
model for t < kÿ1

2k n.

Proof. We start by proving termination. The number of
actual failures is less than or equal to t. Hence, there are
at least nÿ t correct processes. Thus, each correct process
eventually receives at least nÿ t messages and is able to
make a decision.

Now we prove agreement. For the sake of contra-
diction, assume that k� 1 values are decided. One of
them could be the default value, but at least k values,
different from the default value, are decided. By the
protocol it is necessary that there be k disjoint sets
g1; g2; . . . ; gk, each consisting of at least nÿ 2t processes
such that each process in gi sends a value vi (with vi 6� vj
for i 6� j). Hence, there must be at least k�nÿ 2t�
processes. However, since t < kÿ1

2k n, we have that
k�nÿ 2t� > n, which implies that there must be more

than n processes. This is impossible, since we have
n processes.

Finally, we prove validity. Assume that all correct
processes start with value v. We have to prove that a
correct process decides v. Let p be a correct process.
First, we observe that since p starts with v it decides v
or v0. Hence, it suffices to prove that p receives at
least nÿ 2t messages with v. Among the nÿ t messages
p receives, at least nÿ 2t are from correct pro±
cesses. Hence, process p receives at least nÿ 2t messages
with v. tu

3.2 Message Passing Model with Byzantine Failures

In this section, we consider the message-passing Byzantine
(MP/Byz) model. In Section 3.2.1, we are concerned with
impossibilities, and in Section 3.2.2, we provide protocols.
Fig. 4 shows a graphical representation of the results.

For the MP/Byz model, the impossibility results and
protocols we have provided in this section leave a small gap
for the SC problem defined with validities WV2, RV2, and
SV2, and a substantial gap for SC�WV1�.

3.2.1 Impossibilities

In this section, we provide impossibility results for the
MP/Byz model. Clearly, the impossibilities proved for the
MP/CR model still hold. In particular, the impossibilities
for SC�SV1� and SC�WV1� are directly derived from the
corresponding ones for the MP/CR model. Next, we
provide additional impossibilities.

Lemma 3.9. In the MP/Byz model, there is no protocol that solves

SC�k; t;WV2, for t � k
2k�1n and t � k.

Proof. For a contradiction, assume that such a protocol A
exists. We distinguish two cases: 1) t � n=2 and 2)
t < n=2.

Consider case 1). Let v1; v2; . . . ; vt�1 be t� 1 different
values. Let � be a run of A constructed as follows: The
number of actual failures in � is f � nÿ tÿ 1. Let F be
the set of faulty processes and let p1; . . . pt�1 be the correct
processes. Process pi has input vi, for i � 1; 2; . . . ; t� 1.
Messages between any two correct processes are delayed
until all correct processes decide, that is, correct
processes communicate only with processes in F .

We now show that at least k� 1 values are decided in
�, which contradicts the hypothesis that A solves the
problem. For each i � 1; 2; . . . ; t� 1, consider a run �i
constructed as follows: All processes are correct, all have
input vi, and messages between processes not belonging
to F are delayed until all processes not in F decide. By
validity WV2, we have that in �i all processes must
decide vi. Process pi, for i � 1; 2; . . . ; t� 1, cannot
distinguish between � and �i, if in �, the members of
F behave as if they were correct and had vi initially.
Hence, pi has to decide the same value in both runs. We
have that process pi decides vi also in �. Since
v1; v2; . . . ; vt�1 are different, we have that t� 1 values
are decided in �. But t � k, hence at least k� 1 values are
decided in �.

Consider case 2). Since t < n=2, we have that
nÿ 2t > 0, and thus the condition t � k

2k�1n is equivalent
to nÿt

nÿ2t � k� 1. Then, we can partition the processes into
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k� 2 groups, the first k� 1 of which, denoted
g1; g2; . . . ; gk�1, each consists of at least nÿ 2t processes,
and the last of which, denoted F , consists of t processes.
Let � be a run of A constructed as follows. Let
v1; v2; . . . ; vk�1 be k� 1 different values. Processes in gi
start with vi, for i � 1; 2; . . . ; k� 1, and processes in F are
faulty. Processes in group gi communicate only within gi
and with processes in F . For each group gi, processes in
F behave as correct processes with input vi.

We now show that at least k� 1 values are decided in
�, which contradicts the hypothesis that A solves the
problem. For each i � 1; 2; . . . ; k� 1 consider a run �i
constructed as follows: All processes are correct, all have
input vi, and processes in group gi communicate only

within gi and with processes in F . By validity WV2, we
have that in �i, all processes must decide vi. Processes in
gi, for i � 1; 2; . . . ; k� 1, cannot distinguish between �
and �i.

Hence, they have to decide the same value in both
runs, and so processes in gi decide vi also in �. Since
v1; v2; . . . ; vk�1 are different, we have that k� 1 values are
decided in �. tu

Lemma 3.10. In the MP/Byz model, there is no protocol that

solves SC�k; t; RV1�.
Proof. For a contradiction, assume that such a protocol A

exists. Let �1 be a run of A in which all processes are

correct and each start with a different input value. Let
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v1; . . . ; vz be the set of values decided by correct
processes. Because A satisfies validity RV1, each of the
vi is the input of some process. Since z � k < n, we have
that there exists a value vi, 1 � i � z, decided by at least
two processes, say p1 and p2.

Let process q be the process whose input in �1 is vi.
Use A in the run �2 in which q is faulty but behaves as in
�1, claiming that vi is its input, but that it has v0i as its
input, with v0i different from vi and also from any other
input. Since correct processes cannot distinguish be-
tween �1 and �2, they have to decide on the same value.
We now distinguish two possible cases: 1) q is different
from both p1 and p2, or 2) q is p1 or p2. If q is different
from both p1 and p2, then both p1 and p2 are correct and
thus they decide on vi in �2. However, vi is not an input
value in �2. Hence, validity is violated. If q is p1

(respectively, p2) then p2 (respectively, p1) is correct
and thus decides vi in �2. However, vi is not an input
value in �2. Hence, validity RV1 is violated. This
contradicts the hypothesis that A solves SC�k; t; RV1�. tu

Lemma 3.11. In the MP/Byz model, there is no protocol for
SC�k; t; RV2�, for t � k

2�k�1�n.

Proof. (Similar to Lemma 3.6.) For a contradiction, assume
that such a protocol A exists. We distinguish two cases:
1) t < n=2 and 2) t � n=2.

Consider case 1. Since t < n=2, we have that
nÿ 2t > 0, and thus, the condition t � k

2�k�1�n is equiva-
lent to n

nÿ2t � k� 1. Then, we can partition the processes
in k� 1 groups each consisting of at least nÿ 2t
processes. Consider case 2. In this case, we partition
the processes in k� 1 groups each consisting of at least
one process.

In both cases, let g1; g2; . . . ; gk; gk�1 be the k� 1 groups
of processes. Let v1; . . . vk�1 be k� 1 different values and
consider a run � constructed as follows. All processes are
correct, processes in group gi start with vi. For each
group gi, there is a set of t processes not belonging to gi,
call it Fi, such that, for each i, communication is allowed
only among processes in gi and Fi until all processes
have decided. Notice that the cardinality of gi [ Fi is at
least nÿ t in both cases.

We now show that k� 1 values are decided in �,
which contradicts the hypothesis that A solves the
problem. Fix i, 1 � i � k� 1, and consider run �i. There
are exactly t faulty processes and these processes are
those in Fi. Processes in gi are correct. All processes start
with vi. Faulty processes behave exactly as they do in
run �. Processes in gi communicate only with other
processes in gi and Fi. We can use A to solve SC�k; t; RV2�,
and by the validity RV2, we have that all correct
processes, and in particular those in gi, decide vi.
Processes in gi cannot distinguish run � and run �i.
Hence, since they decide vi in �i, they have to decide vi
also in �. It follows that k� 1 values are decided in �. tu

3.2.2 Protocols

In this section, we provide protocols for the MP/Byz model.
We start by observing that PROTOCOL A, used for the crash
model, solves SC�WV2� also in the MP/Byz model, though
only for a restricted range of values of k and t.

Lemma 3.12. PROTOCOL A solves SC�k; t;WV2� in the
MP/Byz model for t < n=2 and k � nÿt

nÿ2t� 1.

Proof. We start by proving termination. Since there are at
most t failures, correct processes are guaranteed to
receive at least nÿ t messages and thus they decide.

Next we prove agreement. To have a bound on the
number of possible decisions, we look at how many
values different from the default value can be decided.
Let f be the number of actual failures. We have that any
group of nÿ tÿ f correct processes that start with the
same value can be forced by the f faulty processes to
decide that value. Notice that since f � t < n=2 we have
that nÿ tÿ f � 1.

Hence, the number of decisions can be as big as the
number of possible disjoint groups of nÿ tÿ f correct
processes, plus one to take into account the default value.
There can be at most �nÿ f�=�nÿ tÿ f� such groups.
This function is an increasing function of f , and thus it
achieves its maximum value for f � t. Hence, the
number of different decisions we can have is at most
�nÿ t�=�nÿ 2t� � 1. Since k � �nÿ t�=�nÿ 2t� � 1, agree-
ment is satisfied.

Finally, we prove validity. Assume that all processes
are correct and start with v. Then, clearly v is the only
decision. tu

Lemma 3.13. PROTOCOL A solves SC�k; t;WV2� in the
MP/Byz model for t � n=2 and k � t� 1.

Proof. Termination and validity are as in the previous
lemma. Next, we prove agreement. Let f be the number
of actual failures. We distinguish two cases: 1) f �
nÿ tÿ 2 and 2) f > nÿ tÿ 2. In case 1, we have that for
any nÿ t messages received by a process, at least two of
them are sent by correct processes. Hence, for each
different value v 6� v0 decided by some process, at least
two correct processes have sent that value. Hence, no
more than n=2 values different from the default value v0

can be decided. Hence, at most n=2� 1 different values
can be decided in case 1. In case 2, the number of correct
processes, and thus the number of different decisions by
correct processes, is strictly less than t� 2.

Putting together the two cases, we can then conclude
that the number of different decisions is at most
maxfn=2� 1; t� 1g � t� 1 � k. tu

Next, we provide a generalized version of the ªechoº
protocol of Bracha and Toueg [11], which we call `-echo,
where ` � 2. (The 1-echo protocol is Bracha and Toueg's
echo protocol.) The `-echo protocols will be used to provide
a family of protocols for SC�SV2�.

`-echo protocol. To `-echo broadcast a message m, the
sender s sends the message hinit; s;mi to all other
processes. When a process p receives the first hinit; s;mi
from s, it sends the message hecho; s;mi to all other
processes. Subsequent hecho; s;mi messages from s are
ignored. If process p receives message hecho; s;mi from
more than �n� `t�=�`� 1� processes, then process p accepts
message m as sent by the sender process s.

Lemma 3.14. In a system with t < `n=�2`� 1�, if a sender s uses
the `-echo protocol to send a message m then:
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1. Correct processes accept at most ` different messages.
2. If s is correct, every correct process accepts m.

Proof. First we prove case 1. By sake of contradiction,

assume that correct processes accept `� 1 different

messages m1;m2; . . . ;m`�1. Then there must be `� 1

correct processes, say p1; p2; . . . ; p`�1, such that process pi
receives more than �n� `t�=�`� 1� echos with mi, for

each i � 1; 2; . . . ; `� 1. Thus there must be a total of more

than n� `t echos sent for the messages m1;m2; . . . ;m`�1.

Let f be the actual number of faulty processes. Since a

faulty process can send `� 1 different echos (it can echo

m1 to p1, m2 to p2, etc.) we have that strictly more than

n� `tÿ �`� 1�f � n� `f ÿ �`� 1�f � nÿ f echos are

sent by correct processes. This implies that at least one

correct process sent two different echos, which is not

possible.
Now we prove case 2. If the sender is correct, then it

sends an init message for m to all other processes. Any
correct process will receive this and broadcast an echo
message for m.

It is easy to verify that t � �n� `t�=�`� 1�; indeed
assuming t > �n� `t�=�`� 1� implies t > n, which is
impossible. Since there are at most t faulty processes
and t � �n� `t�=�`� 1�, no correct process accepts any
message other than m. Since there are at least nÿ t
correct processes, it is sufficient that nÿ t be strictly
greater than �n� `t�=�`� 1� in order to guarantee that
any correct process receives enough echo messages to be
able to accept m. Since t < `n=�2`� 1�, we have that
nÿ t > �n� `t�=�`� 1�. tu

The `-echo protocol is used to define a family of protocols

for SC�k; t; SV2� as follows:

PROTOCOL C�`�. Each process broadcasts its input using
the `-echo protocol and waits for nÿ t messages to be
accepted, where one of these nÿ t messages is the process'
own message. If nÿ 2t messages contain the same value v,
then the process decides v, else it decides a default value v0.

Lemma 3.15. PROTOCOL C�`� solves SC�k; t; SV2� in the

MP/Byz model for t < kÿ1
2k�`ÿ1n and t < `

2`�1n.

Proof. We start by proving termination. Since there are at

least nÿ t correct processes, by Lemma 3.14, each correct

process eventually accepts at least nÿ t messages

broadcast by `-echo and is able to make a decision.
Now we prove agreement. For a contradiction,

assume that k� 1 values are decided. One of them could
be the default value, but at least k values, different from
the default value, are decided. Let v1; . . . ; vk be these
values. To have a correct process pj decide value vi, it is
necessary (see protocol PROTOCOL C�`�) that there be a
set gi of at least nÿ 2t processes, such that process pj
accepts a value vi from each process in gi. Hence, the
overall number of values accepted by correct processes
with the `-echo protocol is at least k�nÿ 2t�. Each faulty
process can send ` of these values. Since there are at most
t faulty processes, the number of different senders is at
least k�nÿ 2t� ÿ �`ÿ 1�t. However, since t < kÿ1

2k�`ÿ1n, we
have that k > n��`ÿ1�t

nÿ2t , and thus k�nÿ 2t� ÿ �`ÿ 1�t > n,

which implies that there must be more than n processes,
a contradiction.

Finally, we prove validity. Assume that all correct
processes start with value v. We have to prove that a
correct process decides v.

Let p be a correct process. First, we observe that since
p starts with v, it either decides v or v0. Hence, it suffices
to prove that p receives at least nÿ 2t messages with v.
Among the nÿ t messages p receives, at least nÿ 2t are
from correct processes. Hence, process p receives at least
nÿ 2t messages with v. tu

Finally, we provide a protocol for SC�WV�1.

PROTOCOL D. Processes p1; p2; . . . ; pt�1 each broadcasts its
input value. A process that receives a value vi from pi,
i 2 f1; 2; . . . ; t� 1g, broadcasts an hecho; vi; pii message and
never echos a value for pi again. Each process p1; p2; . . . ; pk
decides on its own value. Every other process decides the
first value vi, i 2 f1; . . . ; t� 1g, for which it receives identical
hecho; vi; pii from nÿ t processes.

In PROTOCOL D, we say that a process accepts a value vi
from pi if it receives identical echos for vi from at least
nÿ t processes. We define the following functions:

V �n; t; f� � nÿ f if nÿ tÿ f � 0
t� 1ÿ f � fb nÿf

nÿtÿfc if nÿ tÿ f > 0

�
and

Z�n; t� � max
0�f�t

fminfV �n; t; f�; nÿ fgg:

Lemma 3.16. PROTOCOL D solves SC�k; t;WV1� in the
MP/Byz model for k � Z�n; t�.

Proof. We start by proving termination. At least one process
among p1; . . . ; pt�1 is correct, and at least nÿ t receive its
value and echo it. Hence, it is guaranteed that each
correct process receives at least one set of identical nÿ t
echo messages, and thus is able to decide.

Next, we prove validity. Assume that there are no
failures. Then all processes are correct, and thus the
values accepted by any process are input values. All
decisions are one of the accepted values. Hence, validity
WV1 is satisfied.

Finally, we prove agreement. We compute an upper

bound on the number of different decisions for each

possible value of f ; that is, the number of actual failures.

By definition, 0 � f � t. We distinguish two cases: 1) nÿ
tÿ f � 0 and 2) nÿ tÿ f > 0. In case 1, a correct process

may be forced to communicate only with faulty

processes. In this case we simply bound the number of

decisions with the number of correct processes, that is

nÿ f . In case 2, the total number of values that correct

processes accept from one faulty process is bounded by

b nÿf
nÿtÿfc. Indeed, a correct process accepts a value when

receiving at least nÿ t echos, at least nÿ tÿ f of which

are from correct processes. Thus, the total number of

values from p1; . . . ; pt�1 accepted by correct processes is

at most �t� 1ÿ f� � fb nÿf
nÿtÿfc; that is, the number of
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values sent by correct processes plus the number of

values that correct processes may be forced to accept

because of the Byzantine behavior of faulty processes.

Hence, the number of different decisions that we can

have is t� 1ÿ f � fb nÿf
nÿtÿfc. It is possible that this bound

is bigger than nÿ f . In such a case, we can bound the

number of different decisions by nÿ f . Summarizing the

two cases, we have that for any f , we bound the number

of decisions by nÿ f if nÿ tÿ f � 0, and by minft�
1ÿ f � fb nÿf

nÿtÿfc; nÿ fg if nÿ tÿ f > 0. The maximum

overall possible values of f is given by Z�n; t�. Hence, we

have that the number of decisions is always at most

Z�n; t�, as required. tu
We note that when t < n

3 , b nÿf
nÿtÿfc � 1 for all 0 � f � t,

and therefore, the protocol above guarantees agreement for

any k > t (see Fig. 4).

4 SHARED MEMORY MODELS

In this section, we consider SC in the shared memory

model. We assume that processes communicate by means of

a shared memory that provides single-writer multireader

atomic registers [22]. Here, ªsingle-writerº means that there

is a single designated process that is allowed write to the

variable; any other processÐeven if Byzantine faultyÐis

prohibited from writing to it. An atomic register provides

read and write operations that appear to occur sequentially,

i.e., the views of individual processes conform with some

sequential history of all performed operations [22].
The shared memory does not fail, though processes

accessing it may. We note that this model is motivated by

many recent middleware systems that provide shared

memory emulation using replication to mask the arbitrary

(Byzantine) failure of processes implementing these abstrac-

tions. These middleware systems generally guarantee that

shared objects themselves do not ªfail,º and hence, that

their integrity, safety properties, and access interfaces and

restrictions are preserved. Nevertheless, since legitimate

clients accessing these objects might fail arbitrarily, they

could corrupt the states of these objects in any way allowed

by the object interfaces.
We assume that the system is asynchronous; that is,

processes may take an arbitrary (but finite) time to execute a

step, and reads and writes may take an arbitrary (but finite)

time to complete.
The following simple transformation simulates any

protocol X for the message passing model using a shared

memory protocol (for both crash failures and Byzantine

failures):

SIMULATION. Whenever protocol X prescribes that p send
its ith message m to process q, p writes m to a single-writer
single-reader register designated for p's ith message to q; q
repeatedly reads the register until it reads a value there.
Similarly, when protocol X prescribes that p send its ith
broadcast m, p writes m to a single-writer multi-reader
register designated for p's ith broadcast; each process
repeatedly reads the register until it reads a value there.

Hence, every algorithm for MP/CR (similarly, MP/Byz)
works for the SM/CR (SM/Byz) model. In many cases,
however, direct algorithms for the shared memory model
cover wider areas of possibility, as detailed below.

Recall that the impossibility result of [9], [20], [30] (i.e.,
Lemma 3.2) also applies to the shared memory model
(SM/CR).

4.1 Shared Memory Model with Crash Failures

In this section, we consider the shared-memory crash
(SM/CR) model. In Sections 4.1.1 and Section 4.1.2, we
provide impossibility results and protocols, respectively.
Fig. 5 shows a graphical representation of the results.

Our impossibility results and protocols for the SM/CR
model leave a small gap for SC�SV2�.

4.1.1 Impossibilities

Lemma 4.1. In the SM/CR model, there is no protocol for
SC�k; t;WV1� for k � t.

Proof. (Similar to Lemma 3.4.) For a contradiction, assume
that there exists such a protocol A. We claim that A can
be used to solve SC�k; t; RV1� for t � k. To see why,
consider any run � in which f � t processes are faulty.
Let g be the set of correct processes in � and g0 be the set
of faulty processes.

Now consider a run �0 that is identical to � except that
all processes are correct and for each process pj in g0, any
invocation for a write operation after the time pj failed in
� is delayed until after all processes of g decide. That is,
for each pi 2 g, � and �0 are indistinguishable up to the
time when all processes in g decide in � (and thus in �0).
By the validity condition WV1, each process decides on
some process' input in �0. Since processes in g cannot
distinguish between � and �0, they must decide the same
value in � as they decide in �0, and so validity RV1 is
satisfied in �. In other words, protocol A solves
SC�k; t; RV1� for t � k, contradicting Lemma 3.2. tu

Lemma 4.2. In the SM/CR model, there is no protocol for
SC�k; t; SV1�.

Proof. (Similar to Lemma 3.5.) For a contradiction, assume
that there exists such a protocol A. Let � be an execution
of A in which all processes are correct and they all start
with different values. Let v a decision made by at least
two processes (there is always such a decision since
k < n). Because of validity SV1, v is the input of some
process pi and since all inputs are different only pi has v
as input.

Use A in the run �0 that is the same as � except that
process pi crashes right after completing its last write
operation.

Clearly, � and �0 are indistinguishable and thus each
correct process makes the same decision in both runs.
Hence, in �0 value v is decided by at least one process pj,
j 6� i. But only pi has v as input and pi is not correct in �0,
and so validity SV1 is violated. tu

Lemma 4.3. In the SM/CR model, there is no protocol for
SC�k; t; SV2� when t � n

2 and t � k.

Proof. By sake of contradiction, assume that such a
protocol A exists. Use A in a run � constructed as
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follows: Processes p1; p2; . . . ; pt�1 each start with a

different value, say v1; v2; . . . ; vt�1. Let g be the set of

these processes and g0 be the remaining processes.

Processes in g0 do not take any step until after all

processes in g decide. Now, for each i � 1; 2; . . . ; t� 1,

consider a run �i constructed as follows: Processes in g

start with the input as in � and processes in g0 all start

with vi. Processes in g, except process pi, fail after pi

decides. Note that since t � n=2, we have that fpig [ g0
has at least nÿ t processes, and hence a decision by pi

must eventually be reached.

Use A to solve the problem in �i. By validity SV2,

since all correct processes start with vi, all have to decide

vi, and in particular process pi decides vi.

Since �i and � are indistinguishable for pi, pi has to

decide vi also in �. This is true for each i � 1; 2; . . . ; t� 1.

Hence, at least t� 1 different values are decided in �. But

t� 1 > k. This contradicts the fact that A solves the

problem. tu

4.1.2 Protocols

In this section, we sketch protocols for the SM/CR model.

As mentioned above, since the SM/CR model is ªmore
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powerfulº than the MP/CR model any protocol for the
MP/CR model can be transformed into a protocol for the
SM/CR model using SIMULATION (see also chapter 17 of
[25]). Hence, all of the protocols we have seen in
Section 3.1.2 can be used here (after the transformation).

Lemma 4.4. SIMULATION of Chaudhuri's protocol [13] solves
SC�k; t; RV1� in the SM/CR model for t < k.

The solvability region of SC�RV1�, as well as that of SC�WV1�,
is as for the message passing model. For other validity
conditions we can do better. Next, we give a protocol for
SC�RV2�.

PROTOCOL E. Each process writes its own input into a
single-writer register. The process then scans the registers of
all other processes exactly once. If all the values it reads in
this single scan (including its own) are identical, it decides
that value, otherwise, it decides v0 (a default value).

Lemma 4.5. PROTOCOL E solves SC�k; t; RV2� in the SM/CR
model for k � 2.

Proof. Termination is trivial. Next, we prove agreement. Let
v be the value written in the first write to complete. Every
process reads v in its scan and decides either v or v0.
Therefore, at most two values are decided. Next, we
prove validity. If all of the processes start with the same
value v, then this is the only value written and so the
only possible decision value. tu

The next two lemmas consider SC�SV2�.
Lemma 4.6. SIMULATION of PROTOCOL B solves SC�k; t; SV2�

in the SM/CR model for t < kÿ1
2k n.

PROTOCOL F. Each process writes its own input into a
single-writer register. The process then scans the registers of
all other processes repeatedly, until in a single scan of all
registers it successfully reads from some r � nÿ t process'
registers. If r � t (possible if n � 2t), then the process
decides on its own input. Otherwise, i.e., if r � t� i for
some i � 1, then it decides its own input if at least i registers
of these r (including its own) hold its input value, and a
default value v0 otherwise.

Lemma 4.7. PROTOCOL F solves SC�k; t; SV2� in the
SM/CR model for all k > t� 1.

Proof. We first prove termination. Every correct process
eventually writes its register. Thus, every correct process
will eventually scan the registers reading at least nÿ t
values. Next we prove agreement. A process can decide
its own value v 6� v0, either if it reads r � t values or if it
reads r � t� i values and at least i values are equal to v.

Since a process writes before scanning the registers,
we have that as long as less than t� 1 writes have been
completed, less than t� 1 values have been decided
upon, and each of these values is one of the values
written. Fix the point in the execution where t� 1 writes
have been completed and let v1; v2; . . . ; vt�1 be the values
written. From that point on, any decided value, different
from the default value, must be one of v1; . . . ; vt�1.
Indeed, from that point on, any process that scans the
memory will read r � t� i values, with i � 1; and since,
in order to decide a value v, at least i of them must be

equal to v, it must be that v is one of v1; . . . ; vt�1 (there are
only iÿ 1 other values). Hence, considering also the
default value, we have that at most t� 2 values are
decided.

Finally, we prove validity. If all the correct processes
start with the same input value v, then whenever t� 1 or
more values are read by a correct process, at most t of
them differ from v and therefore the process decides v.tu

4.2 Shared Memory Model with Byzantine Failures

In this section, we consider the SM/Byz model where

processes may exhibit Byzantine behavior. In Section 4.2.1

and Section 4.2.2, we provide impossibility results and

protocols, respectively. Fig. 6 shows a graphical representa-

tion of the results provided in this section.
Our impossibility results and protocols leave a substan-

tial gap for SC�WV1�, and very small gaps for SC�SV2� and

SC�RV2�.

4.2.1 Impossibilities

In this section, we provide impossibility results for the

SM/Byz model. Clearly, the impossibilities proven for the

SM/CR model still hold. In particular, the impossibilities

for SC�WV1�, SC�SV2�, and SC�SV1� are directly derived from

the corresponding ones for the SM/CR model. Next, we

provide additional impossibilities.

Lemma 4.8. In the SM/Byz model, there is no protocol for

SC�k; t; RV1�.
Proof. The proof is the same as the one of Lemma 3.10

(that proof does not rely on the fact that the system

is MP). tu
Lemma 4.9. In the SM/Byz model, there is no protocol for

SC�k; t; RV2� for t � n
2 and t � k.

Proof. (Similar to Lemma 4.3.) By sake of contradiction,

assume that such an algorithm A exists. Use A in a run �

constructed as follows. Processes p1; p2; . . . ; pt�1 each

start with a different value, say v1; v2; . . . ; vt�1. Let g be

the set of these processes and g0 be the remaining

processes. Processes in g0 do not take any step until after

all processes in g decide (since t � nÿ t, processes in g

must decide).
Now consider for each i � 1; 2; . . . ; t� 1 a run �i

constructed as follows: All processes start with vi but
processes in g, except pi, are faulty and pj 2 g, for each
j 6� i, claims to have vj as input. Processes in g0 do not
take any step until after pi decides. Clearly, runs �i and �
are indistinguishable for pi.

Use A to solve the problem in �i. Since t � n=2, pi
must decide even if communicating only with faulty
processes. By validity RV2, since all processes start with
vi, all correct have to decide vi, and in particular, process
pi decides vi.

Since �i and � are indistinguishable for pi, pi has to
decide vi also in �. This is true for each i � 1; 2; . . . ; t� 1.
Hence, at least t� 1 different values are decided in �. But
t� 1 > k. Hence, A does not solve the problem and there
is a contradiction. tu
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4.2.2 Protocols

In this section, we sketch protocols for the SM/Byz model.

Here again we use the SIMULATION to transform some of

our protocols for the MP/Byz to the SM/Byz model.

Lemma 4.10. PROTOCOL E solves SC�k; t;WV2 for k � 2 in the

SM/Byz model.

Proof. Termination is trivial. Next, we prove agreement. Let

v be the value written in the first write by a correct

process to complete. Every correct process reads v in its

scan (because a process writes before reading and v is the

first write by a correct process to complete) and decides

either v or v0. Therefore, at most two values are decided.

Next, we prove validity. If all of the processes start with

the same value v and all are correct, then v is the only

value written and so the only possible decision value. tu

The next two lemmas consider SC�SV2�.
Lemma 4.11. SIMULATION of PROTOCOL C(`) solves

SC�k; t; SV2� in the SM/Byz model for t < kÿ1
2k�`ÿ1n and

t < `
2`�1n.

Lemma 4.12. PROTOCOL F solves SC�k; t; SV2� in the

SM/Byz model for k > t� 1.

Proof. (Similar to Lemma 4.7.) We first prove termination.

Every correct process eventually writes its register. Thus,
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every correct process will eventually scan the registers,
reading at least nÿ t values.

Next, we prove agreement. A process can decide its
own value v 6� v0, either if it reads r � t values in a scan
or if it reads r � t� i values in a scan and at least i values
are equal to v. Since a process writes before scanning the
registers, we have that as long as less than t� 1 writes by
correct processes have been completed, less than t� 1
values other than the default have been decided upon by
correct processes, and each of these values is one of the
values written by correct processes. Fix the point in the
execution where t� 1 writes by correct processes have
been completed and let v1; v2; . . . ; vt�1 be the values
written. From that point on, any value decided by a
correct process, except the default value, must be one of
v1; . . . ; vt�1. Indeed, from that point on, any process that
scans the memory will read r � t� i values with i � 1,
and since in order to decide a value v at least i of them
must be equal to v, it must be that v is one of v1; . . . ; vt�1

(there are only iÿ 1 other values). Hence, considering
also the default value, we have that at most t� 2 values
are decided.

Finally, we prove validity. If all the correct processes
start with the same input value v, then whenever t� 1
or more values are read by a correct process, at most
t of them differ from v, and therefore the process
decides v. tu

Finally, we also can use PROTOCOL D in the SM/Byz by
means of the SIMULATION. Recall that Z�n; t� has been
defined before Lemma 3.16.

Lemma 4.13. SIMULATION of PROTOCOL D solves
SC�k; t;WV1� in the SM/Byz model for k � Z�n; t�.

5 CONCLUSIONS

We have considered several variations of the k-set con-

sensus problem. The variations were obtained by consider-

ing six different validity conditions. One of these variations

is the k-set consensus problem introduced by Chaudhuri

and considered by several papers in the literature (the other

variations have been considered for the classical, i.e., k � 1,

consensus problem). We showed that the exact definition of

the validity condition is crucial in order to discern solvable

from impossible. Known results have demarcated this line

for the problem considered by Chaudhuri. In this paper, we

have provided this line for the other variations of the

problem. The results show that this line changes depending

on the exact definition of the validity condition. We have

considered each of the variations in the message-passing

and the shared memory models and for each of these

models we considered crash and Byzantine failures. In most

of the cases, we were able to exactly demarcate the line

between solvable and impossible; in a few cases there is still

a gap to be filled.
In most of our protocols for the Byzantine failure model,

processes are required to ªhelpº other processes by
continually participating in the (echo) protocol. Therefore,
termination is satisfied only in the sense that correct

processes decide, but not in the sense that they are

guaranteed to eventually stop. It is currently open whether

there exists terminating protocols for the same settings.
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