
Efficient Update Diffusion in Byzantine Environments

Dahlia Malkhi
School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

dalia@cs.huji.ac.il

Michael K. Reiter
Bell Labs, Lucent Technologies
reiter@research.bell-labs.com

Ohad Rodeh
School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

orodeh@cs.huji.ac.il

Yaron Sella
School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

ysella@cs.huji.ac.il

Abstract

We present a protocol for diffusion of updates among
replicas in a distributed system where up to b replicas may
suffer Byzantine failures. Our algorithm ensures that no
correct replica accepts spurious updates introduced by fault-
y replicas, by requiring that a replica accepts an update on-
ly after receiving it from at least b + 1 distinct replicas (or
directly from the update source). Our algorithm diffuses up-
dates more efficiently than previous such algorithms and, by
exploiting additional information available in some practi-
cal settings, sometimes more efficiently than known lower
bounds predict.

Keywords: FT Algorithms, Security, FT Communication.

1. Introduction

Update diffusion is a process by which an update that is
initially known to a portion of a distributed system is even-
tually made known to the rest of the system. Diffusion is
generally distinguished from similar problems like reliable
broadcast in that it is a periodic (round-based) process that
occurs asynchronously to the introduction of updates to the
system. As such, it tends to be a background process that
should incur minimal overhead.

Here we study diffusion in a setting in which the compo-
nents of the system, here called replicas, may suffer Byzan-
tine failures. The foremost requirement that we place on
our protocol is that correct replicas accept no spurious up-
dates introduced by faulty replicas, but rather accept only
updates introduced from a trusted update source. Assuming
that there is a known upper bound b on the number of fault-
y replicas, and that each legitimate update is introduced at

� > b correct replicas, this can be achieved if each replica
accepts only updates received from b+1 distinct replicas (or
from the update source itself). To our knowledge, the only
prior work that has investigated this scenario is [MMR99].
That work introduced two measures of a diffusion method:
delay is the expected number of rounds from when an up-
date is introduced and until it is accepted by all replicas,
and fan-in is the expected maximum number of messages
that need to be handled by any replica in any round. That
work proved a lower bound of 
(nb=�) on the product of
delay and fan-in for a system of n replicas, and proposed
two algorithms for diffusion.

In this paper we describe a diffusion algorithm for this
setting that scales better than the algorithms of [MMR99]
and that, in certain practical settings, exploits additional in-
formation about the system to perform better than the

(nb=�) lower bound would predict. Like one of the al-
gorithms of [MMR99], here called “MMR Tree”, our algo-
rithm structures diffusion along a tree of logical nodes, each
containing some number ` � 2b+ 1 replicas. In such tree-
based diffusion, delay of an update is strongly influenced
by the rounds required before b+1 correct replicas of some
node become active for the update. MMR Tree makes this
happen quickly by the replicas in the root of the tree more
often being the target for propagation than others. However,
this results in considerably greater fan-in on these replicas,
and the product of delay and fan-in suffers accordingly.

Here we explore two alternatives to cause sufficiently
many correct replicas of some tree node to quickly become
active for each update. In contrast to MMR Tree, however,
our approaches yield fan-in very close to one. In the first
alternative, we observe that in some systems, the possible
sets of replicas to which updates are introduced are few and
highly predictable. In this case, we simply align these sets
with the tree nodes, so that the update introduction itself ac-



tivates sufficiently many correct replicas in a node for that
update. The delay and fan-in of this algorithm are inherited
directly from our tree construction, which is very efficient
(in particular, yielding a fan-in of one).

In the second approach, each replica intersperses its
rounds of tree propagation with rounds in which it uses the
contents of an update to select a node to which it will prop-
agate for ` (interspersed) rounds. In this way, once every
replica at which an update is introduced has used that up-
date for selecting a node, sufficiently many correct repli-
cas of that node will become active for that update within
a fixed number of rounds. By utilizing a pseudorandom
function for selecting a node as a function of the update,
no one node is targeted significantly more than others, and
so the fan-in remains very close to one. Furthermore, while
updates await their diffusion to the selected node, they are
piggybacked on other propagation messages to different n-
odes, and hence can simultaneously diffuse from multiple
nodes in the tree. Thus, unless the arrival rate is prohibitive-
ly high, each update quickly becomes active in one or more
nodes.

The rest of this paper is structured as follows. Section 1.1
relates our work to previous work. We present our system
model and necessary definitions in Section 2. We describe
our method of tree diffusion in Section 3. We then address
the issue of activating sufficiently many replicas in a single
node in Section 4. We conclude the paper with results of
simulations of our algorithm in Section 5.

1.1. Related Work

Diffusion is a fundamental mechanism for driving repli-
cated data to a consistent state in a highly decentralized
system. Our work optimizes diffusion protocols in sys-
tems where arbitrary failures are a concern, and may form
a basis of solutions for disseminating critical information
in any survivable system. Specifically, application of our
Byzantine diffusion methods can be found in the Fleet sys-
tem [MR00], which provides a persistent object reposito-
ry that survives the corruption of a threshold of the server-
s comprising it using Byzantine quorum replication tech-
niques [MR98, MRW00]. A key property of Fleet in re-
lation to the diffusion method introduced here is that each
update is initially introduced in Fleet to a subset of servers
exceeding the presumed resilience threshold b of the sys-
tem. Other, similar applications might be found in any se-
cure storage system which is highly decentralized, e.g., In-
termemory [GY98], and various implementations of the E-
ternity service [And96, WRC00].

As mentioned above, the study of Byzantine diffusion
was initiated in [MMR99]. Prior to that paper, previous
work on update diffusion focused on systems that can suf-
fer benign failures only. Notably, Demers et al. [DGH+87]

performed a detailed study of epidemic algorithms for the
benign setting, in which each update is initially known at
a single replica and must be diffused to all replicas with
minimal traffic overhead. One of the algorithms they stud-
ied, called anti-entropy and apparently initially proposed in
[BLNS82], was adopted in Xerox’s Clearinghouse project
(see [DGH+87]) and the Ensemble system [BHO+99]. Sim-
ilar ideas also underly IP-Multicast [Dee89] and MUSE (for
USENET News propagation) [LOM94]. The main differ-
ence between diffusing updates in a system that exhibits be-
nign failures only as opposed to a Byzantine environment
is that in the latter case, an update received from b or fewer
replicas cannot be trusted. Therefore, techniques by which
more than b replicas corroborate each update must be em-
ployed.

Prior studies of update diffusion in distributed systems
that can suffer Byzantine failures have focused on single-
source broadcast protocols that provide reliable communi-
cation to replicas and replica agreement on the broadcast
value (e.g., [LSP82, DS83, BT85, MR97]), sometimes with
additional ordering guarantees on the delivery of updates
from different sources (e.g., [Rei94, CASD95, MM95] and
[KMM98, CL99]). The problem that we consider here is
different from these works in the following ways. First, in
these prior works, it is assumed that one replica begins with
each update, and that this replica may be faulty—in which
case the correct replicas can agree on an arbitrary update.
In contrast, in our scenario we assume that at least a thresh-
old � > 1 of correct replicas begin with each update, and
that only these updates (and no arbitrary ones) can be ac-
cepted by correct replicas. Second, these prior works focus
on reliability, i.e., guaranteeing that all correct replicas (or
all correct replicas in some agreed-upon subset of replicas)
receive the update. Our protocols diffuse each update to
all correct replicas only with some probability that is de-
termined by the number of rounds for which the update is
propagated before it is discarded. Our goal is to devise dif-
fusion algorithms that are efficient in the number of rounds
until the update is expected to be diffused globally and the
load imposed on each replica as measured by the number of
messages it receives in each round.

2. Preliminaries

Following the system model of [MMR99], our system
consists of a universe S of n replicas to which updates are
introduced over time. Up to some known threshold b of the
replicas could be faulty; a faulty replica can deviate from its
specification arbitrarily (Byzantine failures). Replicas that
always satisfy their specifications are correct. We do not
allow the use of digital signatures by replicas, and hence,
our model is the full Byzantine model (versus the stronger
“Byzantine with authentication” model, c.f., [CASD95]).



Replicas can communicate via a completely connected
point-to-point network. Communication channels between
correct replicas are reliable and authenticated, in the sense
that a correct replica pi receives a message on the commu-
nication channel from another correct replica pj if and only
if pj sent that message to pi.

Our work is concerned with the diffusion of updates a-
mong the replicas. Each update u is introduced to an initial
set Iu of at least � � b + 1 correct replicas (i.e., jIuj �
2b + 1), and is then diffused to other replicas via message
passing. The goal of a diffusion algorithm is to make all
correct replicas active for u, where a replica p is active for
u if p 2 Iu or if p has received u from b+ 1 distinct repli-
cas. In order to prevent the diffusion of updates introduced
spuriously by faulty replicas, a replica p does not send u to
another replica until p is active for u.

Our diffusion protocols proceed in synchronous rounds.
For simplicity, we assume that each update arrives at each
replica in Iu simultaneously, i.e., in the same round at each
replica in Iu. In each round, each replica selects one other
replica to which it sends all updates for which it is active.
A replica receives and processes all messages sent to it in a
round, before the next round starts. We consider the follow-
ing two measures of quality for diffusion protocols:

Delay: For each update, the delay is the worst-case expect-
ed number of rounds from the time the update is in-
troduced to the system until all correct replicas accept
the update. Formally, let �u be the round number in
which update u is introduced to the system, and let �up
be the round in which a correct replica p accepts up-
date u. The delay is E[maxp;Cf�up g� �u], where the
expectation is over the random choices of the algo-
rithm and the maximization is over correct replicas p,
all failure configurations C containing no more than
b failures, and all behaviors of those faulty replicas.
In particular, maxp;Cf�up g is reached when the faulty
replicas send no updates, and so this is the behavior
we assume from them when analyzing delay.

Fan-in: The fan-in measure, denoted by F in, is the ex-
pected maximum number of messages that any cor-
rect replica receives in a single round from correct
replicas under all possible failure scenarios. Formal-
ly, let �ip be the number of messages received in round
i by replica p from correct replicas. Then the fan-in
in round i is E[maxp;Cf�ipg], where the maximum
is taken with respect to all correct replicas p and al-
l failure configurations C containing no more than b
failures. Amortized fan-in is the expected maximum
number of messages received over multiple rounds,
normalized by the number of rounds. Formally, a k-
amortized fan-in starting at round l is
E[maxp;Cf

Pl+k
i=l �

i
p=kg]. We emphasize that fan-in

and amortized fan-in are measures only for messages
from correct replicas.

The following bound presents an inherent tradeoff be-
tween delay and fan-in, for the case that the initial set Iu
is arbitrarily designated (i.e., any choice of � replicas is e-
quiprobable), independently from the diffusion algorithmA
then:

Theorem 2.1 ([MMR99]) Denote byD the algorithm’s de-
lay, and by F in its D-amortized fan-in. Then DF in =

(bn=�), for b � 2 logn.

The implication of Theorem 2.1 is that the delay can be
decreased by increasing the fan-in. Unfortunately, in some
cases this might be unacceptable. Theorem 2.1 introduces a
new measure for the quality of a diffusion algorithm, name-
ly DF in, and raises the question: can the prediction of The-
orem 2.1 regarding this metric be somehow circumvented?
One contribution of the present work is an affirmative an-
swer to this question. This is achieved by exploiting addi-
tional information often available in practical systems, as an
integral part of the diffusion algorithm.

3. Tree propagation

In this section we introduce a tree-based propagation al-
gorithm. While this algorithm does not guarantee finite de-
lay, we extend it in Section 4 to provide finite delay. It thus
serves as the basis for the propagation algorithms that con-
stitute the main contribution of this paper.

In this algorithm, the universeS of replicas is partitioned
into nonintersecting nodes N0; : : : ; Nn=`, each containing
` � 2b + 1 replicas. (We assume `jn for simplicity of
presentation.) These nodes are arranged in a balanced d-
ary tree. Let parent(i), child(i; 1); : : : ; child(i; d) denote
the parent and d children of Ni, respectively. One or more
of these can be undefined (?) for nodes missing a parent
and/or children.

In addition, to each node Ni is associated a static prop-
agation schedule �i, which is some (0-indexed) permuta-
tion of hparent(i); child(i; 1); : : : ; child(i; d)i. Propagation
schedules satisfy the constraint that for each i; i0 2 f0; : : : ;
n=`g and j 2 f0; 1; : : : ; dg, if �i(j) 6= ? and �i(j) =
�i0(j), then i = i0. That is, for no two distinct nodesNi; Ni0

are �i(j) and �i0 (j) the same (and defined). For example,
to satisfy this constraint it suffices to choose schedules such
that �i(j) = Ni0 , �i0 (j) = Ni. Intuitively, �i0 (j) deter-
mines the node to which the replicas in Ni propagate during
rounds specified by j.

More precisely, propagation takes place in epochs of 2b+
1 consecutive rounds each. During epoch e, the replicas in
nodeNi send updates to the replicas of node �i(e mod (d+
1)), so that each replica in �i(e mod (d+1)) is targeted by



2b + 1 replicas from Ni during the epoch. Furthermore,
at every round, each replica receives updates from exactly
one other replica. More specifically, suppose the replicas
in node Ni are labeled pi;0; : : : ; pi;`�1. Then, these con-
straints can be satisfied if during round r, 0 � r < 2b+ 1,
of epoch e, replica pi;j propagates to pi0;j0 where Ni0 =
�i(e mod (d+1)) and j0 = (j + r) mod `. (This schedule
could be trivially optimized to ensure that in each round, ev-
ery replica sends to and receives from the same other repli-
ca).

Several properties of this algorithm are important for its
use in Section 4. First, by construction, it maintains a fan-in
of one: the same replica is never targeted by two different
replicas in the same round. Second, suppose we define a
node to be active for update u if all the correct replicas in
that node are active for u. Then, we have the following
result:

Proposition 3.1 If a node is active for u by round r, then
all correct replicas are active for u by round r + 2(2b +
1)(d+ 1) logd(n=`).

Proof: Once a nodeNi is active for u, all correct replicas in
each of its neighboring nodes becomes active for u within
(d+1)(2b+1) rounds, since each replica in a neighboring
node is the propagation target of b+1 correct, active replicas
inNi during those (d+1)(2b+1) rounds. Since in the worst
case, Ni is a leaf node, u must propagate all the way to the
root of the tree and back down to the other leaves, i.e., twice
the depth of the tree, or 2 logd(n=`). As a result, the total
number of rounds before u is active at all correct replicas
is at most (d + 1)(2b + 1) � 2 logd(n=`) = 2(2b + 1)(d +
1) logd(n=`).

We note that despite Proposition 3.1, the delay of this
algorithm is not finite: it is possible that no node ever be-
comes active for u. We thus extend this algorithm in Sec-
tion 4 to ensure that some node eventually does become ac-
tive for u.

4. Activating a tree node

Our main goal in this section is to extend the algorithm of
Section 3 to ensure finite delay—specifically, forcing some
node to become active for each update u—without increas-
ing the fan-in of the algorithm significantly. There are any
number of ways to accomplish this goal, such as by inter-
spersing rounds of the algorithm in Section 3 with rounds of
a known, finite-delay propagation algorithm (e.g., [MMR99]).
However, this would provide little advantage over using these
known, finite-delay propagation algorithms only.

Rather, the strategies we investigate here to ensure that
some node becomes active for each update are derived from

common practical scenarios. By exploiting additional infor-
mation found in many practical settings, we obtain finite-
delay diffusion algorithms that perform well in many com-
mon cases, and even better than the lower bounds of
[MMR99] would predict. In one case, the additional infor-
mation that we exploit are limitations on the collection of
initial sets Iu to which updates u can be introduced. In the
second case, we presume a low arrival rate of updates and
develop an optimized propagation protocol for this case.

4.1. Limited initial sets

Consider a system in which updates are known to be in-
troduced at one of only relatively few possible initial sets;
specifically, Iu is drawn from a collection of sets fQ1; : : : ;
Qmg where m � �

n
�

�
. This additional information may

permit an utterly trivial solution to the problem of ensuring
that some node becomes active for each update: if the tree
nodes can be arranged so that each Qi contains some tree
node, then the initial update to Iu will automatically make
a node active for u. The delay of the resulting propagation
algorithm is then at most 2(2b+1)(d+1) logd(n=`) as pre-
dicted in Proposition 3.1, and the fan-in remains equal to
one.

More generally, if each Qi intersects some tree node in
2b+1 replicas (and thus, in at least b+1 correct ones), then
the initial update to Iu will automatically activate b+1 cor-
rect replicas in some tree node. In this case, we employ an
algorithm Pi for a node Ni containing b + 1 correct active
replicas to activate the remaining replicas in Ni. The algo-
rithm Pi can simply consist of ` rounds of propagation, in
which the replicas of node Ni target each other in a round
robin fashion. It suffices then for Pi to eventually execute
at each node Ni for the tree diffusion protocol of Section 3
to terminate. To this end, we interleave the execution of
the Pi algorithm (of ` rounds) with the execution of the
rounds of the tree protocol. We call rounds of the former
“self-rounds” and rounds of the latter “tree-rounds”. Dur-
ing self-rounds, replicas of node Ni execute algorithm Pi,
and during tree-rounds, replicas execute the tree protocol.
If the fraction of self-rounds is R, and so the fraction of
tree-rounds is 1� R, then the delay until u becomes active
at all correct replicas is at most 1

R` +
1

1�R2(2b + 1)(d +
1) logd(n=`).

One scenario in which initial sets are limited in this way
is when updates are introduced at a quorum of replicas. An
example of such a system is Fleet [MR00], a distributed
object storage infrastructure that uses replication to mask
Byzantine replica faults. Due to its anticipation of Byzan-
tine replica faults, each update is introduced at a quorum of
replicas as defined by a masking quorum system [MR98],
i.e., any two quorums intersect in at least 2b + 1 replicas.
Moreover, propagation is employed in Fleet to diffuse up-



Figure 1. The M-grid construction [MRW00],
n = 7� 7; b = 3, with one quorum shaded.

dates from the original quorum where they are introduced to
the rest of the replicas [MMR99]. Several masking quorum
systems are known that can be exploited in Fleet and that
suffice for our new propagation method.

One example is the M-Grid construction of [MRW00].
In this construction, replicas are arranged in a logical

p
n�p

n grid. A quorum consists of any choice of
p
b+ 1 rows

and
p
b+ 1 columns (e.g., see Figure 1), which ensures the

requisite (2b + 1)-intersection between any two quorums
provided that b <

p
n=2. In this case, choosing tree nodes

so that each row of the grid contains at least one tree node
suffices to yield the desired propagation algorithm. Since
each quorum contains some tree node, the performance is
simply that predicted by the tree protocol.

Another, more complex example, is the Recursive-
Threshold (RT) construction of [MRW00]. In this construc-
tion, the replicas are arranged as the leafs of an m-ary se-
lection tree, where each leaf contains m replicas. Quorums
are constructed as recursive choices of k-out-of-m children
of nodes, starting from the root up to the leaves, and select-
ing k-out-of-m replicas from each selected leaf (see Fig-
ure 2). Denoting the height of the selection-tree by h, this
construction ensures that every pair of quorums intersects
in (2k�m)h replicas, and hence this construction tolerates
b = ((2k�m)h� 1)=2 Byzantine failures. For the RT sys-
tem, we choose our propagation tree nodes to be sub-trees
of the RT selection-tree, of height `o, such that `o is the
minimal height that satisfies k`o � 2b+1. In this way, each
RT quorum intersects some tree node in 2b + 1 replicas,
and the requirements of our protocol are satisfied. The total
delay predicted for this method is O( 1Rm

`o + 1
1�R2(2b +

1)(d+ 1) logd
n

m`o ). Since m`o � O(b2), we have that the
delay is O(b(b+ log n

b )).

3 of 4

3 of 43 of 4 3 of 4 3 of 4

Figure 2. An RT(4; 3) system of depth h = 2,
with one quorum shaded.

4.2. Low update arrival rate

In this subsection we describe a second approach to en-
suring that some node eventually becomes active for each
update u. While this approach always ensures that some
node becomes active for u, it offers an advantage in delay
over other approaches primarily when the arrival rate of up-
dates is low. Unlike the approach of Section 4.1, it works
equally well regardless of the initial sets to which updates
may be introduced, however, it does not improve the asymp-
totic behavior of the DF in bound.

This approach employs a function u2n that maps each
update u to some node Ni of the tree. Consider the protocol
�p;u for a replica p 2 Iu consisting of the following steps: p
computes Ni = u2n(u), chooses an integer j 2 f1; : : : ; `g
uniformly at random, and then performs ` rounds of prop-
agation in which it propagates to replica pi;(j+r) mod ` in
round r, r = 0; : : : ; ` � 1. The approach of this section
requires each p 2 Iu to eventually execute �p;u for each
update u such that p 2 Iu. As a result, node u2n(u) will
eventually become active for u.

We integrate execution of �p;u rounds with rounds of
the tree protocol as follows; we refer to the former as “�-
rounds”, and to the latter as “tree-rounds”. Each p keeps a
queue of updates introduced to it directly (“direct updates”).
During tree-rounds, p executes the tree protocol, treating
direct updates as any other update for which it is active.
During �-rounds, it executes rounds of protocol �p;u for
the update u at the head of its queue (if there is one). Once
�p;u is complete—i.e., after ` �-rounds with u at the head
of the queue—it dequeues u from the queue and henceforth
treats u like any other update for which it is active.

The benefit of this algorithm under low update arrival
rates is easy to illustrate in the extreme case of only one
update u being introduced into the system in isolation. In
this case, a tree node becomes active for u within ` �-
rounds, i.e., the ` rounds of �p;u for each p 2 Iu. Then,
by Proposition 3.1, all correct replicas will be active for u
in 2(2b+1)(d+1) logd(n=`) tree-rounds. If the fraction of
�-rounds is R, and so the fraction of tree-rounds is 1 � R,



then the rounds until u becomes active at all correct replicas
is at most

1

R
`+

1

1�R
(2(2b+ 1)(d+ 1) logd(n=`))

R can be tuned to minimize this delay for a given choice of
`. Unfortunately, however, the effects of this tuning can be
lost as the load on the system grows, as we show in Sec-
tion 5.

The fan-in of this approach is no longer identically one,
since multiple replicas may target a single replica in the
same round (specifically, in �-rounds). However, an amor-
tized fan-in very close to one can be achieved if u2n is a
pseudorandom function, as will be shown in Section 5.

We recall the following lower bound known about the delay
of any propagation method:

Theorem 4.1 ([MMR99]) The delay of any diffusion algo-
rithm A is 
(b log n

� ).

When � � b, choosing ` = 2b + 1 for our method yields
asymptotically optimal delay under low load.

5. Simulation results

In order to shed light on the performance of our protocols
in practice, in this section we present the results of simula-
tions of our protocols in varying system sizes and under var-
ious rates of update arrival. We consider a system in which
update arrival is a Poisson process with a rate of � updates
per round. The parameters we vary in our exploration are
the number n of replicas and the arrival rate �. We measure
two sets of experiments: In one, the initial sets to which
updates are introduced are random choices of a quorum in
the M-Grid quorum system. In the other, the initial sets are
random selections of b+1 replicas. We fix the maximum as-
sumed number b of replica failures in all of our simulations
to either b = 2 or b = 5, and the node size ` = 2b+ 1. It is
important to note that our simulation did not model the ac-
tual failures of replicas. Rather, it simulates a system which
could tolerate up to b failures, should such failures occur.

Our simulations focus on the MMR Tree algorithm as
our point of comparison. Our simulation of MMR Tree em-
ploys the same node size as our method. As discussed in
Section 1, MMR Tree quickly activates b+ 1 correct repli-
cas in the root node for each update by making replicas in
the root more likely to be selected as any replica’s target
of propagation in each round. Specifically, as the MM-
R Tree algorithm is described in [MMR99] and simulated
here, each replica targets some replica in the root node in
25% of the rounds on average. To draw as direct a com-
parison as possible with our algorithms, when simulating
our algorithm of Section 4.2, we designate 25% of rounds

as �-rounds, and the other 75% of rounds as tree-rounds.
For the algorithm of Section 4.1, the initial set included al-
l the replicas of a specific tree-node, hence there was no
need to interleave self-rounds with tree-rounds. The MMR
Tree algorithm also uses update batching, that is, whenever
a replica needs to send an update to another replica, it scans
its queue for other updates intended for the same replica,
and sends them all in a single batch (i.e., message). Again,
to keep the comparison on similar grounds, we implement-
ed an identical optimization in our two new algorithms.

The results of our simulations are shown in Figures 3–
8. Figures 3 and 4 illustrate the delay (D) and the delay
times fan-in (DF in) of the algorithm of Section 4.1 when
b = 2 and updates are introduced to a quorum in the M-Grid
quorum system of [MRW00] (and tree nodes are arranged
so that each quorum includes at least one full tree node).
Figure 6 illustrates D and DF in for the algorithm in Sec-
tion 4.2 when � = 5, b = 2 and updates are introduced
to � = b + 1 = 3 randomly selected replicas. Figures 6–
8 illustrate the same measures as Figures 3–5 for the case
b = 5. Each plotted point is the result of averaging the mea-
sure (D or DF in) for the first 2000 updates to be accepted
at all replicas.

The primary point we wish to convey with these graphs
is that our protocols vastly outperform MMR Tree in DF in,
in all cases studied, as shown in the right side of each fig-
ure. Though our protocols in some cases have inferior de-
lay, their improvement in DF in result from the fact that our
protocols hold F in at or very close to one. In contrast, due
to the increased load suffered by replicas in the root node
in MMR Tree, F in for that algorithm grows as a function
of the system size; e.g., see Figures 3, 6, 6 and 8. Even for
a constant system size of n � 100, the amortized fan-in is
already significant and renders MMR Tree substantially in-
ferior to our protocols in this measure (see Figures 4 and 7).

6. Conclusion

In this paper we have explored a tree-based propagation
method for Byzantine environments, and utilized additional
information available in certain practical settings to achieve
propagation with an asymptotically lower product of delay
and fan-in than the lower bound of [MMR99] would pre-
dict. In one case, we exploit additional information about
the sets of replicas to which an update can be initially in-
troduced. In the second, we exploit an assumed low arrival
rate of updates. In both cases, we are able to achieve amor-
tized F in very close to 1, and delay that is asymptotically
logarithmic in the system size n. We also presented simu-
lations confirming that our algorithms offer a better product
of delay and fan-in than previous algorithms.



15

20

25

30

35

40

100 200 300 400 500 600 700

ro
un

ds

n

delay

ours
MMR

0

50

100

150

200

250

300

350

100 200 300 400 500 600 700

m
es

sa
ge

s

n

delay x fan-in

ours
MMR

Figure 3. � = 5, b = 2, updates introduced to M-Grid quorums (Section 4.1)

15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

0 10 20 30 40 50 60 70 80 90 100

ro
un

ds

lambda

delay

ours
MMR

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

m
es

sa
ge

s

lambda

delay x fan-in

ours
MMR

Figure 4. n = 100, b = 2, updates introduced to M-Grid quorums (Section 4.1)

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

ro
un

ds

n

delay

ours
MMR

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600 700 800

m
es

sa
ge

s

n

delay x fan-in

ours
MMR

Figure 5. � = 5, b = 2, updates introduced to � = 3 random replicas (Section 4.2)



0

50

100

150

200

250

300

100 200 300 400 500 600 700 800 900

ro
un

ds

n

delay

ours
MMR

0

500

1000

1500

2000

2500

3000

3500

100 200 300 400 500 600 700 800 900

m
es

sa
ge

s

n

delay x fan-in

ours
MMR

Figure 6. � = 5, b = 5, updates introduced to M-Grid quorums (Section 4.1)

21

22

23

24

25

26

27

28

29

0 10 20 30 40 50 60 70 80 90 100

ro
un

ds

lambda

delay

ours
MMR

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

m
es

sa
ge

s

lambda

delay x fan-in

ours
MMR

Figure 7. n = 121, b = 5, updates introduced to M-Grid quorums (Section 4.1)

100

150

200

250

300

350

400

450

500

550

600

100 200 300 400 500 600 700 800 900

ro
un

ds

n

delay

ours
MMR

0

1000

2000

3000

4000

5000

6000

7000

100 200 300 400 500 600 700 800 900

m
es

sa
ge

s

n

delay x fan-in

ours
MMR

Figure 8. � = 5, b = 5, updates introduced to � = 6 random replicas (Section 4.2)



References

[And96] R. J. Anderson. The Eternity Service. In Proceed-
ings of Pragocrypt ’96, 1996.

[BHO+99] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xi-
ao, M. Budio and Y. Minsky. Bimodal multicast.
ACM Transactions on Computer Systems 17(2):41–
88, 1999.

[BLNS82] A. D. Birrell, R. Levin, R. M. Needham, and
M. D. Schroeder. Grapevine, An exercise in dis-
tributed computing. Communications of the ACM
25(4):260–274, 1982.

[BT85] G. Bracha and S. Toueg. Asynchronous consen-
sus and broadcast protocols. Journal of the ACM
32(4):824–840, October 1985.

[CL99] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation,
1999.

[CASD95] F. Cristian, H. Aghili, R. Strong, and D. Dolev.
Atomic broadcast: From simple message diffusion
to Byzantine agreement. Information and Computa-
tion 18(1), pages 158–179, 1995.

[Dee89] S. E. Deering. Host extensions for IP multicasting.
SRI Network Information Center, RFC 1112, Au-
gust 1989.

[DGH+87] A. Demers, D. Greene, C. Hauser, W. Irish,
J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the 6th
ACM Symposium on Principles of Distributed Com-
puting, pages 1–12, 1987.

[DS83] D. Dolev and R. Strong. Authenticated algorithms
for Byzantine agreement. SIAM Journal of Comput-
ing 12(4):656–666, 1983.

[GY98] A. Goldberg and P. Yianilos. Towards an archival
intermemory. In Proceedings IEEE ADL, pages
147–156, 1998.

[KMM98] K. P. Kihlstrom, L. E. Moser and P. M. Melliar-
Smith. The SecureRing protocols for securing
group communication. In Proceedings of the 31st
IEEE Annual Hawaii International Conference on
System Sciences, vol. 3, pages 317–326, January
1998.

[LOM94] K. Lidl, J. Osborne and J. Malcome. Drinking from
the firehose: Multicast USENET news. In Proceed-
ings of the Usenix Winter Conference, pages 33–45,
January 1994.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzan-
tine generals problem. ACM Transactions on Pro-
gramming Languages and Systems 4(3):382–401,
July 1982.

[MM95] L. E. Moser and P. M. Melliar-Smith. Total ordering
algorithms for asynchronous Byzantine systems. In
Proceedings of the 9th International Workshop on
Distributed Algorithms, Springer-Verlag, Septem-
ber 1995.

[MMR99] D. Malkhi, Y. Mansour, and M. K. Reiter. On dif-
fusing updates in a Byzantine environment. In Pro-
ceedings of the 18th IEEE Symposium on Reliable
Distributed Systems, pages 134–143, October 1999.

[MR97] D. Malkhi and M. Reiter. A high-throughput secure
reliable multicast protocol. Journal of Computer Se-
curity 5:113–127, 1997.

[MR98] D. Malkhi and M. Reiter. Byzantine quorum sys-
tems. Distributed Computing 11(4):203–213, 1998.

[MR00] D. Malkhi and M. K. Reiter. An architecture for sur-
vivable coordination in large-scale systems. IEEE
Transactions on Knowledge and Data Engineering
12(2):187–202, March/April 2000.

[MRW00] D. Malkhi, M. Reiter, and A. Wool. The load and
availability of Byzantine quorum systems. SIAM
Journal of Computing 29(6):1889–1906, 2000.

[Rei94] M. K. Reiter. Secure agreement protocols: Reliable
and atomic group multicast in Rampart. In Proceed-
ings of the 2nd ACM Conference on Computer and
Communications Security, pages 68–80, November
1994.

[WRC00] M. Waldman, A. D. Rubin, and L. F. Cranor.
Publius, A robust, tamper-evident and censorship-
resistant web publishing system. In Proceedings of
the 9th USENIX Security Symposium, 2000.


