IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 12, DECEMBER 1998

1351

Resilient Authentication
Using Path Independence

Michael K. Reiter and Stuart G. Stubblebine, Member, IEEE

Abstract—Authentication using a path of trusted intermediaries, each able to authenticate the next in the path, is a well-known
technique for authenticating channels in a large distributed system. In this paper, we explore the use of multiple paths to redundantly
authenticate a channel and focus on two notions of path independence—adisjoint paths and connective paths—that seem to increase
assurance in the authentication. We give evidence that there are no efficient algorithms for locating maximum sets of paths with
these independence properties and propose several approximation algorithms for these problems. We also describe a service we
have deployed, called PathServer, that makes use of our algorithms to find such sets of paths to support authentication in PGP

applications.

Index Terms—Security, authentication, public key certificate, certificate path, independent paths.

1 INTRODUCTION

A UTHENTICATING the source of a request in a computer
system is a necessary ingredient to enforcing access
controls. A request is received on some channel, such as a
network, and determining the set of principals (e.g., users,
processes, or computers) that could have initiated that re-
quest is called authenticating the channel (or request).
Authentication in centralized computer systems is simpli-
fied by the presence of a central authority (the operating
system) that controls all channels and knows what princi-
pals can initiate requests on what channels. In a distributed
system there typically is no such central authority for this
information. As the distributed system gets larger and more
diverse, the difficulty of reliably authenticating a channel
can increase substantially.

This difficulty arises in secure communication systems
such as Privacy Enhanced Mail [11] and many systems that
use the PGP [26] public key management and encryption
tools. A message in these systems would typically include a
digital signature to enable the recipient of the message to
determine the user who sent the message. Following [13],
the channel in this case is the public key that can be used to
verify the signature on the message, and authenticating the
channel means determining the principals that could have
generated that signature. Because there is no global author-
ity for this information, the user is asked to defer to a
“path” of channels ¢y, ..., ¢, (other public keys) such that:

1) The user believes it can authenticate c;,

2) Each¢;, i < ¢, has uttered a statement (a certificate) re-
garding for what principal c;,; speaks, and

3) ¢, has uttered a statement regarding for what princi-
pal the channel of interest to the user speaks.

¢ M.K. Reiter is with Bell Laboratories, 600 Mountain Ave., Room 2A-342,
Murray Hill, NJ0O7974. E-mail: reiter@research.bell-labs.com.

¢ S.G. Stubblebine is with AT&T Labs—Research, 180 Park Ave., Room
B235, Florham Park, NJ 07932. E-mail: stubblebine@research.att.com.

Manuscript received 22 Apr. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 104922,

If the user is willing to trust the statements of each channel
on the path, then the user authenticates the target channel
according to the statement that ¢, made about it. To our
knowledge, using such paths for authentication was first
proposed in [2] (for authentication based on shared keys)
and, in addition to being used in the aforementioned sys-
tems, has been supported in [3], [8], [13], [25].

When a single path of channels is used to authenticate a
target channel, the authentication is vulnerable to the com-
promise of any channel on that path. That is, if any c; in the
path provides a false statement regarding c;,4, then there is
no reason to believe that a proper semantics for the target
channel is reached. One way to bolster assurance in the
channel authentication is to limit the length of the path
used, thus limiting the number of intermediate principals
that must be trusted. A second way is to employ multiple
paths and to authenticate the target channel using informa-
tion obtained via each of these paths. This approach is in-
spired by prior work in nullifying Byzantine-faulty sources
of information by consulting multiple “independent”
sources of information and accepting as true the informa-
tion returned by a majority of them (e.g., [21]). Here, our
multiple sources of information are multiple paths of
bounded length resulting in statements about the target
channel.

In this paper, we explore what it means for multiple
length-bounded paths to be independent in this context. We
focus on two related notions of independence. In the first, a
set of bounded paths are “independent” if they are pairwise
disjoint, i.e., if no two paths share a common channel. We
call this a set of bounded disjoint paths. Bounded disjoint
paths are appealing because no channel is relied on multi-
ple times in the authentication of the target channel. In the
second, a set of bounded paths are “independent” if the
removal of k channels is necessary to disconnect all of them.
We call this a set of bounded k-connective paths. Bounded k-
connective paths are robust to the compromise of any k — 1
channels: If some k —1 channels are compromised and, thus,
the statements they contribute are forgeries (and should be

0018-9340/98/$10.00 © 1998 IEEE

1352

disregarded), there is still a bounded path containing none
of these compromised channels to the target channel. Note
that a set of k bounded disjoint paths is a set of bounded k-
connective paths, but, in general, a set of bounded k-
connective paths will not be disjoint.

We have built a web service, called PathServer, that sup-
ports authentication of PGP public keys using our bounded
disjoint paths and bounded connective paths paradigms. If
bounded disjoint paths are requested, PathServer locates a
set of such paths from the requesting principal (or, more pre-
cisely, a channel that is known to speak for it) to the target
channel in our database of PGP certificates (a “keyring” in
PGP parlance). If bounded connective paths are requested,
PathServer returns a value k and a set of bounded k-
connective paths from the requesting principal to the target
channel. Though PathServer currently supports only PGP,
our work can also be applied to other public key manage-
ment systems (e.g., those based on X.509) as well as to sys-
tems that employ other types of channels (e.g., shared keys,
protected physical links, or a combination of these [13]).

While user reaction to PathServer suggests that these in-
dependence concepts are useful in bolstering assurance in
authentication, they also have limitations. First, our insis-
tence on independent paths is an effort to avoid depending
heavily on a few principals in the process of authenticating
a target channel. However, since computer systems can
identify principals only syntactically, in general it is outside
the scope of a system to detect channels controlled by prin-
cipals whose actions are closely correlated (e.g., two close
friends). Thus, we are forced to settle for the aforemen-
tioned syntactic notions of independence and to appeal to
the user for assistance in pruning potentially correlated
paths further. Second, the complexities of finding a maxi-
mum set of bounded disjoint paths (i.e., a set of largest car-
dinality) and of finding the maximum k for which there ex-
ists a set of bounded k-connective paths provide strong evi-
dence that neither can be performed in polynomial time.
Specifically, the former is NP-hard and the latter is coNP-
hard [6]. Moreover, the foremost practical instances of these
problems that we are targeting (i.e., public key certification
systems such as PGP) induce graphs of sufficient size to
make this a severe limitation. We thus propose heuristics to
approximate solutions to these problems.

The rest of this paper is structured as follows. We for-
malize our problems in Section 2. We present and evaluate
our approximation algorithms for finding a maximum set
of bounded-length disjoint paths in Section 3. We extend
these algorithms to compute a set of bounded k-connective
paths for an approximately maximum k in Section 4. In
Section 5, we describe the PathServer application that we
have built using the algorithms in this paper. We discuss
related work in Section 6, and we conclude in Section 7.

2 PROBLEM STATEMENT

We borrow concepts and terminology from [13] to formalize
our problem. Our system consists of a set of principals (e.g.,
people, machines, roles), some of which are channels (e.g.,
network addresses or encryption keys). Channels are the
only principals that can make statements directly. For the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 12, DECEMBER 1998

purposes of this paper, the only statements that we consider
are statements of the form “c, says ¢, 0 P,” where ¢; and c,
are channels, P is a principal, and O denotes the “speaks
for” relation. Intuitively, ¢, 0 P means that if a statement
emanates from c, (i.e., ¢, “says” the statement), then the
statement can be treated as if P said it. ¢; says ¢, 0 P is then

c,’s statement that this is true. We model our system with a
directed graph G = (V, E), where V is a finite set of channels
(nodes) and E is a finite set of edges denoting statements of

the form described above. The statement ¢, says ¢, O P,

where ¢;, ¢, O V, is represented by an edge c, E ¢, in E,
which we often abbreviate by ¢, - ¢, when P is not impor-
P Pj
tant. We represent multiple statements ¢, - Cpy oeer Cg . c,
made by the same channel ¢, about the same channel ¢, by a
P, O...0OP;

single statement ¢, - ch. This graph is perhaps most
easily pictured in the context of a “web” of public keys. In
this case, V would be a set of public keys and E would be a
set of certificates. Nevertheless, the graph can be inter-
preted to include any channels and appropriate statements.

The problem at hand is for a principal to authenticate
some channel t O V of interest, called the target. For sim-
plicity, we assume that the principal has sole control of
some channel s O V, called the source, and that any state-
ments that the principal is willing to utter regarding other
channels are represented by edges in E emanating from s.
We assume that the principal has access to all of G. As mo-
tivated in Section 1, it is our thesis that multiple independ-
ent paths from s to t, each of at most some specified length,
can help the principal to authenticate t. More precisely, a

path from sto t in G is a sequence of edgess - ¢; - ... C,

- t for some ¢ = 0, where each ¢; O {s, t} and where i Z j im-

plies ¢; # ¢;. The length of a paths - ¢; - ... - ¢, - tis ¥,
and a path is b-bounded if its length is at most b. In our first
interpretation of “independent,” we employ disjoint paths.
More precisely, two paths from s to t, say

1 1 2 2
$-C - ..-C —-tands-c - ..-¢ -t are

disjoint if ¢ # ¢ foralli, 1<i<€;, andallj, 1<j<€,. In this
case, our problem becomes the following:

Bounded Disjoint Paths (BDP):
Given: A directed graph G, distinguished nodes s and t,
and a path bound b.
Problem: Find a maximum set of mutually disjoint b-
bounded paths fromsto t.

To capture our second notion of “independence,” we say
that a set D of paths from s to t, where s — t 00 D, is k-
connective if the smallest subset of V\{s, t} that intersects
every path in D is of size k. That is, the paths in D are k-
connective if it is necessary to remove k nodes (other than s
and t) to disconnect them all. The b-connectivity from sto t is
the maximum k for which a set of b-bounded k-connective
paths from s to t exists (with the edge s — t removed if it
exists). Our second problem is then:

REITER AND STUBBLEBINE: RESILIENT AUTHENTICATION USING PATH INDEPENDENCE

Bounded Connective Paths (BCP):
Given: A directed graph G, distinguished nodes s and t,
and a path bound b.
Problem: Find the b-connectivity from s to t, say k, and a
set of b-bounded k-connective paths from s to t.

Note that if s £ t, then any k disjoint b-bounded paths
from s to t are k-connective, but, in general, a set of b-
bounded k-connective paths from s to t are not disjoint. For
comparisons of these concepts on undirected graphs, see
[5], [15].

Solutions to BDP and BCP can be useful in supporting
authentication of a target channel. However, it is up to in-
dividual users’ policies to determine exactly how they are
used. Given a set of disjoint or connective paths

P

1 1 !
S - C - - C -t
Py
2 2
) B
i i

the requesting principal might authenticate t by, e.g., re-
quiring consensus among the paths, i.e., that P, =P, = ... =

P;. If there exist P, P, that are different, then this indicates a

discrepancy in what different paths reported about t that
must be resolved by the requesting principal’s policy (e.g.,

adopting a P; common to k + 1 disjoint paths overcomes k
compromised channels).

3 BOUNDED DISJOINT PATHS

We now turn to an algorithmic consideration of the prob-
lems we presented in Section 2, beginning with Bounded
Disjoint Paths (BDP). BDP has been previously studied
from a complexity-theoretic point of view, and has been
proved to be NP-hard [9].l Thus, there is little hope of
finding an efficient solution to BDP, and we turn to finding
approximation algorithms for this problem. By an “ap-
proximation algorithm,” we intuitively mean an efficient
algorithm that usually comes close to the actual answer; a
more careful definition and discussion can be found in [6].
The only prior work of which we are aware on approxima-
tion algorithms for BDP is due to Ronen and Perl [20]. They
proposed an algorithm and showed empirically that it per-
forms well on small random undirected graphs of 50 nodes.
Their algorithm runs in O(bznzm) time and O(bznm) space
with a path bound b on a graph with n nodes and m edges.
We describe a class of algorithms in this section that is
much simpler than that in [20] and offers superior time and
space complexity. In one instantiation, our algorithm runs
in O(nm) time and O(n + m) space. Another runs in O(bnm +

bn’ log(bn)) time and O(bn + m) space. In order to motivate

1. More precisely, BDP remains NP-hard for any fixed b = 4, but can be
solved in O(m\/;) time on a graph with n nodes and m edges if b < 4 using

maximum matching and maximum flow techniques [9]. The related prob-
lem of finding a requested number of disjoint paths of minimum total
length can be solved in polynomial time [22].

1353

our algorithms, we first present another algorithm that runs

in n"°® time and space and, thus, is exponential in b. While
we introduce this first algorithm primarily for motivational
purposes, it can be argued to be “efficient” in the following
senses. First, if P # NP, then there is no algorithm for solv-
ing BDP exactly that is polynomial in n since BDP remains
NP-hard for any fixed b = 4 [9]. Put another way, a user that
always chooses a fixed bound b = 4 will observe polynomial
growth in the running time of this algorithm as a function
of the graph size, whereas there is no known algorithm that
can solve BDP exactly for a fixed b = 4 and provide
polynomial growth as a function of graph size if P # NP.
Second, in most cases, the size of b that users desire is rea-
sonably small.

Let bdp(G, b, s, t) denote the cardinality of a maximum
set of disjoint paths from s to t of length at most b in graph
G = (V, E). Each of the algorithms A that we present here
produce a set with cardinality A(G, b, s, t) of disjoint paths
from s to t of length at most b, where

1) A(G, b, s, t) <bdp(G, b, s, t), and
2) if bdp(G, b, s, t) >0, then A(G, b, s, t) > 0.

The first of these properties (which is also required by the
definition of an approximation algorithm [6]) indicates that
our algorithms are fail-secure, in the sense that they will
never return a set of paths from a source channel s to a tar-
get channel t that exaggerates the actual maximum set of
disjoint paths from s to t. In addition to the above proper-
ties, each algorithm uses heuristics to search for a maximum
set of paths. In Section 3.3, we give empirical evidence that
our algorithms perform well on one type of interesting
graph. However, this data also indicates that the error of
our algorithms is not constant, but rather increases as a
function of problem size. The following theorem provides a
small amount of justification.

THEOREM 1. If P # NP, then no polynomial approximation algo-
rithm A for BDP can guarantee bdp(G, b, s, t) = A(G, b, s, t)
< K for a fixed constant K.

PRrROOF. Suppose, for a contradiction, that there is such an
algorithm A and constant K. We use A to construct a
polynomial time algorithm for solving BDP exactly.
Consider a problem instance (G = (V, E), b, s, t), and
assume without loss of generality that s 4 t and
that K is an integer. The algorithm constructs a new
problem instance (G', b, s, t) where G’ consists of K + 1
“copies” of G with the exception that s and t are rep-
resented in G' only once. That is, the nodes for G' are

U {1 ..ok +1]}

cV\{s,t}

V' ={s,t} 0

and the edge set E' is defined by

ofi] - ¢[i] @<jsK+1) ifc,c, Ofst}

£ andc, - ¢, OE

s -] (I<j<K+1) ifs - cOE

oi] -t (1<jsK+1) ifc - tOE
G' can be constructed in polynomial time, since K is
fixed.

1354

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 12, DECEMBER 1998

1.Set I=Qand U =V.

2. Let v be a node in U with the minimum degree in the
subgraph induced by U. Set I = I U {v} and U =
U\ ({v}u{uelU: (v,u) € E}).

3.If U = (, then halt and return I. Otherwise, go to 2.

Fig. 1. Johnson’s approximation algorithm for MIS on undirected graph
G=(V, B).

Note that bdp(G', b, s, t) = (K + 1)bdp(G, b, s, t).
Moreover, an exact solution to BDP on the instance
(G, b, s, t) can be obtained by running A on (G', b, s, t)
and taking the largest subset of paths that A selected
from any single copy of G, since A can find less than a
maximum set of paths on at most K copies of G. O

A further characterization of approximation limitations
for the Bounded Disjoint Paths problem is a topic for future
research. We now turn to presenting our algorithms.

3.1 Independent Set

The first approximation algorithm for BDP that we present
was influenced by work on approximation algorithms for a
different problem, called Maximum Independent Set.

Maximum Independent Set (MIS):
Given: An undirected graph G = (V, E).
Problem: Find a set V' O V of largest cardinality such that
no two nodes in V' are joined by an edge in E.

Any set V' O V such that no two nodes in V' are joined is
said to be an independent set. Such a set V' of largest cardi-
nality is said to be a maximum independent set.

MIS is a well-known NP-hard problem (see [6]). In [10],
Johnson presented a simple approximation algorithm for
this problem; the algorithm is detailed in Fig. 1. Intuitively,
it constructs an approximately maximum independent set
by repeating the following step: Find the node v with the
smallest degree (i.e., that has the fewest neighbors), add v
to the independent set, and delete v and all neighboring
nodes from the graph. Choosing the node with the smallest
degree minimizes the number of candidate nodes elimi-
nated by each choice of node to include in the independent
set.

This approximation algorithm for MIS suggests the fol-
lowing approximation algorithm for BDP: Given an in-
stance (G, b, s, t) of BDP, we construct an undirected graph
G whose nodes denote paths from s to t of length at most b
in G, and where two nodes in G are connected if and only if
the paths they represent in G are not disjoint. Since there is
a one-to-one correspondence between independent sets in
G and sets of disjoint paths from s to t of length at most b in
G, we can employ Johnson’s algorithm on G to find an ap-
proximate solution to the BDP problem on G. It is instruc-
tive to note that, by applying Johnson’s algorithm to G, we
are choosing paths from s to t in G that intersect the fewest
other paths from s to t.

The proof of [10, Theorem 3.1] shows that the algorithm
in Fig. 1 is guaranteed to find an independent set of size at

least | log, fi] in any undirected graph G = (\7,@), where

1.Set U =V and
[{s—>t}
D_{@

2.Find apathp=5s 2 ¢; = ... 2 ¢ >, 1< 1<
b, in the subgraph induced by U such that ®(p) is the
minimum over all such paths. If no such path exists,
then halt and return D.

3.Set D=DU{p} and U =U\ {c1,...,ce}, and go to 2.

ifs—>tek
otherwise

Fig. 2. Approximation algorithm for BDP on instance (G = (V, E), b, s, t).

A = |\7| and k is the smallest integer such that V can be par-

titioned into k independent sets (and, thus, the size of the
maximum independent set is at least [fi/k]). We obtain the

analogous result for BDP as a corollary, i.e., where i is the
number of paths from s to t of length at most b. While this
guarantee is weak, the algorithm seems to perform much

better in practice, as we show in Section 3.3. The dominant

cost in this algorithm is constructing G, which requires n°®

time and space if G = (V, E) and |V] = n. As we argued
previously, growth that is exponential in b is not necessarily
a limiting factor for the applications that we are consider-
ing. Nevertheless, in the following section, we explore algo-
rithms whose complexity grows polynomially in both n and b.
In the rest of the paper, we refer to the algorithm of this
section as Independent Set.

3.2 Approximating Independent Set

The algorithms in this section can be viewed as algorithms
that approximate the behavior of the Independent Set algo-
rithm of the previous section. Recall the intuition behind
that algorithm: At each step, choose the path from s to t that
intersects the fewest other paths. The main cost in that algo-
rithm is determining how many other paths that each path
intersects; this is precisely the information contained in the

undirected graph G. So, a natural direction to speeding up
this approach is to avoid this determination explicitly and
to use other information to indicate at each step the path
that is likely to intersect the fewest other paths.

Given an instance (G = (V, E), b, s, t) of BDP, our algo-
rithms then will proceed to efficiently find a path fromsto t
of length at most b that we have reason to believe will inter-
sect the fewest other paths from s to t of length at most b.
We will add this path to the set of disjoint paths we are
generating, delete it and all incident edges from the graph,
and repeat. For the moment, we abstract the function we
use to choose a path as an evaluation function ®(p) on
paths p; i.e.,, we choose the path p that minimizes ®(p).
Thus, our algorithm executes as shown in Fig. 2.

In this paper, we consider the following evaluation
functions for locating a path that is “likely” to intersect the
fewest other paths.

1) Length: In each iteration of the algorithm, choose the
path from s to t of shortest length (in the range [1, ..., b]),
i.e., ®(p) is the length of p. Intuitively, shorter paths
have fewer nodes to share with other paths and, thus,
should be likely to intersect fewer other paths. The

REITER AND STUBBLEBINE: RESILIENT AUTHENTICATION USING PATH INDEPENDENCE

1355

TABLE 1
GRAPHS USED IN TESTING
‘ graph || G | G1o | Gis | Gao | G5 | G'3o | Gy |
nontrivial nodes 1,105 1,846 | 2477 | 3,011 3,487 3,881 4,636
nontrivial edges 768 1,518 | 2,265 | 2,978 3,687 4,406 5,809
connected | b=5 1,498 | 6,906 | 20,639 | 45,341 | 73,299 | 117,081 | 204,776
node pairs | b=10 || 1,652 | 12,324 | 50,515 | 92,994 | 170,771
b=15 | 1,652 | 14,263 | 54,522 | 95,115

multiply b=5 10 242 | 2,010 | 5,692 9,509 17,847 | 33,079
connected | b= 10 12 430 6,240 | 14,184 | 22,649
node pairs | b =15 12 463 | 6,726 | 14,514

shortest path from s to t can be found in O(m) time
using breadth-first search, where m = |E].

2) Degree: Forapathp=s - ¢; -» ... » ¢, — t, the degree
of p is defined as

deg(p) =) deg(c),
1<ise

where the deg(c;) denotes the degree of (i.e., the num-
ber of edges incident on) c;. In each iteration of the al-
gorithm, choose the path from s to t of length at most
b with the smallest degree. Thus, ®(p) = deg(p). Intui-
tively, paths with lower degree offer fewer opportu-
nities for other paths to cross them. The path of length
at most b from s to t with the smallest degree can be
found in O(bm + bn log(bn)) time where n = | V] and
m =] E|, using a variation of Dijkstra’s shortest path
algorithm [4].

3) Random: Prior to executing the algorithm of Fig. 2, as-
sign a random weight w(c) to each ¢ O V. Define the
weightof apathp=s - ¢; - ... - ¢, > tas

w(p) = zw(ci)'
1<ise
Then, let ®(p) = w(p). There is little intuition as to why
this choice of ® should yield a path that intersects few
other paths, and it is included primarily as a point of
comparison for our empirical evaluation in Section 3.3.
The path p minimizing ®(p) can be found in O(bm +
bn log(bn)) time, using a similar variation of Dijkstra’s
shortest path algorithm.

Unlike the Independent Set algorithm of Section 3.1, the
algorithm of Fig. 2, combined with any of the choices of
@(p) described above, can offer no nontrivial guarantee of
the cardinality of the set of disjoint paths that it will locate.
This is because, for any of these choices for @, it is possible
to construct classes of graphs that will foil this algorithm (in
the case of Random, almost all of the time), causing it to re-
turn a set of disjoint paths of cardinality at most one for
some s and t regardless of the actual number of disjoint
paths there are from s to t. The advantage of this algorithm,
however, is its efficiency. Since each execution of Step 3 re-
moves at least one node from U, Step 2 can be executed at
most n = | V] times. Thus, the algorithm instantiated with
@(p) being the length of p (Length) runs in O(nm) time. If
@(p) = deg(p) (Degree) or d(p) = w(p) (Random), then the al-

gorithm runs in O(bnm + bn’ log(bn)) time.

3.3 Empirical Results

Motivated by our PathServer application (see Section 5), we
performed tests on the approximation algorithms described
in Sections 3.1 and 3.2 to evaluate their accuracy on a num-
ber of different graphs. In order to measure their accuracy,
for each test graph and for every ordered pair of nodes in
the graph, we computed the number of disjoint paths from
the first node to the second, both in actuality and according
to each approximation algorithm. As the basis for the
graphs in our tests, we used the PGP keyring held at the
MIT PGP Key Service (pgp-public-keys@pgp.mit.edu) as of 21
November 1995. This keyring induces a graph consisting of
13,896 nontrivial edges (i.e., edges of the form ¢, — c, for
C, # Cy) and 7,529 nontrivial nodes (i.e., nodes with incident,
nontrivial edges). Due to the size of this graph, it was not
possible to evaluate the accuracy of our approximation al-
gorithms on the entire graph. Doing so would require us to
compute the actual number of disjoint paths between pairs
of nodes, which is an exponential computation that far ex-
ceeds our resources for a graph of this size.

In an effort to evaluate the accuracy of our algorithms
despite this hurdle and also to learn how our algorithms
performed as a function of graph size, we used various
subgraphs induced by selecting (nontrivial) edges ran-

domly from the total graph. In the rest of this section, let G,
denote the subgraph that resulted by selecting each edge
from the whole graph with probability ;. Some statistics

for graphs we used are shown in Table 1. “Connected
node pairs” are the number of node pairs (s, t) such that

bdp(G,, b, s, t) = 1. “Multiply connected node pairs” are the

number of node pairs (s, t) such that bdp(G,, b, s, t) = 2.

The results of our tests are shown in Table 2. This table
characterizes the error of each algorithm. For each graph G O
{Gs, Gy G155, Gogy Gos, Gag, Gyo}s €ach path bound b O {5, 10, 15}
(b O {5, 10} for G,5 and b = 5 for G, G4), and each algo-
rithm A O {Independent Set, Length, Degree, Random} we
computed the following values:

err: among all pairs (s, t) such that bdp(G, b, s, t) = 2, the
fraction for which A(G, b, s, t) # bdp(G, b, s, t) (recall that
bdp(G, b, s, t) =A(G, b, s, t) if bdp(G, b, s, t) < 1);

avg: for all (s, t) such that A(G, b, s, t) # bdp(G, b, s, t), the
average value of bdp(G, b, s, t) - A(G, b, s, t);

max: for all (s, t) such that A(G, b, s, t) # bdp(G, b, s, t), the
maximum value of bdp(G, b, s, t) = A(G, b, s, t).

Equations for each of these values are given at the bottom
of Table 2. Note that these measures pertain only to those

1356

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 12, DECEMBER 1998

TABLE 2
ACCURACY RESULTS FOR MULTIPLY CONNECTED PAIRS
[Independent Set || Length i Degree i Random i
[err T avg [max |[err | avg [max [err | avg [max [err [avg [max ||
Gs b=>5 .000 1 0 .000 1 0 .000 1 0 .000 1 0
b=10 .000 1 0 .000 1 0 .000 1 0 .000 1 0
b=15 .000 1 0 .000 1 0 .000 1 0 .000 1 0
Giop b= .000 1 0 .008 | 1.000 1 .004 | 1.000 1 .016 | 1.000 1
b=10 .000 1 0 .025 1.000 1 .032 1.000 1 .051 1.000 1
b=1 .000 1 0 .021 | 1.000 1 .030 | 1.000 1 .036 | 1.000 1
Gis b=5 .000 1 0 .095 | 1.000 1 .067 | 1.000 1 .089 | 1.000 1
b=10 .000 1.000 1 152 1.004 2 123 1.003 2 .160 1.007 2
b=15 .002 | 1.000 1 .076 | 1.004 2 .053 | 1.003 2 .091 | 1.006 2
Gao b=5 .001 1.000 1 .140 | 1.011 2 .100 | 1.005 2 132 | 1.011 2
b=10 .005 1.000 1 .168 1.018 2 119 1.009 2 .165 1.019 2
b=15 .008 | 1.000 1 .109 | 1.008 2 .079 | 1.003 2 119 | 1.019 2
Gos b= .002 | 1.000 1 164 | 1.017 2 .101 | 1.009 2 .156 | 1.017 2
b=10 .009 1.025 2 167 1.017 2 112 1.011 2 .168 1.028 3
G3g b= .002 | 1.000 1 192 | 1.037 3 105 | 1.012 2 183 | 1.030 3
Gag b= .005 1.006 2 237 1.064 3 115 1.028 3 224 1.062 3

M = {(s,t) : A(G,b,s,t) #bdp(G,b,s,t)}
err = |M|/|{(s,t) : bdp(G,b,s,t) > 2}|
1 = undefined (division by zero)

pairs of nodes that are multiply connected which, according
to Table 1, is the vast minority of node pairs. On the re-
maining vast majority of node pairs, each of the algorithms
is guaranteed to return a true maximum set of disjoint
paths (of cardinality zero or one).

While Table 2 is inconclusive, some trends seem to
emerge; see Fig. 3. First, and not surprisingly, Independent
Set seems to be more accurate than any of the other algo-
rithms. Second, Degree seems to become more accurate than
Length and Random as the graph size increases. Setting aside
Random (it is slower than Length and no more accurate), it
appears that we can rank the algorithms on accuracy in the
order Independent Set, Degree, Length. On the other hand,
these algorithms are ranked in terms of performance in ex-
actly the opposite order (and our empirical observations
support this ordering), with Independent Set becoming costly
quickly as a function of b. For PathServer (see Section 5), we
therefore typically use the Degree algorithm as a good bal-
ance between accuracy and interactive performance. An-
other observation that we can make from Table 2 is that
when our Length, Degree, and Independent Set algorithms
erred, they usually missed a maximum set of disjoint paths
by only one (see the “avg” columns). If this apparent sta-
bility of the error magnitude continues as the graph grows,
it is conceivable that we could predict with high probability
the error of our algorithms for a given graph size. This
would be an interesting contrast to Theorem 1 proved at the
beginning of this section, stating that no absolute bound on
error could be guaranteed. Further tests are required, how-
ever, before we can draw any such conclusions.

More generally, we caution the reader that the numbers
of Table 2 are no guarantee of good accuracy for all graphs,
or even for all graphs induced by certification systems. We
consider an important open problem to be the discovery of
efficient approximation algorithms for BDP for which some
nontrivial accuracy can be proven. An equally important
goal is to find algorithms (perhaps our own) that can be
empirically shown to provide accurate results on a wider
range of graphs that are characteristic of those we expect to
see in practice. Since the characteristics of such graphs are
yet to be conclusively identified, however, even generating

V8 = (3.,)01 DAP(G,b,5,7) — A(G, b,5,)]/IM]
max = max(s ¢yep {bdp(G, b, 5,t) — A(G, b, 5,1)}

such test graphs remains an open problem. We hope that
work such as [17] will shed light on this issue.

4 BouUNDED CONNECTIVE PATHS

To our knowledge, the Bounded Connective Paths (BCP)
problem of Section 2 has not been considered from the algo-
rithmic and complexity-theoretic viewpoints in the past.
Given its close relationships to BDP [5], [15], we might be
inclined to think that analogs of the results and techniques
for BDP in the previous section could be developed for BCP.
In fact, this is somewhat true and, in this section, we sum-
marize these results and techniques.

Let bcp(G, b, s, t) denote the b-connectivity from sto tin
G. With regards to complexity, we show below that com-
puting whether bcp(G, b, s, t) = k for some given k is cONP-
complete, i.e., that computing whether bcp(G, b, s, t) <k is
NP-complete. As with NP-completeness, the fact that com-
puting whether bcp(G, b, s, t) = k is coNP-complete is
widely believed to imply that bcp(G, b, s, t) cannot be com-
puted in polynomial time [6].

THEOREM 2. Determining whether bcp(G, b, s, t) < k is NP-
complete for any fixed b = 4.

PrRooOF. The proof is by transformation from the following
problem, called Maximum 2-Satisfiability, which was
proven NP-complete in [7]. In the statement of this
problem, a literal is a variable or its negation (e.g., X or
X), and a clause is a disjunction of literals.

Maximum 2-Satisfiability (2SAT):
Given: A set U of variables, a collection C of clauses
over U such that each clause in C consists of two liter-
als, and a positive integer k < |C].
Problem: Is there a truth assignment for U that simul-
taneously satisfies at least k of the clauses in C?

We prove the result only for b = 4; the extension to
larger fixed b is straightforward. Given an instance
(U, C, k) of 2SAT, we construct a graph G with distin-
guished nodes s and t and positive integer k' such that
there is a set of k' = 1 nodes whose removal eliminates

REITER AND STUBBLEBINE: RESILIENT AUTHENTICATION USING PATH INDEPENDENCE

err

0.25 T T T T T T
Independent Set —— //’/_7
Length —+-- P
02 | Degree -8-- P -
Random - o
015
01
0.05 -
0 B==
5

(@)
Fig. 3. Accuracy for each graph G,. (a) b=5. (b) b= 15.

all paths from s to t of length four or less if and only if
there is a truth assignment to the variables of U that
satisfies at least k of the clauses in C. Letc = |C] and
n = JU]. We construct the graph as follows. For each
variable x, the subgraph shown in Fig. 4a is included
within G. An additional subgraph is added (superim-
posed) per clause, where the subgraph depends on
the number of negative literals in the clause. If there is
one negative literal in the clause, say x 00y, then the
subgraph shown in Fig. 4b is added. If there are zero
negative literals in the clause, say x Oy, then the sub-
graph shown in Fig. 4c is added. Finally, if there are
two negative literals in the clause, say X OV, then the
subgraph shown in Fig. 4d is added. In the last two
cases, i.e., zero or two negative literals, we say the
clause is monotonic. Let m denote the number of
monotonic clauses.

We claim that there is a truth assignment for U that
satisfies at least k of the clauses in C if and only if all
paths from s to t of length at most b = 4 can be elimi-
nated by removing cn + m + ¢ — k nodes (i.e,, k' =cn +
m + ¢ — k + 1). First, suppose that there is a truth as-
signment for U that satisfies at least k of the clauses in
C. For each variable x O U, if x is true, then remove
nodes Xx;, ..., X, from G; otherwise, remove X, ..., X,.
In total, this removes cn nodes. Now, partition the
clauses into the satisfied monotonic Cg,, unsatisfied
monotonic C,, satisfied nonmonotonic Cg,, and un-
satisfied nonmonotonic C,,. For each member of Cg,
of the form x Oy, if x is true, then remove f,, and,

otherwise, remove g,q,. For each element of Cg, of the

form x Oy, if x is false, then remove f, v and, other-

wise, remove ggo. Thus, Cg, contributes |Cgq,| re-
movals. For each element of C,,, say x Ovy (resp.,

x 0y), remove both f,, and gy, (resp., f,5; and

xOy

cIr

1357

0.12 T |
Independent Set —<—]
Length —+— T
01 | Degree -E-- // -
Random - 7 -

(b)

9yny) for a total of 2| C,, | removals. Finally, for each

., for a total of

element of C,,, say x Yy, remove d,,

| Cun | removals. Summing these removals, we get
cn+ |Caml +21Cuml + ICul =

cn+ (ICsml + 1Cum D) + (ICuml + 1Cunl) <
cn+m+ (c—k).

It is simple to verify by inspection of Fig. 4 that we
have disconnected all paths from s to t of length at
most four.

Now, suppose that it is possible to eliminate all
paths from s to t of length at most four by removing
cn + m + ¢ — k nodes from G. In order to eliminate all

such paths, either all nodes x,, ..., X, or all nodes
X;, ..., X, must be removed for each variable x, which
accounts for a total of cn removals. For each mono-
tonic clause, say x Oy (resp., X OY), it is necessary to

remove at least one of dyry, ey, fxy, and gy, (resp.,
ey Exoy froyy @nd ggop) to eliminate all paths of
length four from s to t. Thus, we now can characterize
where cn + m of the removals must be. For each vari-

able x, set x to true if all of x;, ..., X, are removed and
to false if all of X, ..., X_ are removed. (Not all of both

Xy, oo X @nd X, ..., X, could be removed, as this
would imply cn + m + ¢ >cn + m + ¢ — k removals in
total.) If there are fewer than k clauses satisfied, then
more than ¢ — k additional removals would be re-
quired to eliminate all paths from s to t of length at
most four, namely one per unsatisfied clause in the
subgraph corresponding to the clause. Thus, at least k
clauses must be satisfied.

Finally, determining whether bcp(G, b, s, t) <k isin
NP, since, given a set of k —1 nodes, it is possible to
verify in polynomial time that their removal elimi-
nates all paths from s to t of length at most b. O

1358

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 12, DECEMBER 1998

@

©

Fig. 4. Component graphs for proof of Theorem 2.

Theorem 2 also has other implications that we care
about. Following the widely held belief that NP # coNP, it
implies that there is no polynomial-time algorithm for veri-
fying that there is a set of k-connective b-bounded paths
from s to t, even if k and the set of paths (or any other in-
formation) is given. For a service like PathServer, this
means that clients that request bounded connective paths
will either have to trust PathServer that the returned paths
are k-connective (for the value k that it returns) or be pre-
pared to perform a possibly exponential computation to
verify this assertion. This is one of the main differentiators
between bounded connective paths and bounded disjoint
paths, the latter of which can be easily verified by clients.

Due to Theorem 2, we now turn to approximating
bcp(G, b, s, t). Below, we describe the algorithm that we use
to approximate a solution to BCP in PathServer. To describe
it, we first introduce some concepts. For a set D of paths,
the subgraph induced by D is the graph whose nodes and
edges are those that occur on some path in D. The (s, t, b)-

closure of a set D of paths from s to t (or just the b-closure
when s and t are understood) is the set of b-bounded paths
from s to t in the subgraph induced by D.

Given G, b, s, and t, our algorithm returns a set D of b-
bounded paths from s to t and the value k such that the b-
closure of D is k-connective. Note that the subgraph in-
duced by D is identical to that induced by its b-closure and,
thus, D is indistinguishable from its b-closure when graphi-
cally displayed (as by PathServer; see Section 5). The set D of
b-bounded paths is constructed in polynomial time, but
finding k still takes time exponential in the size of the graph
in the worst case. Fortunately, this exponential computation
executes on the typically small subgraph induced by D and,
so, it almost always completes with brief delay. The algo-
rithm is outlined in Fig. 5. It begins by locating a set D of
disjoint b-bounded paths from s to t using one of the algo-
rithms described in Section 3. The algorithm then repeatedly
augments D with other b-bounded paths from s to t. At each
step, the augmenting path is chosen to minimize some criterion

REITER AND STUBBLEBINE: RESILIENT AUTHENTICATION USING PATH INDEPENDENCE

1. Find a set D of disjoint b-bounded paths from s to ¢
using one of the algorithms described in Section III. If
D =, then return <0,D>.

2.Findapathp=s—>c = ... 25—t 1<L<binCG
such that ®(p, D) is the minimum over all such paths.

3. Set D = DU {p}. If termination condition ¥ is not met,
go to 2; otherwise go to step 4.

4. Compute k such that the (s, ¢, b)-closure of D \ {s — ¢}
is k-connective, and return <k, D>.

Fig. 5. Approximation algorithm for BCP on instance (G = (V, E), b, s, 1).

@(p, D). The criterion that we presently use is based on the
path degree pdeg(c, D) of node ¢ with respect to D, which is
the degree of c in the subgraph induced by D. Our criterion is
to choose the path that minimizes the sum of the path de-

grees of its nodes, i.e., ®(p,D) = Zch pdeg(c, D). The re-

peated augmentation of D terminates on some condition Y.
In our present implementation, this condition is met when
|D| =%, where d is the original size of D at the end of Step 1

in Fig. 5. This choice of W is motivated by the fact that the b-
connectivity from s to t is at most % times the size of a

maximum set of disjoint paths from s to t [15].

Once the condition W is met, the algorithm determines k
such that the (s, t, b)-closure of D is k-connective (ignoring
the path s - tif it is present in D). This algorithm is essen-
tially brute-force, iterating through sets of nodes and test-
ing if a path in the b-closure of D would continue to exist if
those nodes were removed. To optimize this algorithm, any
path in D that is disjoint from all other paths in D is re-
moved before the search begins, as each such path contrib-
utes exactly one to the final value of k. In the other paths,
only nodes with in-degree or out-degree greater than one in
the subgraph induced by D need be included in sets whose
removal is tested.

At the time of this writing, we are less experienced with
the BCP problem and this algorithm than we are with BDP
and its approximation algorithms. Moreover, our initial
experiments indicate that an analysis comparable to that for
our BDP algorithms will require considerably more com-
putational resources than we have available to us. Thus, we
do not have sufficient data to report on the accuracy of this
algorithm, or to determine if our conditions ®(p, D) and W
can be improved. This algorithm seems to offer adequate
performance in most cases, especially when b is small, but
also threatens to become intractable as the graph grows
larger. The design of better algorithms to approximate BCP,
as well as approaches for evaluating algorithms on realistic
graphs, is a topic for future work.

5 THE PATHSERVER APPLICATION

The algorithms of Sections 3 and 4 are central to, and were
motivated by, the PathServer application to which we have
alluded. PathServer is a web-based service for finding
bounded disjoint or connective paths from a source channel
to a target channel. PathServer is currently implemented to
work in the context of the PGP key management and en-
cryption system, although it could be easily adapted to

1359

work with other types of public key management systems.
PGP is one of the most popular civilian public key systems
in the world today, due in no small part to the decentralized
model of trust it supports. In PGP, users create signed cer-
tificates (statements) that bind semantics (e.g., a name and
an e-mail address) to a public key. These statements, which
taken together form a graph as described in Section 2, can
be disseminated through personal communications, on
electronic newsgroups, or, as is often the case, via a number
of PGP servers spread across the world. Authentication of a
message—i.e., of the public key (channel) that signed
(stated) it—takes place as described in Section 1, with a user
finding a path of channels by which it can authenticate the
channel of interest. PGP allows a user to specify a bound on
the length of paths she is willing to accept. PGP also pro-
vides primitive support for using multiple paths. More pre-
cisely, it provides interfaces to specify keys as being “com-
pletely” or “marginally” trusted for certification and for
specifying how many completely trusted or marginally
trusted signatures are required to authenticate a channel.

PGP, however, lacks the ability to search for all inde-
pendent information about a key that is likely to be useful
to the requesting party. Following our thesis that the ap-
propriate information to provide is disjoint or connective
paths of bounded length from a channel that the requesting
principal trusts to the channel of interest, we have imple-
mented PathServer to provide this information. Our service
provides a World Wide Web interface by which a user can
submit a path length bound, PGP key identifiers for a
source key (e.g., her own) and a target key, and a choice of
disjoint or connective paths, and will receive in real time a
display of the requested paths. An example is shown in
Fig. 6, which is the result of specifying disjoint paths of
length at most eight with a source key identifier of
C7A966DD and a target key identifier of A40B96D9. The
service generates this information using a graph built from
a database of PGP certificates, which our service updates
periodically from other PGP key servers throughout the
world.

It is important to note that PathServer need not be
trusted (modulo certain caveats that were discussed in Sec-
tion 4): A user can verify the information retrieved from our
service by retrieving the appropriate certificates from any
PGP database (including PathServer) and verifying for her-
self that the paths exist using the existing PGP program.
Thus, the information retrieved from our service can merely
be considered as hints to enable independent corroboration
of the semantics associated with a given target key. If a user
trusts PathServer and, thus, does not cryptographically
verify the existence of the paths claimed by PathServer,
then at least the user should connect to PathServer using an
authenticated connection.

User response to PathServer indicates that PathServer is
one instance of a broader class of services that might be
useful for authenticating keys. We have received, and our-
selves developed, numerous ideas for improving the serv-
ice, some of which are listed below. Many such extensions
are technically feasible, but pose challenges to maintaining
a simple user interface.

1360

P e
" C74966DD)

Betsi <certify@bellcore.com> Ross Anderson <rjal4@gcl.cam.ac.uk>

A07786A1 4B2700B9

ASDATAT71

Aviel B. Rubin <rubin@faline.bellcore.com>

- N
{_A40B96DY

~. -

Thomas A. Berson <berson(@anagram.com>>

Avicl B. Rubin <rubin@faline bellcore.com>

Aviel D. Rubin <rubin@faline.bellcore.com>

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 12, DECEMBER 1998

Teffrey L. Schiller <jis@mit.edu>

4D0C4EEL

Marshall Rose <mrosc@dbe.mtview ca.us> Phil Karn <karn@unix ka9q.ampr.org>

T. Paul Holbrook <holbrook@cic.net>

AB7406A1

peter honeyman <honey(@citi.umich.edu> DAOEDCS81

Aviel . Rubin <rubin@faline bellcore.com>

Fig. 6. An output of PathServer (disjoint paths, source key id = C7A966DD, target key id = A40B96D9).

Multiple Sources. The service could allow the user to
specify multiple source nodes in a query, as would be
appropriate if the user has numerous source keys it
trusts. For example, for the case of bounded disjoint
paths, the returned paths would begin at any one of the
specified source nodes. The paths returned using multi-
ple sources are not necessarily the same as would be
obtained if individual queries were submitted, once for
each source node, since a node might be common to
paths returned in each of the individual queries.

Node and Edge Exclusion. The service could allow the user
to choose nodes or edges to exclude in the algorithm for
finding paths. This type of search could be used to im-
plement a policy particular to individual edges or nodes.
For example, one might want to exclude nodes repre-
senting weak keys (e.g., due to key length or signing al-
gorithm) or one might want to exclude edges whose la-
bels indicate undesirable organizational affiliations.

More Complex Policies. It might be possible to accommo-
date more complex exclusion policies than simple node
and edge exclusion. For example, it might be desirable to
exclude an edge from returned paths if the edge “con-
flicts” with another edge, i.e., if there exists another edge
to the same node with an inconsistent label.

Graph Management Algorithms. The service could pro-
vide guidance to the user in the case that the paths re-
turned by PathServer are insufficient for the user. For ex-
ample, if the user desired seven disjoint paths from a
source to a target but got back only four, then PathServer
might recommend sets of edges (certificates) that, if
added to the graph, would enable seven disjoint paths to
be found from the source to the target.

Certificate Formats and Applications. PathServer could be
extended to graphs containing certificate formats other than
PGP certificates, such as X.509 certificates. This is particularly

interesting if keys in X.509 certificates may cross certify
other keys. Also, PathServer could be extended for use in
other applications such as interorganizational workflow.
For workflow applications, PathServer might employ many
types of certificates, including certificates for identity, dele-
gation, and authorization.

6 RELATED WORK

There has been much work on the problem of gaining in-
creased assurance in the authentication provided by paths
of channels. Much of this work has focused on assigning
numerical measures of trustworthiness to paths or collec-
tions of paths (e.g., [23], [1], [16], [19], [14]). These efforts
have recognized that shorter paths and multiple paths lend
additional credibility to the authentication of a channel and
the derived numerical measures tend to reflect these obser-
vations. Our work complements this research by providing
algorithms and tools to efficiently locate as many inde-
pendent paths as possible, which can serve as input to such
evaluation functions. Moreover, since the initial conference
publication of this work [18], the number of “independent”
paths to a channel, as defined in the present paper, has itself
been explored as a numerical measure of assurance for the
authentication of that channel [19], [14]. In particular,
Levien and Aiken [14] prove that this measure provides
optimal or near-optimal resilience to key compromise of
various forms.

Prior work on locating paths of channels typically fo-
cuses on finding a single path to a channel and either as-
sumes a known “topology” regarding what channels make
statements about others [2], [8], [13] or exhibits exponential
worst-case complexity as a function of the number of chan-
nels and statements [23], [24], [25]. A contribution of our
work is to look beyond a single path to locate a collection of
paths with desired independence properties, without as-
suming a known topology on the relationships between

REITER AND STUBBLEBINE: RESILIENT AUTHENTICATION USING PATH INDEPENDENCE

channels and often without suffering from exponential
complexity.

In the context of PGP, there have been efforts to gather
statistics about the graph of channels (public keys) induced
by PGP certificates worldwide [17]. This work focuses on
characterizing the structure of the graph and, in particular,
identifying its strongly connected components, determining
mean and maximum shortest path distances between chan-
nels, and identifying channels in the graph that are central
to its connectivity. Our work differs both in its goals—i.e.,
increasing assurance in authentication of any channel of
interest (versus characterizing the structure of the graph)—
and in its focus on locating independent paths to channels.
Our PathServer service highlights both of these goals.

7 CONCLUSION

In this paper, we presented a foundation for resilient
authentication of channels (e.g., cryptographic keys) in
large scale systems. Resilience is achieved by employing
multiple “independent” paths of channels to authenticate
the target channel, thereby preventing the compromise of a
limited number of channels from causing authentication to
fail.

We presented two notions of “independence”. In the
first, a set of bounded paths are “independent” if they are
pairwise disjoint, i.e., if no two paths share a common
channel. In the second, a set of bounded paths are “inde-
pendent” if the removal of k channels is necessary to dis-
connect all of them. Computing the number of bounded
disjoint paths from the source to the target is known to be
NP-hard, and here we showed that computing the maxi-
mum k such that the source and target are bounded k-
connected is coNP-hard. Furthermore, practical instances of
these problems that we hope to address induce graphs of
sufficient size to make this a severe limitation. We pre-
sented heuristics to approximate solutions to these prob-
lems and evaluated their effectiveness on actual data.

Finally, we discussed the implementation of the Path-
Server system. PathServer uses our heuristics to find both
bounded disjoint and bounded connective paths from a
trusted public key to a key in question. We also discussed
extensions to PathServer that might be useful in practice.

A direction for future work is to identify better algo-
rithms for finding bounded disjoint and bounded connec-
tive paths. David Johnson suggested computing a maxi-
mum flow (e.g., [12]) with capacity-constrained nodes for
finding the number of disjoint paths from the source to the
target. A maximum flow is not guaranteed to include only
paths (or, for that matter, any paths) of length at most the
specified path bound, even if run on a restricted graph con-
sisting of only those nodes that are within the path bound
from the source or target. It remains to be seen, however,
whether this would be a problem in practice. Another
promising direction is to find metrics of assurance for
authentication that build on our notions of path independ-
ence yet take into account characteristics of individual
channels on those paths.

1361

ACKNOWLEDGMENTS

We are grateful to Béla Bollobas, Michael Brightwell, and
Peter Winkler for resolving the complexity of the Bounded
Connective Paths problem (see Theorem 2). We thank
David Johnson for helpful discussions. We also thank Path-
Server users, especially Raph Levien, Lewis McCarthy, and
Avi Rubin, for suggestions. A preliminary version of this
paper appeared in the Proceedings of the Fourth ACM Confer-
ence on Computer and Communications Security, pp. 57-66,
April 1997 [18].

REFERENCES

[1] T. Beth, M. Borcherding, and B. Klein, “Valuation of Trust in Open
Networks,” Proc. Computer Security—ESORICS ’94, D. Gollman,
ed., pp. 3-18, 1994.

[2] A.D. Birrell, B.W. Lampson, R.M. Needham and M.D. Schroeder,
“A Global Authentication Service without Global Trust,” Proc.
1986 IEEE Symp. Security and Privacy, pp. 223-230, Apr. 1986.

[3] International Telegraph and Telephone Consultative Committee
(CCITT), The Directory—Authentication Framework, Recommendation
X.509, 1988.

[4] E.W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,” Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[5] R.C. Entringer, D.E. Jackson, and P.J. Slater, “Geodetic Connec-
tivity of Graphs,” IEEE Trans. Circuits and Systems, vol. 24, no. 8,
pp. 460-463, Aug. 1977.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman and
Company, 1979.

[71 M.R. Garey, D.S. Johnson, and L. Stockmeyer, “Some Simplified
NP-Complete Graph Problems,” Theoretical Computer Science, vol. 1,
pp. 237-267, 1976.

[8] V.D. Gligor, S. Luan, and J.N. Pato, “On Inter-Realm Authentica-
tion in Large Distributed Systems,” Proc. 1992 IEEE Symp. Research
in Security and Privacy, pp. 2-17, May 1992.

[9] A. Itai, Y. Perl, and Y. Shiloach, “The Complexity of Finding Maxi-

mum Disjoint Paths with Length Constraints,” Networks, vol. 12,

pp. 277-286, 1982.

D.S. Johnson, “Worst Case Behavior of Graph Coloring Algo-

rithms,” Proc. Fifth Southeastern Conf. Combinatorics, Graph Theory,

and Computing, pp. 513-527, Feb. 1974.

[11] S. Kent, “Internet Privacy Enhanced Mail,” Comm. ACM, vol. 36,
no. 8, pp. 48-60, Aug. 1993.

[12] V. King, S. Rao, and R. Tarjan, “A Faster Deterministic Maximum

Flow Algorithm,” Proc. Third ACM Symp. Discrete Algorithms, pp. 157-

164, 1992.

B. Lampson, M. Abadi, M. Burrows and E. Wobber, “Authentica-

tion in Distributed Systems: Theory and Practice,” ACM Trans.

Computer Systems, vol. 10, no. 4, pp. 265-310, Nov. 1992.

R. Levien and A. Aiken, “Attack-Resistant Trust Metrics for Public

Key Certification,” Seventh USENIX Security Symp. Proc, pp. 229-

242, Jan. 1998.

L. Lovasz, V. Neumann-Lara, and M. Plummer, “Mengerian

Theorems for Paths of Bounded Length,” Periodica Mathematica

Hungarica, vol. 9, no. 4, pp. 269-276, 1978.

U. Maurer, “Modelling a Public-Key Infrastructure,” Computer

Security—ESORICS ’96, E. Bertino, H. Kurth, G. Martella, and E.

Montolivo, eds., 1996.

N. McBurnett, “PGP Web of Trust Statistics,” http://bcn.boulder.co.us/

~neal/pgpstat/, 1996.

M.K. Reiter and S.G. Stubblebine, “Path Independence for

Authentication in Large-Scale Systems,” Proc. Fourth ACM Conf.

Computer and Comm. Security, pp. 57-66, Apr. 1997.

M.K. Reiter and S.G. Stubblebine, “Toward Acceptable Metrics of

Authentication,” Proc. 1997 IEEE Symp. Security and Privacy, pp. 10-

20, May 1997.

D. Ronen and Y. Perl, “Heuristics for Finding a Maximum Num-

ber of Disjoint Bounded Paths,” Networks, vol. 14, pp. 531-544,

1984.

F.B. Schneider, “Implementing Fault-Tolerant Services Using the

State Machine Approach: A Tutorial,” ACM Computing Surveys,

vol. 22, no. 4, pp. 299-319, Dec. 1990.

[10]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

1362

[22] J.W. Suurballe, “Disjoint Paths in a Network,” Networks, vol. 4,
pp. 125-145, 1974.
[23] A. Tarah and C. Huitema, “Associating Metrics to Certification
Paths,” Proc. Computer Security—ESORICS ‘92, pp. 175-189, 1992.
R. Yahalom, B. Klein and T. Beth, “Trust Relationships in Secure
Systems—A Distributed Authentication Perspective,” Proc. 1993
IEEE Symp. Research in Security and Privacy, pp. 150-164, May 1993.
R. Yahalom, B. Klein and T. Beth, “Trust-Based Navigation in
Distributed Systems,” Computing Systems, vol. 7, no. 1, pp. 45-73,
1994,
[26] P. Zimmerman, The Official PGP User’s Guide. MIT Press, 1995.

[24]

[25]

Michael K. Reiter received the BS degree in
mathematical sciences from the University of
North Carolina at Chapel Hill in 1989 and the MS
and PhD degrees in computer science from Cor-
nell University in 1991 and 1993, respectively.
From 1993 to 1998, he conducted research on
security and fault-tolerance in distributed systems
at AT&T Labs—Research (formerly AT&T Bell
Labs). In 1998, he joined Bell Labs, Lucent Tech-
nologies as department head of the Secure Sys-
tems Research Department, where he is continu-
ing his research program on computer security and fault tolerance.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 12, DECEMBER 1998

Stuart G. Stubblebine received the BS degree
in computer science and mathematics from Van-
derbilt University in 1983, the MS degree from
the University of Arizona in electrical engineering
in 1988, and the PhD degree in electrical engi-
neering from University of Maryland in 1992.
From 1992 to 1994, he was a scientist at the
University of Southern California’s Information
Sciences Institute and, in 1993, a research as-
sistant professor in the Department of Computer
Science. In 1994, he became a member of the
technical staff at AT&T Bell Labs in Murray Hill, New Jersey. In 1996,
he became a principal technical staff member at AT&T Labs—Research
and remains an adjunct professor in the Computer Science Depart-
ment of the University of Southern California.

Dr. Stubblebine’s research interests are rooted in the design, analy-
sis, and formal verification of cryptographic protocols. His recent ac-
complishments have been in the areas of private transactions, authen-
tication and authorization protocols, protocol integrity, public key infra-
structure, secure data structures, and recent-secure revocation in dis-
tributed systems.

Dr. Stubblebine is a member of the IEEE and ACM.

