
Path Independence for Authentication in Large-Scale Systems

Michael K. Reiter Stuart G. Stubblebine

AT&T Laboratories-Research, Murray Hill, New Jersey, USA
{reiter,stubblebine}Qresearch.att.com

Abstract

Authenticating the source of a message in a large dis-
tributed system can be difficult due to the lack of a single
authority that can tell for whom a channel speaks. This has
led many to propose the use of a path of authorities, each
able to authenticate the next in the path, such that the first
in the path can be authenticated by the message recipient
and the last can authenticate the message source. In this
paper we suggest the use of multiple paths to provide redun-
dant confirmation of the message source, and focus on two
related notions of path independence that seem to bolster
authentication. We formalize the problems of locating max-
imum sets of paths with these independence properties in a
graph-theoretic framework, give evidence that they are not
polynomial-time solvable, and propose approximation algo-
rithms for these problems. We also introduce PathServer
for PGP, a service for fmding sets of such paths to support
authentication in PGP applications.

1 Introduction

Enforcing access controls generally requires that sources
of access requests be det ermined. In a computer system,
a request is received on some channel, such as a network.
Determining the set of principals (e.g., users, processes, or
computers) that could have initiated that request is called
authenticating the channel (or request). Authentication in
centralized computer systems is simplified by the fact that
there is a central authority (the operating system, or a se-
curity kernel thereof) that controls all channels and knows
what principals can initiate requests on what channels. In
a distributed system there typically is no such central au-
thority for this information. As the distributed system gets
larger and more diverse, the difficulty of reliably authenti-
cating a channel can increase substantially.

This difficulty is exemplified in secure electronic mail sys-
tems such as PEM [ll] and a number of systems based on
the PGP [23] public key management and encryption tools.
An e-mail message in these systems would typically contain
a digital signature that is intended to enable the recipient
of the message to det ermine the user who sent the message.
Following [13], the channel in this case is the public key that

Permission to m&e digitnl/hnrd copies of nil or pti of this material for
personal or classroom use is gmnted without fee provided that the copies
nre not mnda or distributed for prolit or commercial advantage, the copy-
right notice, the title ofthe publiwtion nnd its dnte nppex. and notice is
given (hnt copyright is by permission oflhe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission nndlor fee
CCS 97. Zurich, Switzerlnnd
Copyright 1997 ACM O-89791-912-2/97/04 ..S3.50

57

can be used to verify the signature on the message, and au-
thenticating the channel means determining the principals
that could have generated that signature. Lacking a global
authority on this information, the user is asked to defer to a
“path” of channels cl , . . . , CL (other public keys) such that (i)
the user believes it can authenticate cl, (ii) each c;, i < .!,
has uttered a statement (a certificate) regarding for what
principal c;+l speaks, and (iii) CL has uttered a statement re-
garding for what principal the channel of interest to the user
speaks. If the user is willing to trust the statements of each
channel on the path, then the user authenticates the target
channel according to the statement that cl made about it.
Such approaches have also been promoted in [2, 8, 13, 221.

Relying on a single path of channels can be unreliable
since it assumes trust in all intermediate channels on the
path, and a single instance of misplaced trust can result in a
false authentication of the target channel. That is, if any c;
in the path provides a false statement regarding c;.+l, either
accidentally or purposely, then there is no reason to believe
that a proper semantics for the target channel is reached.
One way to increase the assurance in the channel authenti-
cation is to limit the length of the path used, thereby limiting
the number of intermediate principals that must be trusted.
A second way is to employ multiple paths, and to authenti-
cate the target channel based upon information obtained via
each of these paths. This approach is inspired by prior work
in nullifying Byzantine-faulty sources of information by con-
sulting multiple “independent” sources of information and
accepting as true the information returned by a majority of
them (e.g., [18]). In this context, our multiple sources of
information are multiple paths of bounded length resulting
in statements about the target channel.

In this paper we explore what it means for multiple
length-bounded paths to be independent in this context. We
focus on two related notions of independence:

1. A set of bounded paths are ‘Lindependent” if they are pair-
wise disjoint, i.e., ifno two paths share a common channel.
We call this a set of bounded disjoint paths. Bounded dis-
joint paths are appealing because no channel is relied on
multiple times in the authentication of the target channel.

2. A set of bounded paths are 5ndependent” if the removal
of lc channels is necessary to disconnect all of them. We
call this a set of bounded /c-connective paths. Bounded
k-connective paths are robust to the compromise of any
IZ - 1 channels: if some Ic - 1 channels are compromised
and thus the statements they contribute are forgeries (and
should be disregarded), there is still a bounded path con-
taining none of these compromised channels to the target
channel. Note that a set of Ic bounded disjoint paths is a
set of bounded k-connective paths, but in general a set of
bounded L-connective paths will not be disjoint.

© ACM, 1997. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/266420.266435.

To demonstrate the utility of these notions in prac-
tice, we have built a World-Wide-Web service, called Path-
Server, that supports authentication of PGP public keys
using our bounded disjoint paths and bounded connective
paths paradigms. If bounded disjoint paths are requested,
PathServer locates a set of such paths from the requesting
principal (or more precisely, a channel that is known to speak
for it) to the target channel in our database of PGP certifi-
cates (a “keyring” in PGP parlance). If bounded connective
paths are requested, PathServer returns a value k and a set
of bounded k-connective paths from the requesting principal
to the target channel. Though PathServer currently sup-
ports only PGP, our work can also be applied to other pub-
lic key management systems (e.g., those based on X.509) as
well as to systems that employ other types of channels (e.g.,
shared keys, protected physical links, or a combination of
these [13]).

While our experience with PathServer suggests that these
independence concepts are useful in bolstering assurance in
authentication, they also have certain limitations. First, our
insistence on independent paths is an effort to avoid depend-
ing heavily on a few principals in the process of authenticat-
ing a target channel. However, since computer systems can
identify principals only syntactically, in general it is outside
the scope of a system to detect channels controlled by prin-
cipals whose actions are closely correlated (e.g., two close
friends). Thus, we are forced to settle for the aforementioned
syntactic notions of independence, and to appeal to the user
for assistance in pruning potentially correlated paths further.

Second, the complexities of finding a mozimum set of
bounded disjoint paths (i.e., a set of largest cardinality) and
of finding the m&mum k for which there exists a set of
bounded k-connective paths provide strong evidence that
neither can be performed in polynomial time. Specifically,
the former is NP-hard and the latter is coNP-hard [6]. More-
over, the foremost practical instances of these problems that
we are targeting (i.e., public key certification systems such
as PGP) induce graphs of suflicient size to make this a severe
limitation. We thus propose efficient heuristics to approxi-
mate solutions to these problems.

The rest of this paper is structured as follows. We begin
in Section 2 by describing related work. We formalize our
problems in Section 3. In Section 4, we motivate our work by
describing the PathServer application. We present and eval-
uate our approximation algorithms for finding a maximum
set of bounded-length disjoint paths in Section 5. We extend
these algorithms to compute a set of bounded k-connective
paths for an approximately maximum k in Section 6. We
conclude and discuss future work in Section 7.

2 Related work

There has been much work on the problem of gaining in-
creased assurance in the authentication provided by paths
of channels. Much of this work has focused on assigning nu-
merical measures of trustworthiness to paths or collections
of paths (e.g., [20,1,15]). These efforts have recognized that
shorter paths and multiple paths lend additional credibility
to the authentication of a channel, and the derived numer-
ical measures tend to reflect these observations. Our work
complements this research by providing algorithms and tools
to efficiently locate as many independent paths as possible,
which can serve as input to such evaluation functions.

Prior work on locating paths of channels typically focuses
on finding a single path to a channel, and either assumes

58

a known “topology” regarding what channels make statc-
ments about others [2, 8, 131 or exhibits exponential worot-
case complexity as a function of the number of channels and
statements [20,21,22]. A contribution of our work is to look
beyond a single path to locate a collection of paths with de-
sired independence properties, without assuming a known
topology on the relationships between channels and often
without suffering from exponential complexity.

In the context of PGP, there have been efforts to gather
statistics about the graph of channels (public keys) induced
by PGP certificates worldwide [16]. This work focuses on
characterizing the structure of the graph, and in particular
identifying its strongly-connected components, determining
mean and maximum shortest path distances between chnn-
nels, and identifying channels in the graph that are central
to its connectivity. Our work differs both in its goals-i.e.,
increasing assurance in authentication of any channel of in-
terest (versus characterizing the structure of the graph)-
and in its focus on locating independent paths to channclo.
Our PathServer service highlights both of these gonlo.

Prior work on the algorithmic aspects of our problem will
be discussed in subsequent sections.

3 Problem statement

In formalizing our problem, we borrow concepts and ter-
minology from [13]. Our system consists of a set of priflcipalo
(e.g., people, machines, roles), some of which are ChonnClo
(e.g., network addresses or encryption keys). Channels arc
the only principals that can make statements directly. Par
the purposes of this paper, the only statements that we con-
sider are statements of the form “cl says cs 3 P” where
cr and cs are channels, P is a principal, and 3 denotes the
“speaks for” relation. Intuitively, cz + P means that if a
statement emanates from cs (i.e., cs “says” the statement),
then the statement can be treated as if P said it. cl ~nys
cz j P is then cl’s statement that this is true.

We model our system with a directed graph G = (V, E),
where V is a fmite set of channels (nodes) and E is a fi-
nite set of edges denoting statements of the form described
above. The statement cl says ca j P, where cr,ca E V,

is represented by an edge cl 5 cs in E, which we often ab-
breviate by cr + cz when P is not important. We represent

multiple statements cl 2 cs,. . .,cr 3 ca made by the same
channel cl about the same channel cz by a single statement

PlA...hPj
+ cz. This graph is perhaps most easily pictured in

iie context of a “web” of public keys. In this case, V would
be a set of public keys, and E would bc a set of ccrtificatcs,
Nevertheless, the graph can be interpreted to include any
channels and appropriate statements.

The problem at hand is for a principal to derive the mean-
ing of some channel t E V of interest, called the target. Par
simplicity, we assume that the principal has sole control of
some channel s E V, called the source, and that any ntate-
ments that the principal is willing to utter regarding other
channels are represented by edges in E emanating from o.
We assume that the principal has access to all of G.

As motivated in Section 1, it is our thesis that multi-
ple independent paths from s to t, each of at most some
specified length, can help the principal to authenticate t.

More precisely, a path from s to t in G is a sequence of
edgess+cr +... + cl + t for some e 2 0, where each
ci e {s, t} and where i # j implies ci # cj. The lengtli

of a path s + cl + . . . + CL + t is e, and a path is b-
bounded if its length is at most b. In our first interpretation
of “independent”, we employ disjoint paths. More precisely,
twopathsfromstot,says+c:+...+c~,+tand

2 8 + Cl + . . . + cf, + t, are disjoint if c: # c: for all
;,l<;<el,andallj,15jIez. Inthiscaseourproblem
becomes the following:

Bounded Disjoint Paths (BDP):
Given: A directed graph G, distinguished nodes s and
t, and a path bound b.
Problem: Find a maximum set of mutually disjoint b
bounded paths from s to t.

To capture our second notion of “independence”, we say
that a set D of paths from s to t, where s + t e D, is k-
connective if the smallest subset of V \ {s, t} that intersects
every path in D is of size k. That is, the paths in D are k-
connective if it is necessary to remove k nodes (other than s
and t) to disconnect them all. The b-connectivity from s to t
is the maximum k for which a set of b-bounded k-connective
paths from s to t exists (with the edge s + t removed if it
exists). Our second problem is then:

Bounded Connective Paths (BCP):
Given: A directed graph G, distinguished nodes s and
t, and a path bound b.
Problem: Find the Ixonnectivity from s to t, say k,
and a set of b-bounded k-connective paths from s to t.

Note that ifs 74 t, then any k disjoint b-bounded paths from
s to t are k-connective, but in general a set of b-bounded
k-connective paths from s to t are not disjoint. For compar-
isons of these concepts on undirected graphs, see [6, 141.

Though we contend that solutions to BDP and BCP can
be useful in supporting authentication of a target channel, it
is up to individual users’ policies to determine exactly how
they are used. Given a set of disjoint or connective paths

s~c:+...+c:,%
8 + c: + . . . + c:, s t

the requesting principal might authenticate t by, e.g., requir-
ing consensus among the paths, i.e., that PI = Pa = . . . =
Pi. If there exist pi, PHI that are diRerent, then this indicates
a discrepancy in what different paths reported about t that
must be resolved by the requesting principal’s policy (e.g.,
adopting a P; common to k + 1 disjoint paths overcomes k
compromised channels).

4 PathServer

Before addressing how to solve BDP and BCP, we
lirst give an example of how such solutions can be use-
ful. We have developed a service for finding bounded
disjoint or connective paths from a source channel to a
target channel. Our service, called PathServer, is cur-
rently implemented to work in the context of the PGP
key management and encryption system, although it could
be easily adapted to work with other types of public

key management systems. PathServer can be found at
http://nnn.research.att.com/‘reiter/PathServer.

PGP is the most popular civilian public key system in
the world today, due in no small part to the decentralized
model of trust it supports. In PGP, users create signed cer-
tificates (statements) that bind semantics (e.g., a name and
an e-mail address) to a public key. These statements, which
taken together form a graph as described in Section 3, can
be disseminated through personal communications, on elec-
tronic newsgroups, or, as is often the case, via a number
of PGP servers spread across the world. Authentication
of a message-i.e., of the public key (channel) that signed
(stated) it-takes place as described in Section 1, with a
user finding a path of channels by which it can authenti-
cate the channel of interest. PGP allows a user to specify a
bound on the length of paths she is willing to accept. PGP
also provides primitive support for using multiple paths.
More precisely, it provides interfaces to specify keys as being
“completely” or “marginally” trusted for certification, and
for specifying how many completely trusted or marginally
trusted signatures are required to authenticate a channel.

PGP lacks, however, the abiity to search for all indepen-
dent information about a key that is likely to be useful to
the requesting party. Following our thesis that the appro-
priate information to provide is disjoint or connective paths
of bounded length from a channel that the requesting prin-
cipal trusts to the channel of interest, we have implemented
PathServer to provide this information. Our service provides
a World-Wide-Web interface by which a user can submit a
path length bound, PGP key identifiers for a source key (e.g.,
her own) and a target key, and a choice of disjoint or con-
nective paths, and will receive in real time a display of the
requested paths. An example is shown in Figure 1, which is
the result of specifying disjoint paths of length at most eight
with a source key identilier of C7A966DD and a target key
identifier of A40B96D9. The service generates this informa-
tion using a graph built from a database of PGP certificates,
which our service updates periodically from other PGP key
servers throughout the world.

It is important to note that PathServer need not be
trusted (module certain caveats that will be discussed in
Section 6): a user can verify the information retrieved from
our service by retrieving the appropriate certificates from
any PGP database (including PathServer) and verifying for
herself that the paths exist using the existing PGP program.
Thus, the information retrieved from our service can merely
be considered as hints to enable independent corroboration
of the semantics associated with a given target key.

At the time of this writing-roughly four months after the
introduction of PathServer on July 24, 1996-PathServer
has performed over 2000 searches for bounded disjoint or
connective paths in response to user queries. Initial user re-
sponse indicates that PathServer is useful for authenticating
a key prior to acting on information signed by that key and,
in particular, before adding that key to one’s PGP keyring.

5 Finding bounded disjoint paths

We now return to an algorithmic consideration of the
problems we presented in Section 3, beginning with Bounded
Disjoint Paths (BDP). BDP has been previously studied
from a complexity-theoretic point of view, and has been

59

I *
I

I

Figure 1: An output of PathServer (disjoint paths, source key id = C7A966DD, target key id= A40B96D9)

proved to be NP-hard [9].’ Thus, there is little hope of
finding an efficient solution to BDP, and we turn to fmding
approximation algorithms for this problem. By an “approx-
imation algorithm,” we intuitively mean an efficient algo-
rithm that usually comes close to the actual answer; a more
careful definition and discussion can be found in [S]. The
only prior work of which we are aware on approximation
algorithms for BDP is due to Ronen and Per1 [17]. They
proposed an algorithm and showed empirically that it per-
forms well on small random undirected graphs of 50 nodes.
Their algorithm runs in G(b2n2m) time and O(b2nm) space
with a path bound b on a graph with n nodes and m edges.

The class of algorithms that we describe in this section
is much simpler than that in [17], and offers superior time
and space complexity. In one instantiation, our algorithm
runs in O(nm) time and O(ra + m) space. Another runs in
O(bnm+bn’ log(bn)) time and O(bnfm) space. Zn order to
motivate our algorithms, we first present another algorithm
that runs in no(‘) time and space, and thus is exponential
in b. While we introduce this first algorithm primarily for,
motivational purposes, it can be argued to be “efficient” in
the following senses. First, if P # NP, then there is no
algorithm for solving BDP exactly that is polynomial in II,
since BDP remains NP-hard for any fixed b 2 4 [9]. Put
another way, a user that always chooses a fixed bound b > 4
will observe polynomial growth in the running time of this
algorithm as a function of the graph size, whereas there is
no known algorithm that can solve BDP exactly for a fixed
b 1 4 and provide polynomial growth as a function of graph
size if P # NP. Second, we expect that in most cases the
size of b that users desire will be reasonably small.

Let bdp(G,b,a,t) d enote the cardinality of a maximum
set of disjoint paths from a to t of length at most b in
graph G = (V,E). Each of the algorithms A that we

‘More precisely, BDP remains NP-hard for any fixed b 2 4,
but can be solved in O(m&i) time on a graph with n nodes and
m edges if b < 4 using maximum matching and maximum flow
techniques [9]. It is interesting to note that the related problem
of finding a requested number of disjoint paths of minimum total
length can be solved in polynomial time [19].

60

present here produce a set with cardinality A(G, b,s,t) of
disjoint paths from a to t of length at most b, where (i)
A(G,b,a,t) 5 bdp(G,b,a,t), and (ii) if bdp(G,b,a,t > 0,
then A(G, b, a, t) > 0. The fist of these properties 1 which
is also required by the definition of an approximation algo-
rithm [S]) indicates that our algorithms are fail-LWCU~C, in
the sense that they will never return a set of paths from u
source channel a to a target channel t that exaggerates the
actual maximum set of disjoint paths from s to t. In addi-
tion to the above properties, each algorithm uses heuristics
to search for a maximum set of paths. In Section 5.3, WC

give empirical evidence that our algorithms perform well on
one type of interesting graph. However, this data nlso indi-
cates that the error of our algorithms is not constant, but
rather increases as a function of problem size. The following
theorem provides a small amount of justification.

Theorem 1 If P # NP, then no polUnomia1 approxcima-
tion algorithm A for BDP can guarantee bdp(G, b, 8, t) -
A(G, b, a, t) < K for a fixed constant K.

Proof : (sketch) Suppose for a contradiction that there in
such an algorithm A and constant K. We use A to con-
struct a polynomial time algorithm for solving BDP exactly.
Consider a problem instance (G = (V,E), b,a, t), and as-
sume without loss of generality that s 74 t and that K is an
integer. The algorithm constructs a new problem instance
(G’, b, a, t) where G’ consists of K + 1 “copies” of G with
the exception that s and t are represented in G’ only once.
That is, the nodes for G’ are

V’={a,t}U

[

u ~411,.*.,4~+ 41
CEV\C4 1

and the edge set E’ is defined by

C1[31-+Cz[jl (l-<j<K-t-1) ifcirca $?{a,t}
E’ 3

and cl + cs E E
3 + 4.71 (l<j<K+l) ifa+cEB
CM + t (l<j<Kfl) ifc-#tEB

/

I

) !--_ _ I-----L-- --- .y- __,
i . . -.7- ._ ._ - yi- .> --- _ - ..-- ,,___ -

: -. \ , .-‘-, , .,, a, ;.--- I ’ . ,

G’ can be constructed in polynomial time, since K is fixed.
Note that bdp(G’, b, a, t) = (K + l)bdp(G, b, 8, t). More-

over, an exact solution to BDP on the instance (G, b, a, t)
can be obtained by running A on (G’, b, a, t) and taking the
largest subset of paths that A selected from any single copy
of G, since A can find less than a maximum set of paths on
at most K copies of G. 0

A further characterization of approximation limitations
for the Bounded Disjoint Paths problem is a topic for future
research. We now turn to presenting our algorithms.

5.1 Independent set

The first approximation algorithm for BDP that we
present was influenced by work on approximation algorithms
for a different problem, called Maximum Independent Set.

Maximum Independent Set (MIS):
Given: An undirected graph G = (v E).
Problem: Find a set V’ s V of largest cardinality such
that no two nodes in V’ are joined by an edge in E.

Any set V’ 2 V such that no two nodes in V’ are joined
is said to be an independent set. Such a set V’ of largest
cardinality is said to be a m&mum independent set.

MIS is a well-known NP-hard problem (see [S]). In [lo],
Johnson presented a simple approximation algorithm for this
problem; the algorithm is detailed in Figure 2. Intuitively,
it constructs an approximately maximum independent set
by repeating the following step: find the node w with the
smallest degree (i.e., that has the fewest neighbors), add v
to the independent set, and delete u and all neighbor nodes
from the graph. Choosing the node with the smallest degree
minimizes the number of candidate nodes eliminated by each
choice of node to include in the independent set.

1. Set I = 0 and U = V.

2. Let v be the node in U with the minimum degree in the
subgraph induced by U. Set I = I U {v} and U = U \
((u} u{u E U: (w,u) E E}).

3. If U = 0, then halt and return I. Otherwise, go to 2.

Figure 2: Johnson’s approximation algorithm for MIS on
undirected graph G = (V, E)

This approximation algorithm for MIS suggests the fol-
lowing approximation algorithm for BDP. Given an instance
(G, b, a, t) of BDP, we construct an undirected graph G
whose nodes denote paths from a to t of length at most
b in G, and where two nodes in d are connected if and only
if the paths they represent in G are not disjoint. Since there
is a one-to-one correspondence between independent sets in
6 and sets of disjoint paths from a to t of length at most
b in G, we can employ Johnson’s algorithm on 6 to find
an approximate solution to the BDP problem on G. It is
instructive to note that by applying Johnson’s algorithm to
6 we are choosing paths from a to t in G that intersect the
fewest other paths from a to t.

The proof of [lo, Theorem 3.11 shows that the algorithm
in Figure 2 is guaranteed to find an independent set of size

1. Set U = V and

2.Fmdapathp=s+cr+...+c~+t,l<e<b,inthe
subgraph induced by U such that CC(p) is the minimum
over all such paths. If no such path exists, then halt and
return D.

3.SetD=DUCp}andU=U\{cr ,..., cr},andgoto2.

Figure 3: Approximation algorithm for BDP on instance

(G = (K El, h 8, t)

at least llog, ;il in any undirected graph 6 = (P, fi), where

ii = [PI and k is the smallest integer such that P can be
partitioned into k independent sets (and thus the size of the
maximum independent set is at least [fi/k]). We obtain the
analagous result for BDP as a corollary, i.e., where fi is the
number of paths from a to t of length at most b. While this
guarantee is weak, the algorithm seems to perform much
better in practice, as we show in Section 5.3.

The dominant cost in this algorithm is constructing G:,
which requires no(‘) time and space if G = (V, E) and IV1 =
n. As we argued previously, growth that is exponential in b
is not necessarily a limiting factor for the applications that
we are considering. Nevertheless, in the following section we
explore algorithms whose complexity grows polynomially in
both n and b. In the rest of the paper, we refer to the
algorithm of this section as Independent Set.

5.2 Approximating Independent Set

The algorithms in this section can be viewed as algo-
rithms that approximate the behavior of the hdependent
Set algorithm of the previous section. Recall the intuition
behind that algorithm: at each step, choose the path from
a to t that intersects the fewest other paths. The main cost
in that algorithm is dete rmining how many other paths that
each path intersects; this is precisely the information con-
tained in the undirected graph 6. So, a natural direction to
speeding up this approach is to avoid this determination ex-
plicitly, and to use other information to indicate at each step
the path that is likely to intersect the fewest other paths.

Given an instance (G = (V, E), b, a, t) of BDP, our algo-
rithms then will proceed to efficiently find a path from a to
t of length at most b that we have reason to believe will in-
tersect the fewest other paths from a to t of length at most
b. We will add this path to the set of disjoint paths we are
generating, delete it and all incident edges from the graph,
and repeat. For the moment we abstract the function we use
to choose a path as an evaluation function G(p) on paths p;
i.e., we choose the path p that minimizes H(p). Thus, our
algorithm executes as shown in Figure 3.

In this paper we consider the following evaluation func-
tions for locating a path that is Yikely” to intersect the
fewest other paths.

1. Length: In each iteration of the algorithm, choose the
path from a to t of shortest length (m the range [l, . . . , b]);

61

i.e., @e(p) is the length ofp. Intuitively, shorter paths have
fewer nodes to share with other paths, and thus should be
likely to intersect fewer other paths. The shortest path
from a to t can be found in O(m) time using breadth-first
search, where m =]E].

2. Degree: For a path p = a + cl + . . . + CL + t, the
degree of p is defined as

de&) = c deg(4,

where the deg(c;) denotes the degree of (i.e., the number
of edges incident on) c;. In each iteration of the algo-
rithm, choose the path from s to t of length at most b
with the smallest degree. Thus, a(p) = deg@). Intu-
itively, paths with lower degree offer fewer opportunities
for other paths to cross them. The path of length at most
b from a to t with the smallest degree can be found in
O(bm + bnlog(bn)) time where n = IV1 and m = I..??],
using a variation of Dijkstra’s shortest path algorithm [4].

3. Random: Prior to executing the algorithm of Figure 3,
assign a random weight ‘u)(c) to each c E V. Define the
weightofapathp=s+cr+...+cr+tas

w(p) = c W(G).
l$<L

Then, let G(p) = w(p). There is little intuition as to
why this choice of Cp should yield a path that intersects
few other paths, and it is included primarily as a point
of comparison for our empirical evaluation in Section 5.3.
The path p minimizing +(p) can be found in O(bm +
bnlog(bn)) time, using a similar variation of Dijkstra’s
shortest path algorithm.

Unlike the Independent Set algorithm of Section 5.1, the
algorithm of Figure 3, combined with any of the choices of
G(p) described above, can offer no nontrivial guarantee of
the cardinality of the set of disjoint paths that it will locate.
This is because for any of these choices for 9, it is possible
to construct classes of graphs that will foil this algorithm
(in the case of Random, almost all of the time), causing it
to return a set of disjoint paths of cardinality at most one
for some a and t regardless of the actual number of disjoint
paths there are from a to t.

The advantage of this algorithm, however, is its efficiency.
Since each execution of Step 3 removes at least one node
from U, Step 2 can be executed at most n = IV1 times. Thus,
the algorithm instantiated with G(p) being the length of p
(Length) runs in O(nm) time. If G(p) = deg(p) (Degree) or
a@) = vu(p) (Random), then the algorithm runs in O(bnm+
bn log(bn)) time.

5.3 Empirical results

Motivated by our PathServer application (see Section 4),
we performed tests on the approximation algorithms de-
scribed in Sections 5.1 and 5.2 to evaluate their accuracy
on a number of different graphs. In order to measure their
accuracy, for each test graph and for every ordered pair of
nodes in the graph, we computed the number of disjoint
paths from the first node to the second, both in actuality
and according to each approximation algorithm.

As the basis for the graphs in our tests, we used
the PGP keyring held at the MIT PGP Key Service

62

(pgp-public-keysQpgp .mit . edu) as of November 21, 1995,
This keyring induces a graph consisting of 13,896 non-trivial
edges (i.e., edges of the form cr + cs for cl # cs) and
7,529 non-trivial nodes (i.e., nodes with incident, non-trivial
edges). Due to the size of this graph, it was not possible
to evaluate the accuracy of our approximation algorithms
on the entire graph. Doing so would require u5 to compute
the actual number of disjoint paths between pairs of nodes,
which is an exponential computation that far exceeds our
resources for a graph of this size.

In an effort to evaluate the accuracy of our algorithms de-
spite this hurdle, and also to learn how our algorithms pcr-
formed as a function of graph size, we used various subgraphs
induced by selecting (non-trivial) edges randomly from the
total graph. In the rest of this section, let G, denote the sub-
graph that resulted by selecting each edge from the whole
graph with probability %. Some statistics for graphs we
used are shown in Table 1. “Connected node pairs” arc the
number of node pairs (a, t) such that bdp(G., b, a,t) 2 1.
“Multiply connected node pairs” are the number of node
pairs (a, t) such that bdp(G,, b, a, t) > 2.

The results of our tests are shown% Table 2. This table
characterizes the error of each algorithm. For each graph
G E {Gs, Go,Gls, Gao,Gas,Gao,G40}, each path bond b E
{5,10,15} (b E (5,lO) for Gss and b = 5 for GaorG40),
and each algorithm A E {Independent Set, Length, De.grcc,
Random} we computed the following values:

err : among all pairs (a, t) such that bdp(G, b, a, t) > 2, the
fraction for which d(G, b, a, t) # bdp(G, b, s, t) (recall
that bdp(G, b,s, t) = d(G, b, a, t) if bdp(G, b,a, t) 5 1);

avg: for all (a, t) such that d(G,b, a, t) # bdp(G, b, a, t), the
average value of bdp(G, b, 8, t) - d(G, b, 8, t);

max: for all (a, t) such that d(G, b,s, t) # bdp(G, b, a, t), the
maximum value of bdp(G, b, a, t) - d(G, b, a, t).

Equations for each of these values is given at the bottom
of Table 2. Note that these measures pertain only to those
pairs of nodes that are multiply connected, which according
to Table 1 is the vast minority of node pairs. On the re-
maining vast majority of node pairs, each of the algorithms
is guaranteed to return a true maximum set of disjoint paths
(of cardinality zero or one).

While Table 2 is inconclusive, some trends seem to
emerge. First, and not surprisingly, Independent Set sccm5
to be more accurate than any of the other algorithms. Set-
ond, Degree seems to become more accurate than Length
and Random as the graph size increases. Setting aside Ran-
dom (it is slower than Length and no more accurate), it
appears that we can rank the algorithms on accuracy in the
order Independent Set, Degree, Length. On the other hand,
these algorithms are ranked in terms of performance in CX-
actly the opposite order (and our empirical observations sup-
port this ordering), with Independent Set becoming costly
quickly as a function of b. For PathServer (see Section 4),
we therefore typically use the Degree algorithm as a good
balance between accuracy and interactive performance.

Another observation that we can make from Table 2 is
that when our Length, Degree, and Independent Set algo-
rithms erred, they usually missed a maximum set of disjoint
paths by only one (see the “avg” columns). If this appar-
ent stability of the error magnitude continues as the graph
grows, it is conceivable that we could predict with high prob-
ability the error of our algorithms for a given graph size.
This would be an interesting contrast to Theorem 1 proved
at the beginning of this section, stating that no absolute

I -_ .-- --_ __ __ ~~ -. -__-.._-_ -
). -: ~. _ , .y-- -F‘. -, _. -7. -.- ---- - ---- : , \ . I

_.. , ,, ,I’,. .f

Table 1: Graphs used in testing

graph GS Go Gls Go G2s Gso G40

nontrivial nodes 1,105 1,846 2,477 3,011 3,487 3,881 4,636
nontrivial edges 768 1,518 2,265 2,978 3,687 4,406 5,809

connected b=5 1,498 6,906 20,639 45,341 73,299 117,081 204,776
node pairs b = 10 1,652 12,324 50,515 92,994 170,771

b = 15 1,652 14,263 54,522 95,115

multiply b=5 10 242 2,010 5,692 9,509 17,847 33,079
connected b = 10 12 430 6,240 14,184 22,649
node pairs b= 15 12 463 6,726 14,514

GS b=5 .ooo

b = lo .ooo

b = 15 .ooo

GIO b= 5 .ooo

b = 10 .ooo

b = 15 -000

Glrj b= 5 .ooo

b= lo .ooo

b= 15 .002

G20 b=5 .OOl
b = 10 .005

b= 15 .008

G2s b= 5 .002

b= 10 .009

G30 b=5 .002

G40 b=5 .005

hf={(d,t):A :, b, iz, i

hd
err

Table 2: Accuracy results for multiply connected pairs

endent Set

avg 1 max

I 0

I 0

I 0

I 0

I 0

I 0

I 0

1.000 1
1.000 1
1.000 1
1.000 1
1.000 1
1.000 1
1.025 2

1.000 1
1.006 2

f bdp(G h 8, t

-II--

err = IW/IC(~,t) : W(G,b, 8,t) I 231
I = undefined (division by zero)

Length Degree

err ah3 max err w3 max err

.ooo I 0 .ooo I 0 .ooo

.ooo I 0 .ooo I 0 .ooo

.ooo I 0 .ooo I 0 .ooo

.008 1 1.000] 1 I] .004] 1.000] 1]I .016

.076 1.004 2 .053 1.003 2 .091

.140 1 1.011] 2 I] .lOO] 1.005 1 2 I(.132

.168 1.018 2 .119 1.009 2 .165

.109 1.008 2 .079 1.003 2 .119

.164 1.017 2 .lOl 1.009 2 .156

.167 1.017 2 .112 1.011 2 .168

.192 1.037 3 JO5 1.012 2 .183

.237 1.064 3 .115 1.028 3 .224

avg = I~(,,t)EM bdp(G, h 8) t) - .

bound on error could be guaranteed. Further tests are re-
quired, however, before we can draw any such conclusions.

More generally, we caution the reader that the numbers
of Table 2 are no guarantee of good accuracy for all graphs,
or even for all graphs induced by certifhzation systems. We
consider an important open problem to be the discovery of
efficient approximation algorithms for BDP for which some
non-trivial accuracy can be proved. An equally important
goal is to find algorithms (perhaps our own) that can be
empirically shown to provide accurate results on a wider
range of graphs that are characteristic of those we expect to
see in practice. Since the characteristics of such graphs are
yet to be conclusively identified, however, even generating
such test graphs remains an open problem. We hope that
work such as [16] will shed light on this issue.

6 Finding bounded connective paths

To our knowledge, the Bounded Connective Paths (BCP)
problem of Section 3 has not been considered from the al-

landom

avg

I 1 0

I 0

I 0

1.000 1
1.000 1
1.000 1

1.000 1
1.007 2
1.006 2
1.011 2
1.019 2
1.019 2
1.017 2
1.028 3
1.030 3
1.062 3

G, b, 8, Wli’4
max = max(,,q&bdp(G, b, 8, t) - A(G, b, 8, t))

gorithmic and complexity-theoretic viewpoints in the past.
Given its close relationships to BDP [5,14], we might be in-
clined to think that analogs of the results and techniques for
BDP in the previous section could be developed for BCP. In
fact, this is somewhat true, and in this section we summarize
these results and techniques.

Let bcp(G, b, s, t) denote the k-connectivity from s to
t in G. With regards to complexity, computing whether
bcp(G, b, s, t) 1 k for some given k is coNP-complete (see
Appendix A), which, like NP-completeness, is widely be-
lieved to imply that bcp(G, b, s, t) cannot be computed in
polynomial time [6]. This complexity also has other impli-
cations that we care about. Following the widely-held belief
that NP # coNP, it implies that there is no polynomial-
time (m the size of G) algorithm for verifying that there is
a set of k-connective k-bounded paths from s to t, even if
k and the set of paths (or any other information) is given.
For a service like PathServer, this means that clients that
request bounded connective paths will either have to trust
PathServer that the returned paths are k-connective (for the
value k that it returns) or be prepared to perform a possi-
bly exponential computation to verify this assertion. This is

63

_- -

1. Find a set D of disjoint k-bounded paths from s to t using
one of the algorithms described in Section 5. If D = 0,
then return <O, D>.

2.Findapathp=s-+cr+...-+cr+t,l~e<b,inG
such that @(p, D) is the minimum over all such paths.

3. Set D = D U (p}. If termination condition 9 is not met,
go to 2; otherwise go to step 4.

4. Compute k such that the (3, t, b)-closure of D \ {s + t} is
k-connective, and return <k, D>.

Figure 4: Approximation algorithm for BCP on instance

(G = (v, 3 h 314

one of the main differentiators between bounded connective
paths and bounded disjoint paths, the latter of which can
be easily verified by clients.

Below we describe the algorithm that we presently use to
approximate a solution to BCP in PathServer. To describe
it, we first introduce some concepts. For a set D of paths,
the subgraph induced by D is the graph whose nodes and
edges are those that occur on some path in D. The (3, t, b)-
closure of a set D of paths from s to t (or just the b-closure
when s and t are understood) is the set of b-bounded paths
from s to t in the subgraph induced by D.

Given G, b, s, and t, our algorithm returns a set D of
b-bounded paths from s to t and the value k such that the b
closure of D is k-connective. Note that the subgraph induced
by D is identical to that induced by its b-closure, and thus
D is indistinguishable from its b-closure when graphically
displayed by PathServer. The set D of b-bounded paths
is constructed in polynomial time, but finding k still takes
time exponential in the size of the graph in the worst case.
Fortunately, this exponential computation executes on the
typically small subgraph induced by D, and so it almost
always completes with brief delay.

The algorithm is outlined in Figure 4. It begins by lo-
cating a set D of disjoint b-bounded paths from s to t using
one of the algorithms described in Section 5. The algorithm
then repeatedly augments D with other b-bounded paths
from s to t. At each step, the augmenting path is chosen
to minimize some criterion @(p, D). The criterion that we
presently use is based on the path degree pdeg(c, D) of node
c with respect to D, which is the degree of c in the sub-
graph induced by D. Our criterion is to choose the path
that minimizes the sum of the path degrees of its nodes, i.e.,
G(p, D) = ‘&r pdeg(c, D). The repeated augmentation of
D terminates on some condition 9. In our present imple-
mentation, this condition is met when IDI = y, where d is
the original size of D at the end of step 1 in Figure 4. This
choice of Q is motivated by the fact that the b-connectivity
from s to t is at most f times the size of a maximum set of
disjoint paths from s to t [14].

Once the condition 9 is met, the algorithm determines
k such that the (3, t, b)-closure of D is k-connective (ignor-
ing the path s + t if it is present in D). This algorithm is
essentially brute-force, iterating through sets of nodes and
testing if a path in the b-closure of D would continue to
exist if those nodes were removed. To optimize this algo-
rithm, any path in D that is disjoint from all other paths

64

in D is removed before the search begins, as each such pnth
contributes exactly one to the fhml value of k. In the other
paths, only nodes with in-degree or out-degree greater than
one in the subgraph induced by D need be included in sets
whose removal is tested.

At the time of this writing, we are less experienced with
the BCP problem and this algorithm than we are with BDP
and its approximation algorithms. Thus, presently we do
not have sufficient data to report on the accuracy of thin
algorithm, or to determine if our conditions %(p, D) and g
can be improved. This algorithm seems to offer adequate
performance in most cases, and especially when b is small,
but also threatens to become intractable as the graph grows
larger. The design of better algorithms to approximate BCP
is a topic of ongoing work.

‘7 Conclusion and future work

In this paper we have introduced bounded independent
paths as a tool for supporting high-assurance authentication
in large distributed systems. We have focused on two flavor5
of independent paths, namely disjoint and k-connective. For
the former, we have developed algorithms for approximnt-
ing the maximum number of bounded disjoint paths from a
source to a target and evaluated their accuracy on graphs
constructed from a PGP certification graph. We have nlno

developed an approximation algorithm for the latter, though
its evaluation is still forthcoming. We have demonstrated
the utility of these notions in a useful application called
PathServer. While at this point our empirical results ore
relevant primarily to PGP applications, we believe that the
bounded independent paths paradigm can improve authen-
tication mechanisms for a wide range of systems, even those
based on technologies other than public keys.

A natural direction for future research is to find approx-
imation algorithms that supersede ours in accuracy, efh-
ciency, or both, and indeed one direction of ongoing work
is the evaluation and refinement of our approximation al-
gorithm for finding bounded connective paths. Regarding
our algorithms for finding bounded disjoint paths, BCCU-

racy testing of the algorithm due to Ronen and Per1 [17]
on certification graphs would make for an interesting com-

. David Johnson suggested computing a maximum
~~s~~g., [12]) with capacity-constrained nodes for finding
the number of disjoint paths from the source to the target.
A maximum flow is not guaranteed to include only paths (or
for that matter, any paths) of length at most the specified
path bound, even if run on a restricted graph consisting of
only those nodes that are within the path bound from the
source or target. It remains to be seen, however, whether
this would be a problem in practice.

We are continuing to explore additional functions that
PathServer could provide, e.g., allowing multiple EOUXC

nodes, and allowing the user to constrain the noden uoed
in the returned paths. Many such extensions are technically
feasible, but pose challenges to maintaining a simple uacr in-
terface. We welcome any suggestions that the reader might
have regarding functions that he or she would End useful.

Acknowledgements We are grateful to B6la Bollobds,
Michael Brightwell, and Peter Winkler for resolving the com-
plexity of the Bounded Connective Paths problem (see Ap-
pendix A). We thank David Johnson for helpful discussions.
We also thank PathServer users, especially Raph Levien,
Lewis McCarthy, and Avi Rubin, for suggestions.

References [Zl] R. Yahalom, B. Klein and T. Beth. Trust relationships in
securesystems-A distributedauthcnticationperspective.In
Proceedings of the 1993 IEEE Symposium on Research in
Security and Privacy, pages 150-164, May 1993.

[ZZ] R. Yahalom, B. Klein and T. Beth. Trust-basednavigation in
distributed systems. Computing Systems 7(1):45-73,1994.

[23] P. Zimmerman. The Official PGP User’s Guide. MIT Press,
1995.

PI

PI

131

L41

[51

[61

[71

181

PI

[lOI

Pll

P21

P31

P41

WI

P-1

1171

k31

Pgl

PO1

T. Beth, M. Borcherding, and B. Klein. Valuation of trust
in open networks. In D. Gollman, cd., Computer Securify
- ESORICS ‘94 (Lecture Notes in Computer Science 875),
pages 3-18, Springer Verlag, 1994.

A. D. Birrell, B. W. Lampson, R. M. Ncedham and M. D.
Schroeder. A global authentication service without global
trust. In Proceedings of the 1986 IEEE Symposium on Se-
curity and Privacy, pages 223-230, April 1986.

International Telegraph and Telephone Consultative Com-
mittee (CCITT). The Directory - Aufhenticafion Frame-
work, Recommendation X.509, 1988.

E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathemafik, 1:269-271, 1959.

R. C. Entringer, D. E. Jackson, and P. J. Slater. Geodetic
connectivity of graphs. IEEE Transactions on Circuits and
Systems C&i-24(8):460-463, August 1977.

M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to Ihe Theory of NP-Completeness. W. H. Free-
man and Company, New York, 1979.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some sim-
plified NP-complete graph problems. Theoretical Computer
Science 1:237-267,1976.

V. D. Gligor, S. Luan, and J. N. Pato. On inter-realm au-
thentication in large distributed systems. In Proceedings of
the 1992 IEEE Symposium on Research in Security and Pri-
vacy, pages 2-17, May 1992.

A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding
maximum disjoint paths with length constraints. Networks
12:277-286, 1982.

D. S. Johnson. Worst case behavior of graph coloring algo-
rithms.In Proceedings of the 5th Southeastern Conference on
Combinatorics, Graph Theory, and Computing, pages 513-
527, February 1974.

S. Kent. Internet privacy enhanced mail. Communications
of the ACM 36(8):48-60, August 1993.

V. King, S. Rae, and R. Tarjan. A faster deterministic max-
imum flow algorithm. In Proceedings of the 3rd ACM Sym-
posium on Discrete Algorithms, pages 157-164, 1992.

B. Lampson, M. Abadi, M. Burrows and E. Wobbcr. Authen-
tication in distributed systems: Theory and practice. ACM
Transactions on Computer Systems 10(4):265-310, Novem-
ber 1992.

L. Lovhz, V. Neumann-Lara, and M. Plummer. Mengerian
theorems for paths of bounded length. Periodica Mathemat-
ica Hungarica 9(4):269-276,197s.

U. Maurer. Modelling a public-key infrastructure. In E.
Bertino, H. Kurth, G. Martella, and E. Montolivo, ed., Com-
puter Security - ESORICS ‘96 (LectureNotes in Computer
Science 1146), Springer-Verlag, 1996.

N. McBurnett. PGP web of trust statistics.
http://bcn.bonlder.co.ns/‘nedl/pgpstat/,1996.

D. Ronen and Y. Perl. Heuristics for finding a maximum
number of disjoint bounded paths. Networks 14531-544,
1984.

F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys 22(4):299-319, December 1990.

3. W. Suurballe. Disjoint paths in a network. Networks
4:125-145,1974.

A. Tarah and C. Huitema. Associating metrics to certifica-
tion paths. In Computer Security - ESORICS ‘92 (Lecture
Notes in Computer Science 648), pages 175-189, Springer
Verlag, 1992.

A Complexity of BCP

In the body of the paper we claimed that determining
whether bcp(G, b, s, t) 1 k for given G, b, s, t and k is coNP-
complete. To our knowledge, this result has not appeared in
the open literature, and we therefore include a proof of it,
due to BollobSs, Brightwell, and Winkler, for completeness
and archival purposes. This proof shows that determining
whether bcp(G, b, s, t) < k is NP-complete (and thus that
determining whether bcp(G, b,s,t) 2 k is coNP-complete)
by a transformation from the following problem, called Max-
imum 2-Satisfiabiity, which was proved NP-complete by
Garey, Johnson, and Stockmeyer [7]. In the statement of
this problem, a literal is a variable or its negation (e.g., z or
Z), and a clause is a disjunction of literals.

Maximum 2-Satisfiability (SSAT):
Given: A set U of variables, a collection C of clauses
over U such that each clause in C consists of two liter-
als, and a positive integer k < ICI.
Problem: Is there a truth ass&u.nent for U that simul-
taneously satisfies at least k of the clauses in C?

Theorem 2 Determining whether bcp(G, b, s, t) < k is NP-
complete for any fixed b 14.

Proof : We prove the result only for b = 4; the extension to
larger tied b is straightforward. Given an instance (U, C, k)
of ZSAT, we construct a graph G with distinguished nodes
s and t and positive integer k’ such that there is a set of
k’ - 1 nodes whose removal eliminates all paths from s to t
of length four or less if and only if there is a truth assign-
ment to the variables of U that satisfies at least k of the
clauses in C. Let c = ICI and n = IUl. We construct the
graph as follows. For each variable x, the subgraph showed
in Figure 5(a) is included witbin G. An additional subgraph
is added (superimposed) per clause, where the subgraph de-
pends on the number of negative literals in the clause. If
there is one negative literal in the clause, say x Vjj, then the
subgraph shown in Figure 5(b) is added. If there are zero
negative literals in the clause, say m V y, then the subgraph
shown in Figure 5(c) is added. Finally, if there are two nega-
tive literals in the clause, say EVTj, then the subgraph shown
in Figure 5(d) is added. In the last two cases, i.e., zero or
two negative literals, we say the clause is monotonic. Let m
denote the number of monotonic clauses.

We claim that there is a truth assignment for U that
satisfies at least k of the clauses in C if and only if all paths
from s to t of length at most b = 4 can be eliminated by
removing cn+m+c-knodes (i.e., k’ = cn+m+c-k+l).
First suppose that there is a truth assignment for U that
satisfies at least k of the clauses in C. For each variable
x E U, if x is true then remove nodes ml,. . . , xc from G;
otherwise remove El,. . . ,?&. In total, this removes cn nodes.
Now partition the clauses into the satisfied monotonic C,,,,,
unsatisfied monotonic C,,,, satisfied nonmonotonic C.,,, and

65

. ’

I

(4

Figure 5: Component graphs for proof of Theorem 2

unsatisfied nonmonotonic CL. For each member of C,, of
the form m V y, if a: is true then remove fzvv and otherwise
remove gEvV. For each element of C,, of the form ZVfj, if m
is false then remove f-y and otherwise remove 9~~5. Thus,
C,, contributes IC,,l removals. For each element of CL,,
say x V y (resp., V V jj), remove both fzvmr and gEvIl (resp.,
fzvv and ~~5) for a total of 21CUml removals. Fiially, for
each element of C,,, say x V jj, remove davF, for a total of
IC,,l removals. Summing these removals, we get

1 cn + ICml + ZlCuml+ lCunl
=

1
c)1+ (psml+ pzmal) + (pml+ ptml)

5 cn+m+(c-k)
N
I It is simple to verify by inspection of Figure 5 that we have

I I
disconnected all paths from s to t of length at most four.

Now suppose that it is possible to eliminate all paths from
/ s to t of length at most four by removing cn + m + c - k

/ nodes from G. In order to eliminate all such paths, either all
I (nodesxr,...,

-
z:c or all nodes zr , . . . ,Z$ must be removed for

each variable x, which accounts for a total of crz removals.
For each monotonic clause, say x V y (resp., B V g), it is
necessary to remove at least one of d,var, ezvy, fag, and
gEvy (resp., da,, e-F, ~EVF and ssv5) to eliminate all paths
of length four from s to t. Thus, we now can characterize
where cn + m of the removals must be. For each variable
x, set x to true if all of xl,. . . , xCe are removed and to false
if all of&,..., ?& are removed. (Not all of both ml,. . . , xc
and&,..., EC could be removed, as this would imply cn +

m+c> cn+m+c- k removals in total.) If there are fewer
than k clauses satisfied, then more than c - k additional
removals would be required to eliminate all paths from n to
t of length at most four, namely one per unsatisfied clau5c

in the subgraph corresponding to the clause. Thus, at least
k clauses must be satisfied.

Finally, deternum . ‘ng whether bcp(G, b, s, t) < k io in NP,
since given a set of k - 1 nodes, it is possible to verify in
polynomial time that their removal eliminates all paths from
s to t of length at most b. •I

