Fast Transform Algorithms via Projection on a Subalgebra

Yevgen Voronenko
Frédéric de Mesmay

Electrical and Computer Engineering
Carnegie Mellon University

Introduction

- Fast $n \log n$ algorithms are important for practical applications
- Deriving such algorithms is typically tedious and not well understood process
- We present a general method for mechanical derivation of new algorithms by projecting existing algorithms
- We successfully obtain fast algorithms for all 16 types of DCTs/DSTs

Related Work : Trigonometric Transform Algorithms

- Hong and Vetterli, 1991
- "Basefield Transforms with Convolution Property"
- Algebraic projection (by human)
- Frigo and Johnson, 1999
- "Fast Fourier Transform Compiler"
- Data-flow graph projection (by a computer)
- Pueschel and Egner, 2002
- Symmetry Based Matrix Factorization
- Automatic algorithm derivation from a matrix (by a computer)
- Pueschel and Moura, 2001-2006
- Algebraic Theory of Signal Processing
- Cooley-Tukey type algorithms for all 16 kinds of DCTs/DSTs ASP allows to understand what's going on and thus mechanically derive algorithms

Outline

1. Introduction
2. Embedding method
3. Algorithm projection method

Embedding Method: Problem statement

■ Given:

- Regular signal model $\left(\mathcal{A}, \Phi_{\mathrm{A}}\right)+$ Fourier transform \mathcal{F}_{A}
- Regular signal model $\left(\mathcal{B}, \Phi_{\mathrm{B}}\right)+$ Fourier transform \mathcal{F}_{B}
- $\mathcal{B} \leq \mathcal{A}$

■ Find:

- Express \mathcal{F}_{B} using \mathcal{F}_{A}

Embedding Method

- Basic idea: embed \mathcal{B} in \mathcal{A}
- Let ϕ and Ψ be embeddings

$$
\phi: \mathcal{B} \rightarrow \mathcal{A} \quad \psi: \oplus \mathcal{B}_{i} \rightarrow \oplus \mathcal{A}_{i}
$$

- Following diagram commutes

Challenge: coordinatize mappings ϕ and Ψ^{-1}

Example: DFT

- Consider $\mathcal{A}=\mathbb{C}[x] / x^{8}-1$

$$
\mathcal{B}=<x^{2}>=\mathbb{C}[y] / y^{4}-1, \quad y=x^{2}
$$

- We have

$$
\begin{array}{lll}
\mathbb{C}[y] / y^{4}-1 & \begin{array}{l}
\phi \\
\\
\mathrm{DFT}_{4} \downarrow
\end{array} & \mathbb{C}[x] / x^{8}-1 \\
& & \downarrow \mathrm{DFT}_{8}
\end{array}
$$

$$
\oplus \mathbb{C}[y] /\left(y-\omega_{4}^{i}\right) \stackrel{\psi^{-1}}{C} \oplus \mathbb{C}[x] /\left(x-\omega_{8}^{i}\right)
$$

C

$$
C_{2}=\left(\begin{array}{cccccccc}
1 & \cdot & . & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & . & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot
\end{array}\right)
$$

$$
E_{2}=\left(\begin{array}{cccc}
1 & . & \cdot & \cdot \\
\cdot & 1 & . & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)
$$

$$
\begin{aligned}
& C=1 / 2\left(\begin{array}{llllllll}
1 & . & . & . & 1 & . & . & . \\
. & 1 & . & . & . & . & . & . \\
. & . & . & . & . & 1 & . & \\
. & . & & . & . & . & i
\end{array}\right) \\
& \mathrm{DFT}_{4}=C \cdot \mathrm{DFT}_{8} \cdot E
\end{aligned}
$$

Example: DCT-3

- Consider $\mathcal{A}=\mathbb{R}[x] / x^{8}+1$

$$
\mathcal{B}=\mathbb{R}[y] / T_{4}(y), \quad y=\left(x+x^{-1}\right) / 2
$$

- We have

$$
\begin{aligned}
& \mathbb{R}[y] / \boldsymbol{T}_{4}(\boldsymbol{y}) \\
& \xrightarrow[E]{\phi} \\
& \mathbb{R}[x] / x^{8}+1 \\
& \text { DCT- } 3_{4} \downarrow \quad \downarrow \text { RDFT-38 } \\
& \bigoplus \mathbb{C}[y] /\left(y-\cos \alpha_{i}\right) \stackrel{\psi^{-1}}{C} \bigoplus \mathbb{C}[x] /\left(x-\omega_{8}^{i}\right)\left(x-\omega_{8}^{8-i}\right) \\
& E=W_{A}=\left(\begin{array}{cccc}
1 & . & . & . \\
\cdot & 1 / 2 & . & . \\
\cdot & \cdot & 1 / 2 & . \\
\cdot & . & \cdot & 1 / 2 \\
. & . & . & .
\end{array}\right) \quad C=D S_{1}=\left(\begin{array}{ccccccc}
1 & . & . & . & . & . & . \\
. & . & 1 & . & . & . & . \\
. & . & . & . & 1 & . & . \\
. & . & . & . & . & . & 1
\end{array}\right) \\
& \text { DCT }-3_{4}=D S_{1} \cdot \text { RDFT }^{2} 3_{8} \cdot W_{A} \\
& \text { DST }-3_{4}=D S_{2} \cdot \text { RDFT- } 3_{8} \cdot W_{S 0}
\end{aligned}
$$

Outline

1. Introduction
2. Embedding method
3. Algorithm Embedding method.

Projection Method: Problem statement

- Given:
- Regular signal model $\left(\mathcal{A}, \Phi_{\mathrm{A}}\right)+$ Fourier transform \mathcal{F}_{A}
- Cooley-Tukey type algorithm for \mathcal{F}_{A} made with sub-algebra \mathcal{C}
- Regular signal model $\left(\mathcal{B}, \Phi_{\mathrm{B}}\right)+$ Fourier transform \mathcal{F}_{B}
- $\mathcal{B} \leq \mathcal{A}$

■ Find:

- Cooley-Tukey type algorithm for \mathcal{F}_{B}

Reminder: Cooley-Tukey Type Algorithms

Assume

$$
p(x)=q(r(x))
$$

$\mathbb{C}[\boldsymbol{x}] / \boldsymbol{p}(\boldsymbol{x})$	
transform \boldsymbol{T}	coarse decomposition $\left(\mathcal{F}^{\prime} \otimes I\right) B$ $\mathbb{C}[x] /\left(r(x)-\beta_{1}\right) \oplus \ldots \oplus \mathbb{C}[x] /\left(r(x)-\beta_{n}\right)$
	complete decomposition $P\left(\bigoplus \mathcal{F}_{i}\right)$
$x] /\left(x-\alpha_{1}\right)$	$\mathbb{C}[\boldsymbol{x}] /\left(\boldsymbol{x}-\boldsymbol{\alpha}_{\boldsymbol{n}}\right)$

Fast Algorithms DFT and RDFT

Decomposition: $x^{n}-1=\left(x^{m}\right)^{k}-1$
$\mathbb{C}[x] / x^{n}-1$

$\mathrm{DFT}_{n}=\underline{L_{m}^{n}\left(I_{k} \otimes \mathrm{DFT}_{m}\right) T_{m}^{n}} \underline{\left(\mathrm{DFT}_{k} \otimes I_{m}\right)}$ $\operatorname{RDFT}_{n}=\left(K_{m / 2}^{n / 2} \otimes I_{2}\right)\left(\bigoplus \operatorname{RDFT}_{m}\left(\alpha_{i}\right)\right)\left(\overline{\operatorname{RDFT}}_{k} \otimes I_{m}\right)$

Algorithm Projection Method

- Basic idea: embedding and Cooley-Tukey
- Following diagram commutes

The embedding
The \mathcal{F}_{A} Cooley-Tukey
Matrix equation

Challenge: choose ϕ and Ψ^{-1} for sparse factorization

Algorithm Projection Steps

- Algorithm derivation is mechanical rewriting of

$$
\mathcal{F}_{B} \rightarrow \frac{\mathrm{C} \cdot \boldsymbol{P}\left(\bigoplus \mathcal{P}_{2}\left(\boldsymbol{\beta}_{i}\right)\right)}{\text { apply left rules }} \underset{\text { apply right rules }}{\left(\mathcal{P}_{1} \otimes \mathrm{I}\right) B \cdot \mathrm{E}}
$$

$$
\mathcal{F}_{B}=\mathrm{C} \cdot \mathcal{F}_{A} \cdot \mathrm{E}
$$

$$
\mathrm{C} \cdot \mathcal{F}_{A} \rightarrow \mathrm{E}^{-1} \cdot \mathcal{F}_{B} \quad \mathcal{F}_{A} \cdot \mathrm{E} \rightarrow \mathrm{C}^{-1} \cdot \mathcal{F}_{B}
$$

left "push" rules right "pull" rules

- Step 1: Write down the embedding
- Step 2: Coordinatize and obtain right / left rules
- Step 3: Plug in \mathcal{F}_{A} Cooley-Tukey and apply rules

Example: Embedding DFT_{4} into DFT_{8}

- Step 1: Write down the embedding

$$
\begin{aligned}
\mathcal{A} & =\mathbb{C}[x] / x^{8}-1 \\
\mathcal{B} & =\mathbb{C}[y] / y^{4}-1=\left\langle x^{2}>\right.
\end{aligned}
$$

- Step 2: Coordinatize, and obtain right/left rules

$$
\begin{aligned}
& C_{n} \cdot \mathrm{DFT}_{n} \cdot E_{n}=\mathrm{DFT}_{n / 2}, \\
& \mathrm{DFT}_{n} E_{n}=C_{n}^{-1} \mathrm{DFT}_{n / 2}, \\
& C_{n} \mathrm{DFT}_{n}=\mathrm{DFT}_{n / 2} E_{n}^{-1} . \\
& \text { Step 3: Plug in Cooley-Tukey for } \mathrm{DFT}_{8}, \text { apply rules }
\end{aligned}
$$

$$
\mathrm{DFT}_{4}=C_{8} \cdot L_{4}^{8}\left(\oplus \mathrm{DFT}_{4}\left(r_{i}\right) \operatorname{DFT}_{2} \otimes I_{4}\right) \cdot E_{8}
$$

$$
\mathrm{DFT}_{4}=\mathrm{C}_{8} \cdot L_{4}^{8}\left(\oplus \mathrm{DFT}_{4}\left(r_{1}\right) E_{8}\left(\mathrm{DFT}_{2} \otimes I_{2}\right)\right.
$$

$$
\mathrm{DFT}_{4}=\mathbb{L}_{4}^{8}\left(\oplus C_{4} \mathrm{DFT}_{4}\left(r_{i}\right) E_{8}\left(\mathrm{DFT}_{2} \otimes I_{2}\right)\right.
$$

DF
DFT $\left.=L_{4}^{8}\left(\oplus \mathrm{DFT}_{2} D_{i}\right)\right)\left(\mathrm{DFT}_{2} \otimes I_{2}\right)$

Example: Embed DCT-3 $\mathbf{3}_{4}$ into RDFT-3 8

- Step 1: Write down the embedding

$$
\begin{aligned}
\mathcal{A} & =\mathbb{R}[x] / x^{8}+1 \\
\mathcal{B} & =\mathbb{R}[y] / T_{4}(y)=\left\langle\left(x+x^{-1}\right) / 2\right\rangle
\end{aligned}
$$

- Step 2: Coordinatize, and obtain rightlleft rules
$C_{n} \cdot \operatorname{RDFT}-3_{n} \cdot E_{n}=$ DCT $-3_{n / 2}$,
 DCT- $3_{4}=C_{8} \cdot\left(K_{2}^{4} \otimes I_{2}\right)\left(\bigoplus \operatorname{RDFT}-3_{4}\left(r_{i}\right)\right)\left(\overline{\text { RDFT-3 }}_{4} \otimes I_{2}\right) \cdot E_{8}$ $\left.\mathrm{DCT}^{2} 3_{4}=K_{2}^{4}\right) \bigoplus \mathrm{DCT}-3_{2}\left(r_{i}\right) Q \overline{\mathrm{DCT}-3} \oplus(I \otimes \mathrm{RDFT}-3 \backsim \overline{\mathrm{DCT}-4} P$ permutations

Conclusion :

Automatic Derivation of Algorithms

$$
\operatorname{RDFT}_{n}=\left(\boldsymbol{K}_{m / 2}^{n / 2} \otimes \boldsymbol{I}_{2}\right)\left(\bigoplus \operatorname{RDFT}_{m}\left(\alpha_{i}\right)\right)\left(\overline{\operatorname{RDFT}}_{k} \otimes \boldsymbol{I}_{m}\right)
$$

Mechanical formula rewriting

rewrite rules

- Number of rewrite rules is small
- Hard to derive by hand
- Gives new, composite algorithms
- Nice way to handle the ever growing number of transforms

Questions?

