# Fast Transform Algorithms via Projection on a Subalgebra

Yevgen Voronenko Frédéric de Mesmay

Electrical and Computer Engineering Carnegie Mellon University



#### Introduction

- Fast *n log n* algorithms are important for practical applications
- Deriving such algorithms is typically tedious and not well understood process
- We present a general method for mechanical derivation of new algorithms by *projecting* existing algorithms
- We successfully obtain fast algorithms for all 16 types of DCTs/DSTs



# Related Work : Trigonometric Transform Algorithms

- Hong and Vetterli, 1991
  - "Basefield Transforms with Convolution Property"
  - Algebraic projection (by human)
- Frigo and Johnson, 1999
  - "Fast Fourier Transform Compiler"
  - Data-flow graph projection (by a computer)
- Pueschel and Egner, 2002
  - Symmetry Based Matrix Factorization
  - Automatic algorithm derivation from a matrix (by a computer)
- Pueschel and Moura, 2001—2006
  - Algebraic Theory of Signal Processing
  - Cooley-Tukey type algorithms for all 16 kinds of DCTs/DSTs
     ASP allows to understand what's going on and thus mechanically derive algorithms



## Outline

- 1. Introduction
- 2. Embedding method
- 3. Algorithm projection method



#### Embedding Method: Problem statement

Given:

- Regular signal model (A,  $\Phi_A$ ) + Fourier transform  $\mathcal{F}_A$
- Regular signal model ( $\mathcal{B}, \Phi_{B}$ ) + Fourier transform  $\mathcal{F}_{B}$
- $\mathcal{B} \leq \mathcal{A}$
- Find:
  - Express  $\mathcal{F}_{B}$  using  $\mathcal{F}_{A}$



#### **Embedding Method**

- Basic idea: embed  $\mathcal{B}$  in  $\mathcal{A}$
- Let  $\phi$  and  $\Psi$  be embeddings

$$\phi:\mathcal{B}
ightarrow\mathcal{A}\qquad \psi:\oplus\mathcal{B}_i
ightarrow\oplus\mathcal{A}_i$$

Following diagram commutes



Challenge: coordinatize mappings  $\phi$  and  $\Psi^{-1}$ 

٠

٠ • •  $\mathbf{1}$ ٠ • •

 $\begin{array}{c} \cdot & \cdot \\ 1 & \cdot \end{array}$ 

#### Example: DFT

SPIRAL www.spiral.net

#### Example: DCT-3

Consider 
$$\mathcal{A} = \mathbb{R}[x]/x^8 + 1$$
  
 $\mathcal{B} = \mathbb{R}[y]/T_4(y), \ y = (x + x^{-1})/2$ 

### Outline

- 1. Introduction
- 2. Embedding method
- **3.** Algorithm Embedding method.



#### Projection Method: Problem statement

#### Given:

- Regular signal model (A,  $\Phi_A$ ) + Fourier transform  $\mathcal{F}_A$
- Cooley-Tukey type algorithm for  $\mathcal{F}_A$  made with sub-algebra  $\mathcal{C}$
- Regular signal model ( $\mathcal{B}, \Phi_{B}$ ) + Fourier transform  $\mathcal{F}_{B}$
- $\mathcal{B} \leq \mathcal{A}$
- Find:
  - Cooley-Tukey type algorithm for  $\mathcal{F}_{B}$



#### Reminder: Cooley-Tukey Type Algorithms

Assume

p(x)=q(r(x))





#### Fast Algorithms DFT and RDFT



 $DFT_{n} = L_{m}^{n}(I_{k} \otimes DFT_{m})T_{m}^{n}(DFT_{k} \otimes I_{m})$  $RDFT_{n} = (K_{m/2}^{n/2} \otimes I_{2})(\bigoplus RDFT_{m}(\alpha_{i}))(\overline{RDFT}_{k} \otimes I_{m})$ 



## **Algorithm Projection Method**

- Basic idea: embedding and Cooley-Tukey
- Following diagram commutes



#### **Algorithm Projection Steps**

Algorithm derivation is mechanical rewriting of

- Step 1: Write down the embedding
- Step 2: Coordinatize and obtain right / left rules
- Step 3: Plug in *F*<sub>A</sub> Cooley-Tukey and apply rules

#### But remember that E and C are chosen!



# Example: Embedding DFT<sub>4</sub> into DFT<sub>8</sub>

Step 1: Write down the embedding

$$egin{aligned} \mathcal{A} &= \mathbb{C}[x]/x^8 - 1 \ \mathcal{B} &= \mathbb{C}[y]/y^4 - 1 = < x^2 > \end{aligned}$$

15

- Step 2: Coordinatize, and obtain right/left rules
  - Step 2. Coordinatize, and  $C_{n} = DFT_{n/2}$ ,  $DFT_{n} E_{n} = C_{n}^{-1} DFT_{n/2}$ ,  $C_{n} DFT_{n} E_{n} = DFT_{n/2} E_{n}^{-1}$ .  $C_{n} DFT_{n} = DFT_{n/2} E_{n}^{-1}$ .  $C_{n} = C_{n} E_{n}^{-1}$ .  $C_$
- $\mathrm{DFT}_4 = C_8 \cdot L_4^8 (\oplus \mathrm{DFT}_4(r_i)) \oplus \mathrm{FT}_2 \otimes I_4) \cdot E_8$  $\mathrm{DFT}_4 = C_8 \cdot L_4^8 \oplus \mathrm{DFT}_4(r_i) E_8(\mathrm{DFT}_2 \otimes I_2)$  $DFT_4 = L_4^8 \oplus C_4 DFT_4(r_i) E_8(DFT_2 \otimes I_2)$  $DFT_4 = L_4^8 (\oplus DFT_2(\mathbf{r}_i))(DFT_2 \otimes I_2)$ DF

# Example: Embed DCT-3<sub>4</sub> into RDFT-3<sub>8</sub>

Step 1: Write down the embedding

• Step 3: Plug in Cooley-Tukey for RDFT-3<sub>8</sub>, apply rules  $\begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$ 

 $DCT-3_4 = C_8 \cdot (K_2^4 \otimes I_2) \big( \bigoplus \text{RDFT}-3_4(r_i) \big) (\overline{\text{RDFT}}-3_4 \otimes I_2) \cdot E_8$  $DCT-3_4 = K_2^4 \bigoplus DCT-3_2(r_i) Q \overline{\text{DCT}}-3 \oplus (I \otimes \text{RDFT}-3) G \oplus \overline{\text{DCT}}-4 P$ 

permutations



 $\mathrm{DCT-3}_k = K_m^{mn} \big( \bigoplus \mathrm{DCT-3}_m(2r_i) \big) Q(\overline{\mathrm{DCT-3}}_n \oplus (\mathrm{I}_{m/2-1} \otimes \mathrm{RDFT-3}_{2n}) G \oplus \overline{\mathrm{DCT-4}}_n) R(L_m^{2nm})$ 

- Number of rewrite rules is small
- Hard to derive by hand
- Gives new, composite algorithms
- Nice way to handle the ever growing number of transforms

**Questions?** 

