
Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005

20th Lecture Mar. 24, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa

Assignment 3 - Feedback

Peak Performance Calculation
Operations considered depend on the application considered

For numerical algorithms typically operations = floating point adds and
mults (floating point operations)
(If algorithm needs only adds, then operations = adds)

Peak performance: The maximum number of operations per
second the computer can complete.
Usually needs the manual.

For operations = floating point ops, peak performance is
measured in FLOPS (floating point ops/second).

Loads and stores are not counted (and if, it would change the
peak performance)

Performance Measurement
Performance = number of operations / second

For operations = floating point ops also measured in FLOPS

Needs:
Runtime
Number of operations

Number of operations
Either measure (using a tool like PAPI)
Or count ops executed in code. But also examine assembly code since compiler
may optimize ops away.

Comparing to peak performance gives an idea how far away from a
theoretical optimum

Submitted code - feedback

for (i = 0; i < 10000000; i++) {
temp1 += 0.5;
temp2 *= 0.5;
temp3 += 0.5;
temp4 *= 0.5;

}

266/1700 MFLOPS, gcc -02, P4

Good:
Instruction parallelism; adds and mults

Bad:
Loop body too short; constant may not be reused

Submitted code - feedback

for (i=1 to N) {
a = a+num;
b = b+num;
..
f = f+num;

}

Does not state processor, compiler
1449/800 MFLOPS for add only. 1919/1600 for Add+multiply

Pentium 4 allows 1 add/cycle

Incorrect determination performance

Submitted code - feedback
for (i=0; i<N; i+=2)

for (j=0; j<N; j+=4) {
s1 = x[i][j] + x[i][j+1];
s11 = x[i][j+2] + x[i][j+3];

s2 = x[i+1][j] + x[i+1][j+1];
s22 = x[i+1][j+1] + x[i+1][j+2];

st1 = s1 + s11;
st2 = s1 + s22;
s = st1 + st2;

sum += s;
}

P4, gcc -02, 1400mhz
Reported MFLOPS: 92.8%
Maybe counted index computations
Can hardly be true (arrays, double loop, short loop body, dependencies)

Submitted code - feedback
G4 1500mhz, peak 2400mhz (every 5th cycle stall, deep in the manual)
FMA instructions only
No dependencies across any 5 cycles
99.5% peak
Loop body (part):

f0 = f0 * f1 + f1;
f2 = f2 * f3 + f3;
f4 = f4 * f5 + f5;
f6 = f6 * f7 + f7;
f8 = f8 * f9 + f9;
f10 = f10 * f0 + f0;
f1 = f1 * f2 + f2;
f3 = f3 * f4 + f4;
f5 = f5 * f6 + f6;
f7 = f7 * f8 + f8;
f9 = f9 * f10 + f10;
f0 = f0 * f1 + f1;
…

Submitted code - feedback

for () {
y1+= inc; y2+=inc; y3+=inc; y4+=inc; y5+=inc; y6+=inc; y7+=inc;
… <1000 times>
}

No machine, no compiler flags
Reported peak performance: 96.3%
Exactly 8 variables, instruction parallelism

Submitted code - feedback

for (i=0; i < 1000000; i++) {
a0 += a1; a2 += a3; a4 += a5; a6 += a7; a8 += a9; a10 += a11;

a12 += a13; a14 += a0;
mults

....
}

Sun blade sparc IIi, 500 mhz, 1gflops peak, gcc –O3
74% peak performance
Considered different loop bodies
Surprisingly small (a14 – a0 dependency?)

Submitted code - feedback

for(i = 0; i < 33333333; i++){
asm("fadd %st,%st(1)");
asm("fmul %st,%st(2)");
asm("fadd %st,%st(3)");

…..<80 times>
}

P4 2.4 ghz, gcc -03
84% peak performance
Good part: actual executed code guaranteed
Asm can break instruction scheduling

Submitted code - feedback

for (j=0; j<iteration_num; j++){
recursive part for multiplication and addition

a0 = a0*const0_val;
a1 = a1+const0_val;
b0 = b0*const0_val;
b1 = b1+const0_val;
c0 = c0*const0_val;
c1 = c1+const0_val;
….

}
P4 1.8ghz, gcc -02
82% Peak performance

General Feedback

State computer, compiler and flags

Discuss what you do

Explain how you computed performance

Be suspicious if it was too easy, or results seem strange

Achieving high performance
Sufficient computation: e.g., loop

Reduce impact of branching instruction:
(partially) unroll loop, but not so far to get i-cache misses

Use scalar variables (so compiler does proper analysis and register
allocation)

Avoid loads:
reuse variables
make sure variable set fit into register

Keep all units busy
Use adds and mults (exceptions: e.g., P4)
Sufficient instruction-level parallelism

Use good compiler and flags

Things to remember

Understand what FLOPS performance is, and why it is
important in numerical computing

How is it computed
Allows to compare to an upper bound
Careful: FLOPS performance is not runtime; an algorithm with higher
FLOPS rate may still be slower because it has more operations

For algorithm containing more than floating point adds and
mults one needs to adjust analysis

For example other operations may need to be considered
E.g., a comparison a > b usually requires one add

Cost of Cooley-Tukey FFT

Blackboard

Example induction pitfall

	Algorithms and Computation in �Signal Processing�� special topic course 18-799B�spring 2005�20th Lecture Mar. 24, 2005
	Assignment 3 - Feedback
	Peak Performance Calculation
	Performance Measurement
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	General Feedback
	Achieving high performance
	Things to remember
	Cost of Cooley-Tukey FFT

