Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005
20t Lecture Mar. 24, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa

|

Assignment 3 - Feedback

Peak Performance Calculation

m Operations considered depend on the application considered

= For numerical algorithms typically operations = floating point adds and
mults (floating point operations)

= (If algorithm needs only adds, then operations = adds)

m Peak performance: The maximum number of operations per
second the computer can complete.
Usually needs the manual.

m For operations = floating point ops, peak performance is
measured in FLOPS (floating point ops/second).

m Loads and stores are not counted (and if, it would change the
peak performance)

Performance Measurement

m Performance = number of operations / second
m For operations = floating point ops also measured in FLOPS

m Needs:
= Runtime
= Number of operations

m Number of operations
= Either measure (using a tool like PAPI)

= QOr count ops executed in code. But also examine assembly code since compiler
may optimize ops away.

m Comparing to peak performance gives an idea how far away from a
theoretical optimum

Submitted code - feedback

for (i=0; 1 <10000000; i++) {
templ +=0.5;
temp2 *= 0.5;
temp3 +=0.5;
temp4 *=0.5;

}

m 266/1700 MFLOPS, gcc -02, P4

m Good:
= |nstruction parallelism; adds and mults

m Bad:
= Loop body too short; constant may not be reused

Submitted code - feedback

for (i=1to N) {

}

a=atnum;
b = b+num;

f = f+num:
Does not state processor, compiler
1449/800 MFLOPS for add only. 1919/1600 for Add+multiply
Pentium 4 allows 1 add/cycle

Incorrect determination performance

Submitted code - feedback

for (i=0; i<N; i+=2)
for (j=0; j<N; j+=4) {
s1=x[i0] + x[i[i+1];
s11 =x[i][j+2] + x[i][j+3];

s2 = x[i+1][j] + x[i+1][j+1];
s22 = x[i+1][j+1] + x[i+1][j+2];

stl =s1 +s11;
St2 =sl1 +s22;
S =stl + st2;

sum +=s;

P4, gcc -02, 1400mhz

Reported MFLOPS: 92.8%

Maybe counted index computations

Can hardly be true (arrays, double loop, short loop body, dependencies)

Submitted code - feedback

G4 1500mhz, peak 2400mhz (every 5t cycle stall, deep in the manual)
FMA instructions only
No dependencies across any 5 cycles
99.5% peak
Loop body (part):
f0 =0 * f1 + f1;
f2 =12 * {3 + 13;
f4 =4 * 5 + 15;
f6 =6 * f7 + f7;
f8 =18 * f9 + f9;
10 = f10 * f0 + f0;
fl=f1*f2+12;
f3=13*14 + 4,
f5 =15 * 6 + f6;
f7 =17 * {8 + 18;
f9 =19 * 10 + 10;
f0=1f0*fl +f1;

Submitted code - feedback

for () {

y1l+=inc; y2+=inc; y3+=inc; y4+=inc; y5+=inc; y6+=inc; y7+=inc;
... <1000 times>

}

m No machine, no compiler flags
m Reported peak performance: 96.3%
m Exactly 8 variables, instruction parallelism

Submitted code - feedback

for (i=0; i < 1000000; i++) {

a0 +=al;a2+=a3;ad +=ab; ab +=a’; a8 +=a9; al0 +=all;
al2 +=al3; al4d += a0;

mults

}

m Sun blade sparc Ili, 500 mhz, 1gflops peak, gcc —-03
m /4% peak performance

m Considered different loop bodies

m Surprisingly small (al4 — a0 dependency?)

Submitted code - feedback

for(i = 0; 1< 33333333; i++){
asm("fadd %st,%st(1)");
asm("fmul %st,%st(2)'
asm("fadd %st,%st(3)’
..... <80 times>

)
)

}
m P424qghz gcc-03

m 84% peak performance

m Good part: actual executed code guaranteed
m Asm can break instruction scheduling

Submitted code - feedback

for (j=0; j<iteration_num; j++){
recursive part for multiplication and addition

a0 = a0*const0 val,;
al = al+const0 val;
b0 = b0*const0_val;
bl =bl+const0 val;
c0 = cO*const0 _val;
cl =cl+const0 val;

}
m P4 1.8ghz, gcc -02

m 82% Peak performance

General Feedback

m State computer, compiler and flags
m Discuss what you do
m Explain how you computed performance

m Be suspicious if it was too easy, or results seem strange

Achieving high performance

Sufficient computation: e.g., loop

Reduce impact of branching instruction:
(partially) unroll loop, but not so far to get i-cache misses

Use scalar variables (so compiler does proper analysis and register
allocation)

Avoid loads:
= reuse variables
= make sure variable set fit into register

Keep all units busy
= Use adds and mults (exceptions: e.g., P4)

= Sufficient instruction-level parallelism

Use good compiler and flags

Things to remember

m Understand what FLOPS performance is, and why it Is
Important in numerical computing
= How is it computed
= Allows to compare to an upper bound

= Careful: FLOPS performance is not runtime; an algorithm with higher
FLOPS rate may still be slower because it has more operations

m For algorithm containing more than floating point adds and
mults one needs to adjust analysis
= For example other operations may need to be considered
= E.g., acomparison a > b usually requires one add

Cost of Cooley-Tukey FFT

m Blackboard

m Example induction pitfall

	Algorithms and Computation in �Signal Processing�� special topic course 18-799B�spring 2005�20th Lecture Mar. 24, 2005
	Assignment 3 - Feedback
	Peak Performance Calculation
	Performance Measurement
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	Submitted code - feedback
	General Feedback
	Achieving high performance
	Things to remember
	Cost of Cooley-Tukey FFT

