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Course Evaluations

 Are open now

 Please fill it out
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Research Project
 Project expectations

 Paper templates and instructions on the website

 Poster template will be uploaded tonight

• Today

• Papers due (6 pm)

• Last class: 
poster session
Scaife Hall
5:30 – 8:30 pm

• Due:
• Final papers
• Final code
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Today

 Sorting, part 2 
(Example of a non-numerical problem)
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Quicksort

Sorting NetworksInsertion sort

(Multiway-) Mergesort

Sorting large arrays

Sorting small arrays

Pivot x

≤ x > x
recurse recurse

cut

recurse recurse

merge

• Temporal and spatial locality
• Simple, array based (no complicated data structures)

sort iteratively

• Good for “almost sorted” list • Suitable for unrolling 
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Radix Sort

 Basic idea

 Second iteration:
 Sort for next digit

 D → S

 Discussion:
blackboard

Plot: D. Jimenez-Gonzalez, J. 
Navarro, and J. Larriba-Pey. CC-
Radix: A Cache Conscious Sorting 
Based on Radix Sort. In Euromicro
Conf. on Parallel Distributed and 
Network based Processing, pp. 
101–108, 2003
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Cache-Conscious (CC) Radix Sort (Jimenez et al. 2003)

 Basic idea: Blackboard

 Pseudocode (Bucket = array)

Choose to avoid TLB misses

1 step w.r.t. most significant bits br

Source: D. Jimenez-Gonzalez, J. Navarro, and J. Larriba-Pey. CC-Radix: A Cache Conscious Sorting Based on 
Radix Sort. In Euromicro Conf. on Parallel Distributed and Network based Processing, pp. 101–108, 2003
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CC Radix Sort: Results

Plots: D. Jimenez-Gonzalez, J. Navarro, and J. Larriba-Pey. CC-Radix: A Cache Conscious Sorting Based on 
Radix Sort. In Euromicro Conf. on Parallel Distributed and Network based Processing, pp. 101–108, 2003
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Evaluation: Quicksort, Mergesort, CC-Radix

So everything solved?

Plots: Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004
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Performance versus Standard Deviation

 Performance may depend on 
 the distribution of input data

 the computing platform

Plots: Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004

CC-Radix: Smaller stddev = data distributes over fewer buckets = more steps to fit into cache
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Adaptive Sorting (Li et al.)

 Basic idea: Adapt algorithm to platform and input data

 Algorithm space and parameters:
 Quicksort recursively, 

once data sets < t, use insertion or sorting network

 CC-Radix recursively,
once data sets < u, use insertion or sorting network

 Multiway-mergesort (one step) with p subsets and fanout f
then CC-radix as above

 Input characteristics: Use entropy E (of digits)

 At installation time: 
 find t and u

 Use machine learning to learn a decision function:
decision: (N, E) → {Q, CC, MM(f, p)}

Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004
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Example Result (Sorting 12M Records)

Plots: Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004
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MMM
Atlas

Sparse MVM
Sparsity/Bebop

DFT
FFTW

Sorting

Adaptive sorting

Cache optimization Blocking
Blocking 

(rarely useful)

recursive FFT, fusion of 
steps

Recursive, array-based 
sorting algorithms

Register 
optimization

Blocking
Blocking 
(sparse format)

Scheduling
small FFTs

Scheduling sorting 
networks

Optimized basic 
blocks

Unrolling, instruction ordering, scalar replacement, 

simplifications (for FFT), different algorithm (for sorting)

Other optimizations — —
Precomputation of 
constants

Sorting specific

Adaptivity
Search: blocking 
parameters

Search: register blocking 
size

Search: recursion 
strategy

Search: recursion 
strategy
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Course Summary:
What I hope you have learned
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Understand the problem (symptoms)

 Minimizing operations count ≠ minimizing runtime
(and not even close)

 A straightforward implementation is usually 10-100x 
suboptimal

 Optimal performance on one machine does mean optimal 
performance on another

 End of automatic speedup for legacy software is near
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And the Cause

 Evolution of computing platforms:
 End of CPU frequency scaling (power density)

 Deep memory hierarchies

 Vector instructions

 Multiple cores
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Understand what to optimize for

 First remove obvious performance killers

 Then memory hierarchy

 And only then vector instructions and multithreading
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Understand how to optimize given code

 Proper timing of code

 Find runtime bottleneck

 Analyze cost (cost measure)

 Determine performance and percentage of peak (efficiency)

 Understand cache behavior of code 
(walking through the code)

 Apply techniques from class

 Repeat procedure

 Understand inherent limitations (degree of reuse, 
temporal/spatial locality, memory bound/CPU bound)
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Understand how to write fast code

 Start with the right algorithm (proper structure)!!!!!

 Continue as in previous slide
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Understand how to benchmark and 
how to report it

 Precise description of procedure

 Correct

 Fair

 Proper analysis

 And if the plots are nice even better 


