
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
27th Lecture, Apr. 23rd

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Course Evaluations

 Are open now

 Please fill it out



Carnegie Mellon

Research Project
 Project expectations

 Paper templates and instructions on the website

 Poster template will be uploaded tonight

• Today

• Papers due (6 pm)

• Last class: 
poster session
Scaife Hall
5:30 – 8:30 pm

• Due:
• Final papers
• Final code



Carnegie Mellon

Today

 Sorting, part 2 
(Example of a non-numerical problem)



Carnegie Mellon

Quicksort

Sorting NetworksInsertion sort

(Multiway-) Mergesort

Sorting large arrays

Sorting small arrays

Pivot x

≤ x > x
recurse recurse

cut

recurse recurse

merge

• Temporal and spatial locality
• Simple, array based (no complicated data structures)

sort iteratively

• Good for “almost sorted” list • Suitable for unrolling 



Carnegie Mellon

Radix Sort

 Basic idea

 Second iteration:
 Sort for next digit

 D → S

 Discussion:
blackboard

Plot: D. Jimenez-Gonzalez, J. 
Navarro, and J. Larriba-Pey. CC-
Radix: A Cache Conscious Sorting 
Based on Radix Sort. In Euromicro
Conf. on Parallel Distributed and 
Network based Processing, pp. 
101–108, 2003



Carnegie Mellon

Cache-Conscious (CC) Radix Sort (Jimenez et al. 2003)

 Basic idea: Blackboard

 Pseudocode (Bucket = array)

Choose to avoid TLB misses

1 step w.r.t. most significant bits br

Source: D. Jimenez-Gonzalez, J. Navarro, and J. Larriba-Pey. CC-Radix: A Cache Conscious Sorting Based on 
Radix Sort. In Euromicro Conf. on Parallel Distributed and Network based Processing, pp. 101–108, 2003



Carnegie Mellon

CC Radix Sort: Results

Plots: D. Jimenez-Gonzalez, J. Navarro, and J. Larriba-Pey. CC-Radix: A Cache Conscious Sorting Based on 
Radix Sort. In Euromicro Conf. on Parallel Distributed and Network based Processing, pp. 101–108, 2003



Carnegie Mellon

Evaluation: Quicksort, Mergesort, CC-Radix

So everything solved?

Plots: Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004



Carnegie Mellon

Performance versus Standard Deviation

 Performance may depend on 
 the distribution of input data

 the computing platform

Plots: Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004

CC-Radix: Smaller stddev = data distributes over fewer buckets = more steps to fit into cache



Carnegie Mellon

Adaptive Sorting (Li et al.)

 Basic idea: Adapt algorithm to platform and input data

 Algorithm space and parameters:
 Quicksort recursively, 

once data sets < t, use insertion or sorting network

 CC-Radix recursively,
once data sets < u, use insertion or sorting network

 Multiway-mergesort (one step) with p subsets and fanout f
then CC-radix as above

 Input characteristics: Use entropy E (of digits)

 At installation time: 
 find t and u

 Use machine learning to learn a decision function:
decision: (N, E) → {Q, CC, MM(f, p)}

Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004



Carnegie Mellon

Example Result (Sorting 12M Records)

Plots: Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004



Carnegie Mellon

MMM
Atlas

Sparse MVM
Sparsity/Bebop

DFT
FFTW

Sorting

Adaptive sorting

Cache optimization Blocking
Blocking 

(rarely useful)

recursive FFT, fusion of 
steps

Recursive, array-based 
sorting algorithms

Register 
optimization

Blocking
Blocking 
(sparse format)

Scheduling
small FFTs

Scheduling sorting 
networks

Optimized basic 
blocks

Unrolling, instruction ordering, scalar replacement, 

simplifications (for FFT), different algorithm (for sorting)

Other optimizations — —
Precomputation of 
constants

Sorting specific

Adaptivity
Search: blocking 
parameters

Search: register blocking 
size

Search: recursion 
strategy

Search: recursion 
strategy



Carnegie Mellon

Course Summary:
What I hope you have learned



Carnegie Mellon

Understand the problem (symptoms)

 Minimizing operations count ≠ minimizing runtime
(and not even close)

 A straightforward implementation is usually 10-100x 
suboptimal

 Optimal performance on one machine does mean optimal 
performance on another

 End of automatic speedup for legacy software is near

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x



Carnegie Mellon

And the Cause

 Evolution of computing platforms:
 End of CPU frequency scaling (power density)

 Deep memory hierarchies

 Vector instructions

 Multiple cores



Carnegie Mellon

Understand what to optimize for

 First remove obvious performance killers

 Then memory hierarchy

 And only then vector instructions and multithreading

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x



Carnegie Mellon

Understand how to optimize given code

 Proper timing of code

 Find runtime bottleneck

 Analyze cost (cost measure)

 Determine performance and percentage of peak (efficiency)

 Understand cache behavior of code 
(walking through the code)

 Apply techniques from class

 Repeat procedure

 Understand inherent limitations (degree of reuse, 
temporal/spatial locality, memory bound/CPU bound)



Carnegie Mellon

Understand how to write fast code

 Start with the right algorithm (proper structure)!!!!!

 Continue as in previous slide



Carnegie Mellon

Understand how to benchmark and 
how to report it

 Precise description of procedure

 Correct

 Fair

 Proper analysis

 And if the plots are nice even better 


