
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
24th Lecture, Apr. 14th

Guest Lecturer: Daniel McFarlin

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

How to Write Fast “High-Level” Code

Carnegie Mellon

Productivity VS. Performance

 Tradeoffs

 Agility vs. Robustness

 Continuum of PLs

 New PL “Sweetspot”

 OpenMP C/Fortran
 Chapel, Fortress, X10

 *Hybrid Systems*

Carnegie Mellon

Hybrid Systems

 Interfacing High-Level Languages

with High-Performance libraries

 A Brief HLL History

 HLL Implementations

 Programmatic Interfaces

 Best Practices

 Case Study

Carnegie Mellon

A Brief History of High Level Languages

 Both Octave and MATLAB were

designed in the 80’s as high level

interfaces to LINPACK

 Fundamental datatype is the matrix

 Syntactically similar

 Near mutual compatibility

(syntactic sugar/toolkits)

Carnegie Mellon

HLL Implementations

 Interpreters that traverse

the AST representation of the input

 May have to “pointer-chase” through AST data structure

 MATLAB operates on a linearizedopcode representation
which is JIT compiled

 Operations on C/C++ fundamental type:
mxArray/octave_value

 Use hash tables to maintain identifiers

Carnegie Mellon

Implementations continued…

 Most overhead associated with:
 run-time type identification

 boxing/unboxing

 operator overloading

 identifier resolution

 garbage collection

 A * B → mult(A,B) → mm_mult(unbox(A), unbox(B))

→ gemm(A,B)

 Most functionality embedded in library calls
(MATLAB/Octave or BLAS/LAPACK etc)

Carnegie Mellon

MATLAB Best Practices
 Pre-allocate (zeros, cell, matrix)

 Select appropriate intrinsic type

 Prefer vector constructs over looping

 Avoid global

 Avoid dangling-reference induced memory leaks

 Avoid excessive branching and input argument
modification

 Use in-place functions

Carnegie Mellon

Profiling MATLAB

 Initial MATLAB implementation

 Use tic and toc for coarse grain wallclock timing

 Use cputime for finer grain timing measurements

 Use MATLAB profiler for gprof-like profiling information

Carnegie Mellon

MATLAB Profiler DEMO

Carnegie Mellon

Interfaces

 Identified hotspot(s)

 Optimized MATLAB implementation

 Want to incorporate optimized “low-level” code
 Compiler (Catalytic, Polaris, ParaM, Star-P)

Carnegie Mellon

What about the MATLAB compiler, mcc?

 Once upon a time….
 Could actually see mxArray manipulations

 Or ... at least library calls with mxArray inputs

 Now used for portable deployment
 Embed M-code in exe

 Embed JIT-accelerator, interpreter and support libraries into exe

 Result: no speedup

 Can still auto-generate header file for external functions
 Use %#external

 Static linkage of external functions

Carnegie Mellon

Interfaces…

 Incorporate optimized C/C++ code directly into the
interpreter (Octave only)
 Source code is fairly readable

 MEX/Octfile
 Octave now supports the MEX interface

 DLLs loaded at call time

 Explicitly box/unbox input/output arguments

 All of your C/C++ optimization knowledge is useful but…

 Must be aware of DLL interface pitfalls

Carnegie Mellon

Interface pitfalls
 Underlying DLL overhead

 Mostly unavoidable but there is extensive documentation on how
to extract some performance improvement (Drepper 2006)

 MATLAB/Octave DLL function calls are about two orders
of magnitude slower than C function calls
 Argument resolution/unboxing

 Determining which function to call (.m or DLL)

 Possibly reloading or unloading the DLL

 Bottom Line: push all functionality into a single DLL
 Ideally into a single function

 MATLAB Limitation: only one function per DLL

 Octave: any number of functions but have to use symlinks to
because DLLs are opened based on name

 Avoid calling DLL functions in loops

Carnegie Mellon

MEX File Optimizations

 Slab Allocations
 Requires logic and state in the library

 Input argument mangling
 Semi-endorsed by Mathworks

Carnegie Mellon

Case Study: Synthetic Aperture Radar

 Interpolate.m vs. interpolaton55.c
 Partial loop unrolling

 Computer generated vectorization

 Loop merging

 Iteration space transposition

Carnegie Mellon

References

 http://www.youtube.com/watch?v=lDPLy7MyDMY

 http://people.redhat.com/drepper/dsohowto.pdf

 http://blogs.mathworks.com/loren/

http://www.youtube.com/watch?v=lDPLy7MyDMY
http://people.redhat.com/drepper/dsohowto.pdf

Carnegie Mellon

Allocation Example
function w = test()

x = [1:16];

%% allocation

y = zeros(16,1);

z = zeros(16,1);

w = zeros(16,1);

n = 4;

m = 4;

for i=1:4,

for j=1:4,

y(i + 4*(j-1)) = x(4*(i-1) + j);

end

end

y

z(1:1:4) = y(1:1:4);

for i=2:4,

z((i-1)*n+1:1:(i-1)*n+n) = y((i-1)*n+1:1:(i-1)*n+n);

end

z

w(1:n:n*(m-1)) = z(1:n:n*(m-1));

w

for i=2:4,

w((i):n:(i)+n*(m-1)) = z((i):n:(i)+n*(m-1));

End

Carnegie Mellon

Internal vs. External Looping
function [L,ierr] = Chol(A);

[n,n] = size(A);

ierr = 0;

%

for k = 1:n,

%

% exit if A is not positive definite

%

if (A(k,k) <= 0), ierr = k; return; end

%

% Compute main diagonal elt. and then scale the k-th column

%

A(k,k) = sqrt(A(k,k));

A(k+1:n,k) = A(k+1:n,k)/A(k,k);

%

% Update lower triangle of the trailing (n-k) by (n-k) block

%

for j = k+1:n,

A(j:n,j) = A(j:n,j) - A(j:n,k)*A(j,k);

end

end

L = tril(A);

