
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
21st Lecture, Apr 2nd

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Previous Lecture

 Parallelism is the future

 Extracting/using parallelism: ongoing challenge
 Hardware is ahead of software:

 Producing parallel hardware currently easier than producing 
parallelized software

 “Our industry has bet its future on parallelism(!)”
- David Patterson, UC Berkeley

 Challenge: how to “map” a given problem to a parallel 
architecture/platform



Carnegie Mellon

Overview

 Parallelizing: case studies
 MMM

 WHT

 SMP programming with OpenMP
 Useful for your projects

 In-class demo

 Admin stuff
 Check project meeting schedule



Carnegie Mellon

Parallelizing a Problem

 (Blackboard)
 MMM

 WHT

 Take-away ideas
 Data parallel partitioning

 Boils down to: partitioning work in a load-balanced manner among 
the processors

 Might be able to express parallelism in mathematical constructs

 Important considerations:

 Minimize data transfer among processors

 Minimize barriers / synchronization

 Big SMP issue: false sharing



Carnegie Mellon

SMP – A Refresher

 SMP (symmetric multiprocessing): smaller CPUs
 Multi-core, Multi-CPU, Hybrids, FPGAs etc.

 The good:
 Easy to program

 The bad:
 System complexity is pushed to hardware design

 Bottleneck: contention to shared resource (memory)

 Coherency protocols – difficult to implement, expensive

 Scalability is an issue

Shared memory

Core1

$

Core2

$

Core3

$

Core4

$



Carnegie Mellon

Designing Parallel Programs

 Central idea: expose parallelism inherent in the problem 
by splitting it into independent tasks

 Might have one or more split/converge stages



Carnegie Mellon

Multiprocessing: primitives

 Task/thread creation and scheduling
 (spawn/fork/exec)

 Data exchange
 Threads/SMP: trivial, since memory space is shared

 MPI: send/receive explicitly

 Task synchronization (barriers/fences)
 Why?

 Critical sections, mutexes, semaphores

 Hardware support (for correctness, performance)

 Barriers



Carnegie Mellon

Multithreading

 Process: computer program that is being executed

 Thread: a program can split into multiple simultaneously 
executing tasks called threads

 Why use threads?
 Logical partitioning of tasks

 Current execution

 Lightweight (compared to multiple processes)

 Can share/sync with other threads in the process easily

 Important: threads can be scheduled concurrently on multiple 
CPUs/cores



Carnegie Mellon

Pthreads / MPI

 How does one do multiprocessing?
 Can do this manually

 But libraries exist

 Message passing (best for distributed/cluster)
 Computers in a cluster can use MPI to communicate

 How is it used

 Pthreads library (best for SMP)
 Standard API for creating and manipulating threads

 C types, and C function calls

 Fine-grained control of parallel programs

 If you need only a subset…use OpenMP
 Good for parallelizing most numerical problems



Carnegie Mellon

OpenMP: Fundamentals

 What is it?
 API for programming multi-platform SMP in C/C++

 Why use it: because it’s easy!
 Much easier to use than Pthreads (tradeoff: power)

 Parallel section

 Parallel loop

 Barrier/fence/sync



Carnegie Mellon

OpenMP: Demo

 Reminder: What is our goal (in this lecture/class)?
 Map numerical code to multi-core chip

 Reminder: what kind of parallelism? (Mostly data parallel)

 Reminder: example parallel math construct? 

 How can we use OpenMP to achieve what we want?

 Compiling:
 Need OpenMP compiler (icc, gcc 4.2+)

 #include <omp.h>

 (Demo)



Carnegie Mellon

Pitfalls

 Minimize barriers
 Expensive on many systems

 Minimize contention
 Read sharing

 Write sharing

 Cache coherence: big SMP issue
 Why cache coherence?

 Manifestation: false sharing



Carnegie Mellon

Summary

 Parallelized MMM, WHT

 SMP programming with OpenMP
 Use this in your projects!

 Admin stuff: project meetings



Carnegie Mellon

Meetings Apr 7 (next Monday)

Markus

11 – 11:45 13

11:45 – 12:30 14

1:30 – 2:15 9

2:15 - 3 16

3 – 3:45 8

3:45-4:30 12

4:30 – 5:15 6

5:15 – 6 7

Fred

3:45 – 4:30 3

4:30 – 5:15 1

5:15 – 6 2

Vas

3:45 – 4:30 4

4:30 – 5:15 10

5:15 - 6 15

Franz

1 – 1:45 ?

2 – 2:45 ?

4:30 – 5:15 ?


