
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008

4th Lecture, Jan. 28th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Today

 Architecture

 Microarchitecture (numerical software point of view)

 First thoughts on fast code



Carnegie Mellon

Definitions

 Architecture: (also instruction set architecture: ISA) The parts 

of a processor design that one needs to understand to write 

assembly code. 

 Examples: instruction set specification, registers.

 Counterexamples: cache sizes and core frequency.

 Example ISAs (Intel): x86, ia, ipf



Carnegie Mellon

Intel Architectures (Focus Floating Point)

X86-64 / em64t

X86-32

X86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386

486

Pentium

Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo

ia: often redefined as latest Intel architecture

time

Architectures Processors



Carnegie Mellon

ISA SIMD (Single Instruction Multiple Data) 

Vector Extensions

 What is it? 
 Extension of the ISA. Data types and instructions for the parallel 

computation on short (length 2-8) vectors of integers or floats.

 Names: MMX, SSE, SSE2, …

 Why do they exist?
 Useful: Many application (e.g., multimedia) have the necessary fine-grain 

parallelism. Then, large potential speedup (by a factor close to vector 
length).

 Doable: Chip designers have enough transistors to play with.

 We will have an extra lecture on vector instructions
 What are the problems?

 How to use them efficiently.

+ x 4-way



Carnegie Mellon

Definitions

 Microarchitecture: Implementation of the architecture.

 Includes caches, cache structure, ….

 Examples

 Intel processors (Wikipedia)

 Intel microarchitectures

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://processorfinder.intel.com/Default.aspx


Carnegie Mellon

Microarchitecture: The View of the Computer Architect

we take the software developers view … (blackboard)

Source: “The Microarchitecture of the Pentium 4 Processor, ” 

Intel Technology Journal Q1 2001



Carnegie Mellon

Core 2 Duo

2 x Core 2 Duo

packaged

Detailed information about Core 2 Duo

http://www.intel.com/design/processor/manuals/248966.pdf


Carnegie Mellon

Execution Units

Latency/throughput (double)

FP Add: 3, 1

FP Mult: 5, 1

Theoretical peak performance (3 GHz, 1 core, no SIMD, double precision): 6 Gflop/s

SIMD, 1 core, double precision: 12 Gflop/s

SIMD, 1 core single precision: 24 Gflop/s

2 or 4 cores: multiply by 2 or 4

Requires: computation has 50% adds and 50% mults



Carnegie Mellon

Evolution of FP Peak Performance (Intel)



Carnegie Mellon

Cache

 Blackboard

 Example parameters taken from L1 D cache, Core 2 Duo

 Size 32 KB

 8-way

 64B = 8 doubles cacheline



Carnegie Mellon

Remarks

 Microarchitecture optimizations

 Partially frees programmer from optimization

 Targets most common code patterns and most important benchmarks

 Are often not or not well documented

 Performance/runtime of code is hard to understand/predict

 Very complex microarchitecture, not everything is documented

 Actual execution not exactly known

 Compiler optimizations



Carnegie Mellon

Microarchitectural Parameters

Most Important for Programmers

 Memory hierarchy:

 How many caches

 Cache sizes and structure

 Number of registers

 Processor

 Frequency

 Execution units

 Latency and throughput of fadd, fmult, etc.

 Floating point peak performance

 How to get it?

 Digging through manuals, vendor websites; e.g., for Core 2

 Measuring. E.g., cpuid (Windows only), X-Ray

http://www.intel.com/design/processor/manuals/248966.pdf


Carnegie Mellon

Optimization of Numerical Software: First Thoughts

 It’s all about keeping the floating point units busy

 Need to optimize for memory hierarchy

 For several levels

 Goal: increase reuse of data

 Often requires algorithm modifications or proper algorithm choice

 Divide-and-conquer algorithms are in principal good

(recursive is better than iterative)

 Need for fine-grain instruction parallelism

 Use a good compiler and make sure you understand flags




