
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008

4th Lecture, Jan. 28th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Today

 Architecture

 Microarchitecture (numerical software point of view)

 First thoughts on fast code



Carnegie Mellon

Definitions

 Architecture: (also instruction set architecture: ISA) The parts 

of a processor design that one needs to understand to write 

assembly code. 

 Examples: instruction set specification, registers.

 Counterexamples: cache sizes and core frequency.

 Example ISAs (Intel): x86, ia, ipf



Carnegie Mellon

Intel Architectures (Focus Floating Point)

X86-64 / em64t

X86-32

X86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386

486

Pentium

Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo

ia: often redefined as latest Intel architecture

time

Architectures Processors



Carnegie Mellon

ISA SIMD (Single Instruction Multiple Data) 

Vector Extensions

 What is it? 
 Extension of the ISA. Data types and instructions for the parallel 

computation on short (length 2-8) vectors of integers or floats.

 Names: MMX, SSE, SSE2, …

 Why do they exist?
 Useful: Many application (e.g., multimedia) have the necessary fine-grain 

parallelism. Then, large potential speedup (by a factor close to vector 
length).

 Doable: Chip designers have enough transistors to play with.

 We will have an extra lecture on vector instructions
 What are the problems?

 How to use them efficiently.

+ x 4-way



Carnegie Mellon

Definitions

 Microarchitecture: Implementation of the architecture.

 Includes caches, cache structure, ….

 Examples

 Intel processors (Wikipedia)

 Intel microarchitectures

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://processorfinder.intel.com/Default.aspx


Carnegie Mellon

Microarchitecture: The View of the Computer Architect

we take the software developers view … (blackboard)

Source: “The Microarchitecture of the Pentium 4 Processor, ” 

Intel Technology Journal Q1 2001



Carnegie Mellon

Core 2 Duo

2 x Core 2 Duo

packaged

Detailed information about Core 2 Duo

http://www.intel.com/design/processor/manuals/248966.pdf


Carnegie Mellon

Execution Units

Latency/throughput (double)

FP Add: 3, 1

FP Mult: 5, 1

Theoretical peak performance (3 GHz, 1 core, no SIMD, double precision): 6 Gflop/s

SIMD, 1 core, double precision: 12 Gflop/s

SIMD, 1 core single precision: 24 Gflop/s

2 or 4 cores: multiply by 2 or 4

Requires: computation has 50% adds and 50% mults



Carnegie Mellon

Evolution of FP Peak Performance (Intel)



Carnegie Mellon

Cache

 Blackboard

 Example parameters taken from L1 D cache, Core 2 Duo

 Size 32 KB

 8-way

 64B = 8 doubles cacheline



Carnegie Mellon

Remarks

 Microarchitecture optimizations

 Partially frees programmer from optimization

 Targets most common code patterns and most important benchmarks

 Are often not or not well documented

 Performance/runtime of code is hard to understand/predict

 Very complex microarchitecture, not everything is documented

 Actual execution not exactly known

 Compiler optimizations



Carnegie Mellon

Microarchitectural Parameters

Most Important for Programmers

 Memory hierarchy:

 How many caches

 Cache sizes and structure

 Number of registers

 Processor

 Frequency

 Execution units

 Latency and throughput of fadd, fmult, etc.

 Floating point peak performance

 How to get it?

 Digging through manuals, vendor websites; e.g., for Core 2

 Measuring. E.g., cpuid (Windows only), X-Ray

http://www.intel.com/design/processor/manuals/248966.pdf


Carnegie Mellon

Optimization of Numerical Software: First Thoughts

 It’s all about keeping the floating point units busy

 Need to optimize for memory hierarchy

 For several levels

 Goal: increase reuse of data

 Often requires algorithm modifications or proper algorithm choice

 Divide-and-conquer algorithms are in principal good

(recursive is better than iterative)

 Need for fine-grain instruction parallelism

 Use a good compiler and make sure you understand flags




