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Abstract

Traditional communication theory focuses on minimizing transmit power. However, communication links are increasingly

operating at shorter ranges where transmit power can be significantly smaller than the power consumed in decoding. This paper

models the required decoding power and investigates the minimization of total system power from two complementary perspectives.

First, an isolated point-to-point link is considered. Using new lower bounds on the complexity of message-passing decoding,

lower bounds are derived on decoding power. These bounds show that 1) there is a fundamental tradeoff between transmit and

decoding power; 2) unlike the implications of the traditional “waterfall” curve which focuses on transmit power, the total power

must diverge to infinity as error probability goes to zero; 3) Regular LDPCs, and not their known capacity-achieving irregular

counterparts, can be shown to be power order optimal in some cases; and 4) the optimizing transmit power is bounded away from

the Shannon limit.

Second, we consider a collection of links. When systems both generate and face interference, coding allows a system to

support a higher density of transmitter-receiver pairs (assuming interference is treated as noise). However, at low densities,

uncoded transmission may be more power-efficient in some cases.

I. INTRODUCTION

The first transistor started the field of modern circuits [3] around the same time as the foundations of modern communication

theory were being laid [4]. These twin discoveries led the world into the digital revolution we witness today. Traditionally,

the development of wireless communication has followed a division of labor: the design of techniques (e.g. error-correcting

codes) that minimize transmit power was complemented by the development of power and area-efficient circuit-infrastructure

that could process signals at the transmitter and the receiver. This division of labor was justified at the time: since the distances

of communication were large for most practical applications (e.g. deep-space communication [5] was very influential in the

development of the theory), transmit power dominated the processing power consumed in circuits, and therefore received most

of the theoretical attention.

Results in this work have been presented in part at ISIT 2008 [1] and ISTC 2010 [2]. This work is the outcome of many discussions with students and

faculty at the Berkeley Wireless Research Center and the Wireless Foundations. Those with Elad Alon, Bora Nikolic, Hari Palaiyanur, Jan Rabaey and Matt

Wiener are especially acknowledged. We are also thankful for comments on the paper draft by Sudeep Kamath, Sameer Pawar and Salim El Rouayheb. This

work is supported by NSF grants CCF-0917212 and CNS-0403427.
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However, two developments are upsetting the justification for this division of labor. The first is the development of capacity-

approaching sparse-graph codes with low decoding complexity. Because the decoding algorithms for sparse-graph codes have

an efficient and intuitive parallel implementation, circuit engineers can design codes and decoding architectures simultaneously

(e.g. “architecture-aware” LDPC codes in [6]) so that the decoders are easy to implement and still promise good performance.
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decoder of [Zheng et al.]

 2.5 GHz (80 MHz bandwidth)
26 Mbps

60 GHz (3 GHz bandwidth)
1.5 Gbps

Fig. 1. The required transmit power for two short-distance bands of interest. The ISM band, centered at 2.5 GHz shows the required power for bluetooth

applications (80 MHz bandwidth) for a data-rate of 26 Mbps. The 60 GHz band presents the upcoming high-bandwidth high-throughput wireless paradigm.

The bandwidth is large (3 GHz), and the throughput is 1.5 Gbps. Path-loss exponents are assumed to be 3 (indoor environment), and the noise figure is 3

dB. Most applications today lie somewhere between the two curves. Observe that even for 1.5 Gbps link, the transmit power is not more than a few hundred

milliwatts for a distance of 3 m. Many of these applications are designed for even smaller distances, where the transmit power is only a few tens of milliwatts.
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Fig. 2. A code is an abstract mathematical object that interfaces with the physical world as the codewords pass through a channel, and at the encoding/decoding

implementations. While channel models are well studied, models of decoding implementations are not commonly investigated. Power is consumed at both of

these interfaces.

Perhaps more significant is the second development: battery-powered devices that communicate at short distances (e.g.

bluetooth, wireless sync, personal area networks, etc.). As Fig. 1 illustrates, for distances smaller than 10 meters, transmit

power is often comparable to, or much smaller than, the power required by most state-of-the-art decoders (see example

implementations in [7], [8]). Indeed, uncoded transmission is commonly used (e.g. in Wireless LANs [9], 60 GHz band [10],
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etc.) to reduce power consumed in processing despite increased transmit power. As shown in Fig. 2, a code interfaces to the

physical world not only in the channel, but also in the encoding/decoding implementation. Both of these interfaces consume

power. Just as we have channel models that help us understand transmit power, we need models of decoding implementation

in order to understand decoding power. A corresponding total power extension of communication theory that unifies transmit

and processing power is required to guide such implementation efforts. Without such a theory, We would not even know, for

example, whether approaching traditional Shannon-capacity is still a worthy goal to pursue.

The difficulty in developing a unified theory lies in developing good models for power consumed in processing. How do

we abstract the power consumed by various possible processing algorithms, circuit designs, and architectures? As a first step,

the authors in [11], [12] model the transmitter and receivers as black-boxes that consume a fixed amount of energy per unit

time powered ‘on’. Whether the problem is one of constellation design, as considered by Cui, Goldsmith and Bahai [11], or

of coded transmissions, as considered by Massaad, Medard and Zheng [12], the message is the same: since keeping systems

powered ‘on’ consumes processing energy, transmissions should be “bursty” — both receiver and transmitter are shut ‘off’ for

some time — in order to reduce processing power. However, the power required in transmission increases exponentially with

burstiness (because capacity scales logarithmically in power), so the transmission must not be too bursty. The existence of an

optimal non-zero level of burstiness is surprising: traditional transmit power analysis [13] for a non-fading channel1 predicts

that the transmission rate should be made as small as possible, and the signals least bursty, for minimum energy consumption.

Because it lumps together all of the power used in processing the signal, the black-box model does not yield much insight

into code choice or decoder design. It has been observed [10] that for high data rate communication, the power required for

decoding tends to dominate the other sinks of power (e.g. ADC, DAC, encoding, modulation/demodulation, amplification, etc.)

in processing at the transmitter and the receiver2. As a first-order approximation, the theory of system-power minimization can

therefore focus on just decoding power. Still, the existence of many different codes and multiple decoding algorithms for each

code complicates the modeling problem. Modern coding theory ensures that this complication will only grow as it continues

to be enriched by increasingly practical codes (e.g. turbo codes, LDPC codes, IRA codes, ARA codes, etc. [15]) that approach

capacity, have low-decoding complexity, and have been implemented with various decoding architectures (see [8] for some of

the possible architectures).

One approach to deal with the plethora of codes and decoding architectures is to perform an empirical study of existing

codes and decoders. To the best of our knowledge, the work of Howard et al [16] is the first to attempt a comprehensive

1For fading channels, traditional analysis suggests that bursty transmissions can help [14].
2The fact that decoding power is the dominant sink of processing power is what allows uncoded transmission to significantly reduce system power

consumption in the settings of interest in [10].
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survey of coding/decoding strategies from a total (transmit and decoding) power3 perspective. They use empirical power-

consumption numbers for certain chosen code/decoder implementations at moderately low probabilities of error. They observe

that at sufficiently small distances (depending on the choice of the code and the decoding), the increase in power consumption

due to decoding is larger than the savings in transmit power because of coding. This provides a justification for the use of

uncoded transmission in cases such as [10].

This empirical approach breaks down when the application at hand desires a different error probability, or operates in an

environment with different path loss. Do the same codes continue to be the most power-efficient? Howard et al [16] chart out

the performance of a few families of codes at different error probabilities. However, even if all existing possibilities could

be listed for the designer, empirical studies cannot rule out the possibility of better codes yet to be discovered. Furthermore,

short-distance communication need not happen in isolation. Other communication links in the same frequency band will

also complicate matters. Just as without Shannon-theory, empirical approaches would have been insufficient on their own for

designing power-efficient long-distance communication systems, a theoretical framework is required to guide the code/decoder

design to minimize total power consumption in the short-range context.

In this paper we take the first steps towards such a theoretical foundation. We examine the problem from two perspectives:

the simplest case of an isolated point-to-point link, and a collection of non-cooperating links transmitting simultaneously.

Our model for the decoding process is based on the observation that practical decoders for modern codes are all extremely

parallelized: they are all based on some form of message-passing decoding (for instance, in belief-propagation [17], likelihood

values are passed as messages). Message-passing architectures have been abstracted in the VLSI-theory literature [18] (starting

with the pioneering work of Thompson [19]) by a model that closely resembles message-passing decoding. As shown in Fig. 4,

the architecture has Processing Elements (PEs) that perform the desired computation by passing messages to each other to

access information computed by other PEs and/or stored in the register of another PE.

Adapting this model to parallelized message-passing decoding, in a companion paper [20] we derive information-theoretic

lower bounds on the neighborhood size of a bit for decoding any code to attain a specified error probability while operating at

a given gap from capacity. The basic idea is simple: the “visible universe” for decoding any bit in message-passing decoding

is the set of nodes it could have communicated with directly or indirectly, i.e. its decoding neighborhood. “Sphere-packing”

bounds in traditional information theory [21], [22] are lower bounds on error-probability given the entire block. However, if

the visible universe for a bit is smaller, the error probability should decrease with the size of the visible universe, and not the

entire block. The “local” sphere-packing derivation in [20] formalizes this idea.

3Again, the attention is limited to transmit and decoding power because they typically dominate other power sinks.
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In Section II, we focus on the case of an isolated point-to-point link. In Section II-A, we adapt Thompson’s model to a model

of decoder power consumption. In Section II-B, by making use of the connectivity constraint in the VLSI model of decoding,

we translate our bounds on required neighborhood size in [20] to bounds on the required number of iterations. Although

bounds on iterations have been derived by Sason and Wiechman [23], their bounds hold only for specific code families and

specific decoding algorithm (belief-propagation). Thus conceptually, the bounds of [23] fall between our completely code-and-

decoding-algorithm-agnostic results and the completely empirical results of Howard et al [16].
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Fig. 3. The Shannon waterfall curve, which provides the minimum required SNR for small bit-error probabilities, predicts a bounded transmit power even

as error probability converges to zero. In contrast, uncoded transmission requires that total power diverge to infinity. Also shown are required SNRs for codes

that operate 1 dB and 3 dB away from capacity.

Using our model of power consumption from Section II-A and the bounds on the number of iterations from Section II-B,

we obtain lower bounds on decoding power consumption and total power consumption. Using these bounds, we show that the

promise of Shannon-waterfall curves (see Fig. 3) — that the transmit power can remain bounded even as the error probability

converges to zero — does not extend to total power consumption. In contrast, our “waterslide” curves show that the total

power must diverge to infinity as the error probability falls to zero. Further, there is a tradeoff between transmit power and

decoding power, and the transmit power must therefore be strictly larger than the Shannon limit in order to keep the total

power consumption small.

How good are these power bounds? In Section II-D, we show that regular LDPCs (and not their capacity-achieving

counterparts4) attain within a constant factor of the optimal total power even as 〈Pe〉 → 0. Even so, the gap between the

power they consume and our lower bounds is large enough to warrant a deeper look into the code design. Since regular

codes cannot achieve capacity (under belief-propagation decoding) [24], and hence consume relatively large transmit power,

4We observe that we do not claim that all irregular LDPC codes are not order-optimal in this total power sense. As we will see, it is capacity-approaching

LDPC codes (which have an extremely suboptimal decay in error-probability with number of iterations) that are not order-optimal.
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redesigning of codes is required for short distance applications.

While point-to-point communication is a good starting point, in practical situations, short-distance links often exist in the

company of other such links (for instance, the devices in license-free ISM bands are known to cause significant interference to

each other [25]). In the isolated link case, there are two ways of reducing the error-probability: increase the number of iterations

at the decoder (thereby increasing the required decoding power), or simply increasing the transmit power and improving the

SNR. What happens when a collection of point-to-point links communicate simultaneously in the same geographic area? An

increase in transmit power is no longer sufficient because the transmit power of the interfering transmitters presumably increases

as well, saturating the signal to interference and noise ratio (SINR). How can we increase SINR in this case? One way is

to separate the transmitters by larger distances so that the collective interference is reduced. This is what MAC-protocols do,

but it comes at the cost of a reduced density of point-to-point links. Is there a better way, and if so, how well can we do?

To investigate this, we introduce a simplistic model in Section III-A. Assuming that the interference is treated as Gaussian

noise, we observe that coding has an important benefit in this case: it reduces the required transmit power thereby allowing the

transmitters to operate closer to each other, increasing the supportable density of transmitter-receiver pairs. Bringing decoding

power into the picture, in Section III-B and III-C we propose an approach to investigate which code/decoder should be used,

and whether we should use any coding at all. Within this context, the importance of the twin goals of coding theory shows up

naturally: a code’s gap from capacity limits the maximum link density that can be supported, while high decoding complexity

(and consequently high decoding power) prevents the code from supporting good densities at small total power. Furthermore,

even the coarse bounds explored here show that when the target link density is not maximal, it is best to operate codes away

from capacity to minimize total power consumption.

II. AN ISOLATED POINT-TO-POINT LINK

A. Models, definitions and problem formulation for an isolated point-to-point link

1) A VLSI model for decoding: A model for synchronous VLSI, called the “VLSI model of computation,” was introduced

in [19], [26] by Thompson. An example is shown in Fig. 4. The model contains registers, each of which has an accompanying

processor that can perform read/write operations on the register and other computational tasks. A register-processor pair is

called a Processing Element (PE) [18], [19]. The PEs are connected to each other by a set of wires. At each iteration5 — a

clock-cycle or a multiple thereof — each PE communicates (sends and/or receives messages) with the PEs it is connected to.

Thompson’s goal was to be able to compare various architectures and algorithms against the best possible.

5We use the term “iteration” instead of “time-unit” as used in [18], [19] to be consistent with the message-passing decoding literature.
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A message-passing decoder VLSI abstraction of decoder implementation
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Fig. 4. An example VLSI model of a decoder. The Processing Elements (PEs) can be connected to at most ζ = 4 other PEs in this example. The same PE

can act as any combination of output/input/helper PEs. The graph that models this chip is the obvious one — each PE is represented by a node, and each

wire by an edge.

This model has been used to explore the implementation and time complexity of the Discrete Fourier Transform [19],

sorting [27], multiplication [28] and computing boolean functions [29]. Universal VLSI models that can simulate any other

VLSI implementation at some additional area and time cost have also been studied [30].

We adapt the VLSI model of computation to the problem of decoding an error correcting code. The PEs are either ‘message’

PEs that store the decoded bits after decoding, ‘channel output’ PEs that store the channel outputs, ‘helper’ PEs that act as

intermediaries of processing by improving connectivity (see Fig. 4), or any combination thereof. We further assume that each

PE is connected to at most ζ other PEs, an implementation constraint that arises from practical limitations on wire-density in

microchips.

To obtain lower bounds on power consumption, we first provide lower bounds on the time-complexity (i.e. the number

of iterations) by assuming a completely parallel decoding architecture. In practice, the required chip-area is often reduced

by making the same PE act as two or more different PEs (of the same kind) in alternating iterations [7]. In this paper, for

simplicity, we will ignore this possibility and pretend that a fully parallel implementation is used.

As was observed by Thompson [19], one can abstract the decoder implementation as a decoder-connectivity graph. Each

node in the graph represents a PE, and each wire connecting two PEs is an edge connecting the two nodes that represent the

respective PEs. The structure of the resulting decoding graph imposes limitations on the information that can be passed between
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the PEs6. We observe that this decoding overlay graph may not be the same as the constraint graph that conventionally [15]

defines a sparse-graph code. In fact, parallelized graphical decoding algorithms have been developed for many codes not

based on sparse-graphs, for instance Reed-Muller codes and polar codes [34]. To maintain greatest generality, we make no

assumptions on the code structure.

2) VLSI model of decoding power consumption: For simplicity, we assume that each PE consumes a fixed Enode joules of

energy per iteration, irrespective7 of the decoding throughput Rdec. We also assume that the Rdec is the same as the data-rate

Rdata across the channel8, measured in information-bits per second. The data-rate in bits per channel-use is denoted by Rch.

The power received at distance x meters is given by

PR(PT , x) = min

{
PT ,

PTλ
α

xα

}
, (1)

where λ = c
fc

is the wavelength of transmission, c = 3×108 meters per second is the speed of light, fc is the center frequency

in Hertz, and α is the path-loss exponent, which is larger than 2 in practical situations9. As a reality-check, we limit the

maximum received power PR by the transmit power PT . Let PT = ξTPR be the actual power used in transmission, where

PR denotes the received power, and ξT = max
{

1, x
α

λα

}
represents the path-loss between the transmitter and the receiver. Let

let PD be the power consumed in the operation of the decoder. In this paper, we ignore the power consumed in encoding

in the hope that it is much smaller than the decoding power. In the spirit of [35], we assume that the goal of the system

designer is to minimize a weighted combination Ptotal = ξTPR + ξDPD where the vector ~ξ = (ξT , ξD) has strictly positive

elements. The weights can be different depending on the application. ξT is tied to the distance between the transmitter and

receiver as well as the propagation environment. To understand why we include the weight ξD, consider the example of an

RFID application. The energy used by the tag is also supplied wirelessly by the reader. If the tag is the decoder, then it is

natural to make ξD even larger than ξT in order to account for the inefficiency of the power transfer from the reader to the

tag. One-to-many transmission of multicast data is another example of an application that can increase ξD. The ξD in that case

should be increased in proportion to the number of receivers that are listening to the message.

For any rate Rdata and average probability of bit-error 〈Pe〉 > 0, we assume that the system designer will minimize

6The number of iterations — a metric of complexity — limits the information available to PEs. In this sense, the number of iterations is a measure of

communication complexity. Interestingly, Yao’s seminal work on communication complexity [31] was indeed inspired by Thompson’s model [32, Pg. 78], as

is also evidenced by another work of Yao [33] which deals with bandwidth limited communication between PEs. Finding the decoding complexity can thus be

viewed as finding the required communication complexity to decode message bits. It is this limitation that we exploit using a “sphere-packing” technique [21]

in a companion paper [20] to obtain a lower bound on the decoding neighborhood size.
7A more realistic model would also approximate the increase in Enode with Rdec, but this is a subject of further investigation.
8This is required to avoid buffer overflows at the decoder.
9This also rules out the unrealistic possibility of infinite interference at finite transmit powers, which is a mathematical consequence of using α = 2 in

large networks.
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the weighted combination above to get an optimized Ptotal(~ξ, 〈Pe〉, Rdata) as well as constituent PT (~ξ, 〈Pe〉, Rdata) and

PD(~ξ, 〈Pe〉, Rdata).

3) Definitions and Notation: We use the conventional information-theoretic model (see e.g. [36]) of fixed-rate discrete-time

communication with k total information bits, m channel uses, and the rate of Rch = k
m bits per channel use. As is traditional,

the rate Rch (bits/channel-use) is held constant while k and m are allowed to become asymptotically large. 〈Pe,i〉 is the average

probability of bit-error of the i-th message bit and 〈Pe〉 = 1
k

∑
i 〈Pe,i〉 is used to denote the overall average probability of

bit-error. No restrictions are assumed on the codebook aside from the obvious requirements imposed by the channel-input

alphabet.

Bi
Level 0 : 1 node

Level 1 :    nodes

Level 2 :               nodes

Level 3 :               nodes

ζ − 1

ζ − 1
ζ(ζ − 1)

ζ(ζ − 1)2

ζ

ζ

Fig. 5. An example decoding neighborhood of a message-node (denoted by Bi) for ζ = 3 (chosen for ease of illustration) after 3 decoding iterations. The

presence of cycles would only decrease the neighborhood size.

Definition 1: The neighborhood size ni for the i-th message bit Bi, after l decoding iterations, is the number of channel

output nodes that the message node can receive messages from (directly or relayed; see Fig. 5). The maximum neighborhood

size, denoted by n, is the maximum of the neighborhood sizes over all message nodes.

Two channels are considered in this paper. The first is an AWGN channel with complex Gaussian thermal noise of noise-

variance σ2
0 = kT per complex-sample, where k is the Boltzmann constant, T = 300 Kelvin is the room-temperature, and

Wused is the bandwidth being used. The second is an AWGN channel where the transmitter uses QPSK symbols and the

receiver performs a hard decision on the I and Q channel outputs before decoding. The resulting channel has two parallel

Binary Symmetric Channels (BSCs) of crossover probability governed by the transmit power relative to the thermal noise.

B. Lower bounds on the number of decoding iterations and decoding power

In this section, we provide lower bounds on the number of iterations and the required decoding power in the VLSI model of

decoding for decoding any code given the rate Rch and the desired error probability 〈Pe〉. These bounds reveal that the decoding

neighborhoods must grow unboundedly as the system tries to approach capacity. Since the size of decoding neighborhoods
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is directly related to the number of iterations, these bounds also yield bounds on the number of iterations, and hence also

on the decoding power consumption and total power consumption. The total power consumption bounds are then optimized

numerically to obtain plots of the optimizing transmit power and the total power as the average probability of bit-error goes

to zero. Our bounds predict that while the optimizing transmit power can stay bounded in this limit, the decoding power must

diverge to infinity.

1) Lower bounds on the probability of error as a function of maximum neighborhood size: This section provides lower

bounds on 〈Pe〉 error probability as a function of the maximum neighborhood size n. These bounds build on the “sphere-

packing” analysis for error-probabilities of block-codes as a function of their blocklength [21]. In message-passing decoding,

the visible universe for a message-node is not the entire block, but just the decoding neighborhood (see Fig. 5).

Because of space-limitations, rigorous derivations of these bounds appear in a companion paper [20]. The intuition behind

these bounds is as follows. Analogous to “sphere-packing” analysis for blocklength [21], we first show that the average

probability of error for any code must be significant if the channel behaves atypically in a manner that the effective capacity

of the resulting atypical channel falls below the target rate. We then observe that for a bit to be decoded in error, such atypical

behavior is not required for the entire block, but just the visible universe, i.e. the decoding neighborhood of the bit [37]. Since

the probability of this atypical behavior falls at best exponentially with the neighborhood size, so does the error probability of

the bit. The precise statements of the bounds now follow.

Theorem 1 (from [20]): Consider a BSC with crossover probability p < 1
2 . Let n be the maximum size of the decoding

neighborhood of any individual message bit. The following lower bound holds on the average probability of bit error.

〈Pe〉 ≥ sup
C−1
bsc(R)<g≤ 1

2

h−1b (δbsc(g))

2
2−nD(g‖p)

(
p(1− g)

g(1− p)

)ε√n
(2)

where hb(·) is the binary entropy function, D(g‖p) = g log2

(
g
p

)
+ (1− g) log2

(
1−g
1−p

)
is the KL-divergence, and δbsc(g) =

1− Cbsc(g)
Rch

, where Cbsc(g) = 1− hb(g) and ε =

√
1

K(g) log2

(
2

h−1
b (δbsc(g))

)
where K(g) = inf0<η<1−g

D(g+η‖g)
η2 .

Theorem 2 (from [20]): For the AWGN channel and the decoder model in Section II-A, let n be the maximum size of the

decoding neighborhood of any individual message bit. The following lower bound holds on the average probability of bit-error.

〈Pe〉≥ sup
σ2
G: Cawgn(σ2

G)<Rch

h−1b
(
δawgn(σ2

G)
)

2
exp

(
−nD(σ2

G‖σ2
0)−√n

(
3

2
+ 2 ln

(
2

h−1b (δawgn(σ2
G))

))(
σ2
G

σ2
0

− 1

))
(3)

where δawgn(σ2
G) = 1−Cawgn(σ2

G)/Rch, the capacity Cawgn(σ2
G) = 1

2 log2

(
1 + PR

σ2
G

)
, and the KL divergence D(σ2

G‖σ2
0) =

1
2

[
σ2
G

σ2
0
− 1− ln

(
σ2
G

σ2
0

)]
.

Observe that the right-hand sides of (2) and (3) are monotonically decreasing in the maximum neighborhood size n. For a

specified bit-error probability 〈Pe〉, the equations can thus be solved numerically to obtain lower bounds on n. These bounds
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are then used to obtain lower bounds on the number of iterations. Numerical evaluations are in Section II-B.2.

We can get a sense of the qualitative behavior of these bounds by considering the limit 〈Pe〉 → 0, for which n must diverge

to infinity. Taking ln (·) on both sides of (3), for small 〈Pe〉, the term nD(σ2
G‖σ2

0) dominates the other terms in the RHS.

Further, σ2
G can be taken close to σ∗G

2 that satisfies Cawgn(σ∗G
2) = Rch. The other two terms decrease to zero relatively

slowly, yielding [20]

n &
ln (1/〈Pe〉)
D(σ∗G

2‖σ2
0)

(4)

for the AWGN channel. Similarly, for the BSC we get,

n &
log2 (1/〈Pe〉)
D(g∗‖p) , where Cbsc(g∗) = Rch. (5)

It is well known (see, for instance, [36, Problem 5.23]) that the divergence terms D(σ∗G
2‖σ2

0) and D(g∗‖p) behave like

K(C−Rch)2 in the limit of low error probability, where C is the capacity of the underlying channel, and K is a constant that

can depend on the channel and is closely related10 to the “channel dispersion” [38]. The neighborhood size, therefore, must

diverge to infinity as the error probability converges to zero or the rate approaches capacity.

2) Joint optimization of the weighted total power: Let the number of decoding iterations be denoted by l. The number of

computational nodes can be lower bounded by m, the number of received channel outputs. Since each node consumes Enode

joules of energy in each iteration, the decoding energy ED is lower bounded by

ED ≥ Enode ×m× l. (6)

While sphere-packing tools allow us to investigate the impact of random channel-fluctuations, there is no channel in encoding.

Therefore, the sphere-packing based lower bound techniques do not seem to apply directly. Further, empirical evidence suggests

that it is significantly smaller than the decoding power [10]. Thus we assume that encoding is “free”. This results in the following

lower bound on the weighted total power

Ptotal ≥ PT +
ξDEnode ×m× l

Tdec
(7)

= ξTPR +
ξDEnode ×m× l

Tdec
, (8)

where Tdec = k
Rdec

is the time consumed in decoding. Thus,

Ptotal ≥ ξTPR +
ξDEnodemlRdec

k
(9)

= ξTPR +
ξDEnodelRdec

Rch
. (10)

10While our bounds essentially capture the correct channel dispersion term for the BSC, a technical difficulty limits us from doing the same for the AWGN

channel: the average power of channel inputs for the PEs in the neighborhood could potentially be very different from the average power for the block. We

therefore underestimate the true dispersion.
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We now need to lower bound the number of iterations l. This bound is derived by understanding how fast the visible universe

for each bit can increase with the number of iterations. After the first iteration, each node has communicated with at most

ζ other neighbors. In each subsequent iteration, each neighbor communicates with at most ζ − 1 new neighbors (see Fig. 5

for an illustration). The actual number of neighbors may be smaller because a) each node may not have ζ neighbors, b) each

PE may not store a distinct channel output, and c) there might be cycles (and hence repetition of nodes) in the decoding

neighborhoods. Thus, for l ≥ 1 and ζ > 2,

n ≤
l−1∑
j=0

ζ(ζ − 1)j + 1 = ζ

(
(ζ − 1)l − 1

ζ − 2

)
+ 1.

Thus, (ζ − 1)l ≥ ζ − 2

ζ
(n− 1) + 1 (11)

⇒ l ≥
log2

(
ζ−2
ζ n+ 2

ζ

)
log2 (ζ − 1)

. (12)

Using (9), and observing that l ≥ 0,

Ptotal ≥ ξTPR +
ξDEnodeRdec

Rch

(
log2

(
ζ−2
ζ n+ 2

ζ

))+
log2 (ζ − 1)

. (13)

Alternatively, when ζ = 2, n ≤ 2l + 1, and thus l ≥ n−1
2 . For numerical results in this paper, we will assume that ζ = 4.

The actual maximum neighborhood size n depends on the coding/decoding technique and on PT . However, it can be

lower bounded for any code and for a specified PT by plugging the desired 〈Pe〉 and PT into Theorems 1 and 2. For a

fixed transmit power (and hence a fixed gap from capacity), using (4) the error probability falls at most exponentially in the

maximum neighborhood size. Since the neighborhood size can grow at best exponentially in the number of iterations, these

bounds show that the error probability can fall at best doubly-exponentially in the number of iterations. Because decoding

power scales linearly with the number of iterations under our model of Section II-A, the decoding power must scale at least

doubly-logarithmically with the error-probability.

C. Numerical evaluation

For numerical evaluation, we assume fc = 60 GHz, W = 3 GHz, the rate Rdata = 1.5 Gbps, ξD = 1, path-loss exponent

α = 3, and the maximum connectivity ζ = 4. Figures 6, 7 and 8 show11 the total power waterslide curves for fixed technology

parameters ξT , ζ, and ξD (ξD is assumed to be 1 in all our curves). The plotted scale is chosen to clearly illustrate the

double-exponential relationship between decoding power and probability of error.

From (4) and (5), for a given rate Rch, if the transmit power PT is extremely close to that required for channel capacity

to be Rch, then the neighborhood size n, and so also the number of iterations l, would have to be large. From (9), a large

11Code for all plots in this paper can be found in [39].
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log-scale to bring out the relative importance of transmit and decoding power. As expected, the relative importance of decoding power reduces with distance.

number of iterations require high decoding power. Therefore, the optimized encoder should transmit at a power larger than

that predicted by the Shannon limit in order to decrease the decoding power. It is illustrated in Fig. 8 and Fig. 7 that this

optimizing transmit power is bounded as 〈Pe〉 → 0. Thus, from (2), as 〈Pe〉 → 0, the required neighborhood size n → ∞.

This implies that for any fixed value of transmit power, the power expended at the decoder (and hence the total power) must

diverge to infinity as the probability of error converges to zero.



14

0.02 0.04 0.06 0.08 0.1

−1

−2

−4

−8

−16

−32

Total power (Watts)

lo
g

1
0
(〈

 P
e〉)

Shannon waterfall

Optimizing
Transmit Power

f
c
 = 60 GHz

W = 3 GHz
R

data
 = 1.5 Gbps

α = 3

r = 10
E

node
 = 10 pJ

max degree = 4

Lower Bound
on Total Power

Asymptotically 
optimizing

Transmit Power

Shannon limit

Fig. 8. The AWGN Waterslide: plots of log(〈Pe〉) (in log scale to bring out the double-log behavior of decoding and total power) vs lower bounds on

required total power for the AWGN channel with the parameters as shown. The initial segment where all the waterslide curves almost coincide illustrates the

looseness of the bound since that corresponds to the case of n = 1 or when the bound suggests that uncoded transmission could be optimal. However, the

bound is too optimistic for uncoded transmission.

Why is the optimizing transmit power bounded? To get intuition into this, notice that at low error probabilities,

Ptotal
using (13)
≥ min

PT
PT +

ξDEnodeRdec
Rch

log2

(
ζ−2
ζ n+ 2

ζ

)
log2 (ζ − 1)

≈ min
PT

PT + γ

 log2

(
ζ−2
ζ

)
log2 (ζ − 1)

+ log2 (n)


using (4) and (5)

& γ
log2

(
ζ−2
ζ

)
log2 (ζ − 1)

+ min
PT

{
PT + γ log2

(
log2 (1/〈Pe〉)

K(C(PT )−R)2

)}

= γ
log2

(
ζ−2
ζ

)
log2 (ζ − 1)

+ γ log2

(
log2 (1/〈Pe〉)

K

)
+ min

PT

{
PT −

2γ

ln (2)
ln (C(PT )−R)

}
.

where γ = ξDEnodeRdec
Rch

. Clearly, any minimizing PT must satisfy

1 = 2
γ

ln (2)

∂C(PT )/∂PT
C(PT )−R . (14)

Thus the asymptotically optimizing PT does not depend12 on 〈Pe〉. Further, it can be shown that in (14), the solution PT is

unique for both AWGN and BSC.

It is important to note that only the weighted total power curve is a true bound on what a real system could achieve. The

constituent PT curve is merely an indicator of what the qualitative behavior would be if the true tradeoff behaved like the

lower bound. However, our lower bound shows that the decoding power must blow up if you actually approach capacity.
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Fig. 9. The LDPC waterslides: the figure shows the waterslide curve for a (3, 4)-regular LDPC code (rate 1/4 bits per channel-use) decoded using the

Gallager-B algorithm over a BSC [17] for Enode = 10 pJ. The appropriate lower bound from Fig. 6 is also plotted (on log-scale for power). The total power

has order-optimal behavior in that the difference between the power achieved by the LDPC code and the lower bound is bounded in dB-scale irrespective of

〈Pe〉 (it is to demonstrate this, we plot the total power for unrealistically low error-probabilities). The decoding algorithm is Gallager B [17] that passes only

one-bit messages along each edge, and requires elementary computations (thresholding at the variable nodes, XOR’s at the check nodes) at the PEs. Also

shown is the optimal transmit power, which has a saw-tooth behavior because of integer effects. Importantly, the optimal transmit power is bounded. Since

the code does not operate close to the channel capacity, the required transmit power is significantly larger than the optimizing power in the lower bound.

D. Regular LDPCs attain within a constant factor of the optimal power

How far do current constructions operate from this lower bound? In Fig. 9, the total power required to decode a regular

(3,4)-LDPC code using a simple 1-bit message-passing decoding algorithm called Gallager-B decoding (which is the same as

Gallager-A for a (3,4)-LDPC [17]) is plotted13 along with the lower bound. Interestingly, this upper bound is separated from

the lower bound by a bounded number of dBs even as the error probability falls to zero, suggesting that this (3,4)-LDPC code

might be order optimal. Further, as predicted, the optimal transmit power is bounded, but it exhibits a saw-tooth behavior

because the number of iterations is an integer for an actual decoder.

How general is this order-optimality? Our lower bounds on decoding power suggest that the decoding power scales

approximately as log
log 1
〈Pe〉

(C−R)2 . If we are operating at a finite gap from capacity (as any practical code does), then in order to

have order optimal decoding power (as 〈Pe〉 → 0), our code must have decoding power that scales as log log 1
〈Pe〉 . It is well

known [40] that for regular LDPCs, and indeed for any randomized LDPC code with no degree-2 variable nodes, the error

12Does the optimizing PT depend on the communication range x? Even though x does not appear explicitly in (14), it is implicit in the expression C(PT )

through PR.
13We note that the curves are derived assuming that there are no error-floors, that is, the blocklength is infinite and the codes are “random” LDPCs designed

using the socket-construction of [17].
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probability falls doubly exponentially with the number of iterations, i.e. l = Θ
(

log log 1
〈Pe〉

)
in the asymptotic limit of infinite

blocklength. Thus regular LDPCs have order optimal decoding power.

What about total power? Although regular LDPCs codes do not achieve capacity under belief-propagation-based message-

passing decoding [24], they can be used to communicate reliably at non-zero-rate [40], that is, there exists a finite transmit

power PT for which 〈Pe〉 → 0 as l→∞ (in the limit of infinite blocklengths), as long as the variable node degree is greater

than 2 [40]. Thus, we only require a constant increase in transmit power. This constant depends on the code’s gap from capacity,

but is bounded even as 〈Pe〉 → 0.

Thus, as 〈Pe〉 → 0, regular LDPCs indeed require order-optimal total power (within bounded dBs of the optimal). However,

in the case of (3,4)-LDPC, the gap between the upper and lower bounds is still about 4.8 dB. We emphasize that this difference

is not because of the required increase in transmit power: that increase is only additive and its effect on total power will die

down to zero (in dB sense) as 〈Pe〉 → 0. Partly, there is a gap because we do not count the power consumed by check nodes in

the lower bound. This accounts for a looseness of about 2.43 dB. The number of output nodes a (3,4)-LDPC decoder reaches

in two clock-cycles is 2 × 3 = 6. The lower bound assumes that the number of output nodes reached in two clock-cycles is

3× 3 + 3 = 12. This leads to a further loss of log2(12)
log2(6)

≈ 1.42 dB. We suspect that the remaining 0.95 dB loss is likely due

to the use of the Gallager-B algorithm, rather than full belief-propagation, for decoding the LDPC code.

III. A COLLECTION OF POINT-TO-POINT LINKS

A. System model for a collection of point-to-point links

r

Tx

Rx

d

θ

Fig. 10. We consider spatial networks where the transmitters lie on a triangular grid (efficient packing). The density of the transmitters is calculated as

follows: the area of an equilateral triangle is
√
3

4
d2, and each triangle contains a total of half-a-transmitter (3 transmitters on each vertex, each shared with 6

other triangles). This gives a density of 2√
3d2

.

In this section we consider a situation where the system is assumed to be a collection of point-to-point links. We further
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assume that the links do not cooperate, and they treat the collective interference from other links as Gaussian noise. If the

transmitters are modeled as placed randomly and uniformly, they could be arbitrarily close to each other. These situations are

avoided in practice by using a MAC protocol to have some minimum separation between active transmitters [41]. This pushing

away of neighbors reduces the interference, thereby allowing for communication at higher rates. The resulting topology is

often modeled using a Matérn hard-core process [42], or (for analytical simplicity) using a regular grid model (for instance,

a square-grid or a triangular-grid [43]). In this paper, we assume that the transmitters lie on a triangular grid, as shown in

Fig. 10. Nearest transmitters are separated by a distance d.

Each node transmits at the same power PT to its receiver located at a distance r from the transmitter. This distance is

assumed to be fixed, and does not scale with the density of these transmitter-receiver pairs. The communication rate Rdata

(bits per second) and the desired bit-error probability are assumed to be fixed, and equal for all links.

The question we are interested in is: given a particular total power, what strategies allow us to support the maximum number

of communication links? In particular, to what extent does the core insight from the point-to-point problem — that the code

should operate at a gap to capacity — still hold?

To address the problem in the simplest possible setting, we consider the case of multiple transmitters sending messages to

their respective receivers in which :

• no multi-hop relaying is allowed (unlike that in [44]).

• there is no use of cooperative interference-management strategies (such as those in [45]) beyond frequency-reuse.

• the aggregate interference is assumed to behave like additive white Gaussian noise.

• the rate of each link is assumed to be fixed at Rdata.

For this setup, more meaningful than the waterfall curve in Fig. 3 is Fig. 11, that plots the maximum density of transmitter-

receiver pairs that can be supported for a given error probability (the generation of these plots is explained in Section III-B).

The waterfall in Fig. 3 translates into a non-zero density of simultaneously active transmitter-receiver pairs whose simultaneous

operation can be supported using coded transmissions, even in the limit of tiny bit-error probabilities. By contrast, under the

same limit, the supportable density using uncoded transmissions decreases to zero. Because the tolerated interference in uncoded

transmissions must go to zero as 〈Pe〉 → 0, the transmitters are forced to be far from each other. The maximum density plot

of Fig. 11 is obtained in the limit of infinite power. Since decoding power, while substantial, causes no interference14, it has

no impact on this maximum density.

14In the 60-GHz band, because the operating wavelength is small (less than a centimeter), global interconnects in a decoding chip could potentially act as

radiating antennas. Although the impact of the resulting interference may be worthy of consideration, it is ignored in this paper.
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the maximum attainable density with arbitrarily large (but equal) transmission powers. The Shannon-waterfall is reflected as another waterfall for coded

transmissions, yielding a non-zero transmitter-receiver-pair density even as the desired error probability decreases to zero. Similar behavior is demonstrated

by codes that operate a few dBs away from capacity. In contrast, because the transmit power for uncoded transmissions must diverge to infinity as 〈Pe〉 → 0,

the density with uncoded transmissions decreases to zero.

Because the density of transmitter-receiver pairs is of primary interest, we allow for the transmitters to be stacked closely

together so that potentially interfering transmitters can exist in the middle of a transmitter-receiver pair. Consider a smart phone

wirelessly tethered to a farther laptop while a nearer bluetooth headset is communicating to its own laptop. The thermal noise

observed by a receiver operating in bandwidth Wused has a power spectral density of intensity kT
2 in each dimension. A given

distance d between transmitters immediately translates into the following densities (as explained in Fig. 10)

ρtri =
2√
3d2

. (15)

Let x(i) = id − r cos θ, and y(j) = j
√
3
2 d − r sin θ for integers i and j, where θ is as shown in Fig. 10. Then the total

interference is given by

I(PT , λ, r, d) =

∞∑
i, j = −∞,

(i, j) 6= (0, 0), j even

PR

(
PT ,

√
x(i)2 + y(j)2

)
+

∞∑
i, j = −∞,

(i, j) 6= (0, 0), j odd

PR

PT ,
√(

d

2
+ x(i)

)2

+ y(j)2

 .

Interference terms do not have closed-form expressions here, unlike those in [43], because we consider non-zero distances

between a transmitter and its receiver which leads to asymmetric terms in the summation.

Following the work of Alouini and Goldsmith [46], we allow both coded and uncoded transmissions to split the band into

multiple sub-bands (of equal bandwidth, each allocated to a different user) in order to reduce co-channel interference while

keeping density high. The multiple bands are noninteracting worlds that are assumed to have the same grid structure. The

distance d is redefined to be the distance between the nearest transmitters transmitting in the same band.
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Attained density for uncoded transmission

For uncoded transmission, we assume that the transmission uses quadrature phase-shift keying (QPSK) modulation with

Gray encoding. The bandwidth occupied by the transmissions is assumed to be equal to the data-rate (assuming ideal sinc

pulse-shapes).

If the total available bandwidth is larger than the data rate, the users will obviously split the entire band amongst themselves

to reduce interference. The number of sub-bands therefore equals B = W/Rdata. Allowing for this frequency reuse, we obtain

the following expression for bit-error probability

〈Pe〉 = Q

(√
2PR(PT , r)

kTW
B + I(PT , λ, r, d)

)
, (16)

where I(PT , λ, r, d) is the interference function given by (16). For a fixed 〈Pe〉, one can now calculate the required distance

d and the maximum density ρ of transmitters that will support rate Rdata.

Attained density for coded transmissions

We assume that the entire band is split into B equal-sized sub-bands. The maximum allowed interference is now given by

the inequality

W

B
log2

(
1 +

PR(PT , r)
kTW
B + I(PT , λ, r, d)

)
≥ Rdata(1− hb(〈Pe〉)), (17)

where I(PT , λ, r, d) is the interference function given by (16). The term 1 − hb(〈Pe〉) in the right-hand side of (17) is to

account for the fact that at finite bit-error probabilities, one could conceivably communicate at rates above capacity15. For fixed

〈Pe〉 and Rdata, the distance d and density ρ can again be calculated. Notice that because of the choice of modulation scheme,

there is freedom in the choice of B. This freedom is much more curtailed for uncoded transmission, where the bandwidth and

rate are intimately tied. There can, however, be flexibility in choice of the constellation which we ignore for simplicity.

B. Maximum attainable density at infinite power

To understand the limits of what is possible with coding, we first find the asymptotic density in the limit of infinite power.

Because decoding power does not pollute, it is ignored in the analysis. In Fig. 11, we compare the maximum achievable

density of transmitter-receiver pairs using coded and uncoded transmissions for a fixed rate. Reflecting the waterfall curve, the

attainable density does not decrease to zero for coded transmission even as the error probability decreases to zero, unlike the

behavior for uncoded transmissions. Therefore, to support higher densities of high-quality links, the designer must use coded

transmissions even if that means incurring a large decoding power cost.

15Although this bound is present implicitly in the other lower bounds in this paper, it appears explicitly only here. The proof is standard, and can be found

in [20].
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C. Attainable density at finite total power

In practice, the available total power per link is finite. Coding thus needs to be penalized for using decoding power. In

particular, at the low densities that are achievable using uncoded transmissions, there is a possibility that uncoded transmissions

could use less total power despite needing more transmit power. Further, we must ask whether at densities that require coding,

should we use capacity achieving codes?
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Fig. 12. Comparison of achievable transmitter-receiver pair densities versus transmit power for a rate of 1.5 Gbps over a triangular network with other

parameters as before. Because the required SINR in the code-decoder of [7] is rather high (5.5 dB for a rate of 0.8125 bits/channel use), there is a substantial

gap from the optimal even in the limit of infinite power. Also plotted is an upper bound on the density attained by an optimal code based on our results in

Section II, assuming Enode = 3 pJ, which is the approximate value of Enode in [7, Table V]. This upper bound also assumes that at least one decoding

iteration is performed. The plot shows that for extremely low total power, uncoded transmission is the only feasible strategy if Enode cannot be lowered.
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We plot the performance of the code/decoder pair of [7] in Fig. 12. At low densities, uncoded transmission indeed outperforms
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coded — after all, the decoders run at least one iteration, so they require a minimum power to run! As expected, the high

densities are only supportable by coded transmission, even though Fig. 13 shows that the codes must still operate at a gap

from capacity for any finite power.

How much could we gain by changing the code? We could certainly improve the maximum attainable density by building

codes that approach capacity. The challenge is that decoding power depends on both the code and the decoding architecture.

It is here that the lower bounds on power consumption of Section II prove useful. These bounds are turned into upper bounds

on density for given total power, and are also plotted in Fig. 12. They show that at low transmit power, uncoded transmission

outperforms any code that is decoded with the architecture of [7] (and hence has Enode = 3 picojoules [7, Table V]). A more

important observation, illustrated in Fig. 13 is that we again should not operate the codes at capacity to optimize the link

density given a total power constraint.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we used a very simple model to account for decoding implementation and decoding power. But even

this simplistic model suffices to show that operating close to capacity will fundamentally require a large decoding power.

For obtaining deeper insights into design of codes, a more refined modeling of the decoding implementation is required.

Implementation models and results for specific code/decoder families (for example, see [23]) is needed to complement our

fundamental analysis.

In case of an isolated point-to-point link, if the communication distance is small, keeping a sufficient gap from capacity

becomes significantly more important because the decoding power and transmit power are comparable. Nevertheless, the total

(transmit+decoding) power must diverge to infinity as 〈Pe〉 → 0.

Because we assume almost nothing about the code structure, the bounds here are much more optimistic than those in [23]

(because of space constraints here, a comparison appears in [20]). However, it is unclear to what extent the optimism of our

bound is an artifact of our derivation technique. After all, [40] does get double-exponential reductions in probability of error

with additional iterations, but for a family of codes that does not seem to approach capacity. It is here that code constructions

of [47] may prove useful — these codes have a doubly-exponential fall in error probability with iterations, while seemingly

attaining rates close to capacity.

In an environment where a collection of links is operating simultaneously, the challenge is pictorially captured in Fig. 12.

While improvements in codes to make them capacity approaching will bring the high-power performance of links closer to

optimal, low-complexity designs may outperform uncoded transmission at lower power. As we show, there are tradeoffs between

the two, and obtaining improved bounds on this tradeoff is a challenge for information and coding theorists.



22

REFERENCES

[1] P. Grover and A. Sahai, “Green codes: Energy-efficient short-range communication,” in Proceedings of the 2008 IEEE Symposium on Information Theory,

Toronto, Canada, Jul. 2008.

[2] P. Grover, K. Woyach, H. Palaiyanur, and A. Sahai, “An interference-aware perspective on decoding power,” in 6th International symposium on turbo

codes and iterative information processing, Brest, France, Sep. 2010.

[3] The miracle month: the invention of the first transistor. [Online]. Available: http://www.pbs.org/transistor/background1/events/miraclemo.html

[4] C. E. Shannon, “A mathematical theory of communication,” Bell Sys. Tech. Jour., vol. 27, pp. 379–423, 623–656, Jul./Oct. 1948.

[5] J. Massey, “Deep-space communications and coding: A marriage made in heaven,” in Advanced Methods for Satellite and Deep Space Communications:

Lecture Notes in Control and Information Sciences 182, J. Hagenauer, Ed. New York: Springer, 1992, pp. 1–17.

[6] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE Tran. Very Large Scale Integration Systems, vol. 11, pp. 976–996, 2003.

[7] Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, “An efficient 10GBASE-T ethernet LDPC decoder design with low error floors,” Solid-State

Circuits, IEEE Journal of, vol. 45, no. 4, pp. 843 –855, Apr. 2010.

[8] Z. Zhang, “Design of LDPC decoders for improved low error rate performance,” Ph.D. dissertation, UC Berkeley, Berkeley, CA, 2009.

[9] L. Hanzo, OFDM and MC-CDMA for broadband multi-user communications, WLANs, and broadcasting. Wiley-IEEE Press, 2003.

[10] C. Marcu, D. Chowdhury, C. Thakkar, J.-D. Park, L.-K. Kong, M. Tabesh, Y. Wang, B. Afshar, A. Gupta, A. Arbabian, S. Gambini, R. Zamani, E. Alon,

and A. Niknejad, “A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry,” Solid-State Circuits, IEEE Journal of, vol. 44,

no. 12, pp. 3434 –3447, Dec. 2009.

[11] S Cui, AJ Goldsmith and A Bahai, “Energy Constrained Modulation Optimization,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 1–11, 2005.

[12] P. Youssef-Massaad, L. Zheng, and M. Medard, “Bursty transmission and glue pouring: on wireless channels with overhead costs,” IEEE Transactions

on Wireless Communications, vol. 7, no. 12, pp. 5188 –5194, Dec. 2008.
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