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Abstract— At its core, the renowned Witsenhausen's coun- For the simplicity with which the problem is stated, it is
terexample contains an implicit communication problem. Ca-  interesting to note that the optimal control law is still makvn.
sequently, we argue that the counterexample provides a uséf |, 151 5 giscrete version of the problem is introduced. This
conceptual bridge between distributed control and communation ' . N
problems. Inspired by the success in studying long block legths allows for a convex f(_)rmulatlon qver a set O,f complicated
in information theory, we consider a vector version of the Wisen-  Constraints. However, in [3], the discrete version was show
hausen counterexample. For this example, information-theretic  to be NP complete. In search of an optimal law, a sequence of
arguments relating to lossy compression, channel coding,nd results were obtained in (amongst other works) [4]-[6] gsin
dirty-paper-coding are used to show the existence of nonl#ar 445 from information theory, neural networks and stotibas
encoding-decoding control strategies that outperform opmal S . . .
linear laws and have the ratio of costs go to infinity asymptdtally optlmlzatlon respect!vely_. Since thg problem is noncon\{ex
in the vector-space dimension over a much broader range of v this work has also inspired numerical methods for solving
parameters than the previous scalar examples. nonconvex problems.

The vector example is then in turn viewed as a collection  The second theme is in refining the classification of dis-
of scalar random variables with a four-phase distributed cantrol tributed LQG systems into those for which affine laws are

strategy. First a set of agents make observations and commigate timal d th f hich affi | t optimal
with each other to coordinate a first-stage control strategythen ~OPUMal, and those for which afline laws aré not optimal.

they individually act on their state. A second set of agents IN [4], the authors consider a parametrized family of two-
now make noisy observations and communicate to coordinate stage stochastic control problems. The family includedhifite

a control strategy, and finally they act on the state again. T senhausen counterexample. The authors show that whenever
vector case can be considered one in which the first and third o ¢ost function does not contain a product of two decision

phase are free. It is thus natural to impose a cost on the lengt iabl ffi trol | timal. Th th
of the first and third phases and this can in turn be viewed as variables, afline control laws are optimal. 1he authors ese r

inducing a natural cost function on the information pattern itself. ~ Sults from information theory to arrive at the optimalitysuit.
~ Inspired by this, we close by considering the simplest podse  In [7], the author shows that affine controls are still optifoa
information-theoretic analog of the problem — lossless copres-  a deterministic variant of the Witsenhausen counterexampl

sion of a binary state vector. It turns out that the mformatl_on- if the cost function is the induced two-norm instead of the
pattern can be used as a natural proxy for computational ted t in the stochasti iant
complexity and this gives a new result on the fundamental expecte i wo-norm In the s OC_ as_lc yarlan.
complexity of lossless compression in terms of the tradeoff The third theme has been in viewing the counterexample

between rate, effort, and the probability of error. as a bridge between control and communication [8]. In [9],
the authors observe that the original Witsenhausen problem
is in essence a communication problem between the two

. INTRODUCTION controllers. They back up this observation by proposing con
For LQG systems with perfectly classical information patrol strategies that are explicitly based on quantizatibthe
terns, it was well known that control laws affine in thenitial state. The strategy is conceptually related to Tiosun-
observation are optimal. In [1], Witsenhausen gave an expliHarashima precoding (see e.g. [10, Pg.454]) for what izdall

“counterexample” that demonstrated the importance ofrinfadirty-paper coding in information theory. The authors then

mation patterns in control problems. The counterexampke Wgenerate a sequence of problem parameters for which non-

a chosen distributed control system (and hence a systemawitihear strategies based on quantization outperform thienapt

non-classical information pattern) that was otherwisedgaic  linear strategies by a factor that tends to infinity. This kvor

and Gaussian. For this system, Witsenhausen providedngpired a larger body of work that considered explicit feat
nonlinear control law that outperformed the optimal lineafan implicit) communication channels connecting the two
control law and also demonstrated that a measurable optirgghtrollers and took asymptotics in time [11]-[16] and even

control law should exist. the idea of implicit communication plays a vital role in [17]

The counterexample has inspired a large volume of resea[¢B]. The counterexample itself was revisited yet agairli@ [
along three related themes. The first body of work is devotgghere the author adapts the standard information-theoreti
to finding the elusive optimal control law for the problemgoncern withside-informationinto a modified Witsenhausan



problem. The side-information of the initial state is passeand the inputs are now vectors of length. A vector is
through a noisy AWGN channel before being received by thiepresented in bold font, with the superscript used to denot
second controller, and is itself subject to an SNR condtraia vector length (e.gx™). As in conventional notationg is
The author shows that nonlinear schemes still outperfoused to denote states,the input, andy the observation.
linear ones. In fact, at low SNR, nonlinear schemes that do no, The statex? is distributed\ (0, o21).
make use of the side-information outperform all linear gnes , The state transition functions :
including those that make use of the side information.

It can be argued that the root of all these connections 1" = filxghu") =xg +uf", and
between information theory and control can be traced back to x5 = fo(x",ul’) =x" —ul.
Witsenhausen'’s counterexample. It might seem that theoexpl
ration of connections between information theory and aantr
is mature and no longer needs to consider the counterexample vy o= g =xy, and
as a bridge. In this work, we challenge that view by returning

« The output equations:

_ e ya' = g =x1"+w",

to the Witsenhausen counterexample. We investigate hda too
in information theory, specifically the use of asymptotigal wherew ~ N(0,021). We assume that? < o2.
long block lengths, can contribute towards improving our « The cost expressions:
understanding of the counterexample. In Section Il, weestat o 1o,
the vector version of Witsenhausen problem. Assuming the ha (7", uy*) = Ek |[uf"][*, and
vector length is asymptotically large, in Section Il we e

or length is asymp y larg pos ho(xTul) = ||
a pair of nonlinear schemes building on the scalar quaitizat 2182, 2 m 2

ideas introduced in [9]. The first scheme is based on the
information theoretic concepts of lossy compression (wect
guantization) and joint source-channel coding. The seésnd
inspired by dirty-paper coding [20]. We show that the pragabs
schemes outperform all affine schemes as well as the scalar Yi = {y'h Ui =2,

scheme of [9]. _ Y, = {yI'} U, =0.

The new control schemes as proposed treat the entire
vector all at once. While usually accepted without question Observe that the first controller as assumed to have

The cost expressions are normalized by the vector-length,
so that they do not grow with the problem size.
o The information patterns :

in information-theoretic circles, this seems aphysicalte complete knowledge of", and similarly the second
context of distributed control. The vector example can be controller has complete knowledge pf'. Therefore the
viewed as a distributed collection of scalar random vaesbl ~ System is not completely distributed. Section IV shows
with a four-phase distributed control strategy. First a st that there are computational costs associated with making

agents make observations and communicate with each other the system completely distributed.

to coordinate a first-stage control strategy, then they a¢he In the next section we provide a pair of nonlinear schemes
state, a second set of agents now make noisy observations #ad outperform the optimal linear scheme.

communicate to coordinate a second-stage control strategy

and finally act on the state again. It is thus natural to impose IIl. THE SCHEMES CONTROL AND COMMUNICATION

a cost on the length of the first and third phases and this|, this section we provide a nonlinear coding scheme that
can in turn be viewed as inducing a natural cost function Q9 pased on the concept of joint source-channel coding in
the information pattern itself. In Section IV, we observatth jhtormation theory. To enable understanding of the scheme,
the system is a collection of scalar Witsenhausen problemg, review some fundamental results and definitions from
with an additional freedom that controllers can send messaghtormation theory in Appendix |. These are taken from [22],

(teratively) to each other in order to perform the encodingq the reader is referred to [22] for further details.
at time 1, and decoding at time 2. The Witsenhausen coun-

terexample thus leads naturally to a new information-tegor

problem of understanding the complexity of distributedsios

compression. Building on our work in [21], we formulate a toy We now briefly describe the scheme, before giving a detailed

lossless source-coding problem to explore the tradeoffdet  description and analyzing its performance.

various costs for operating such a distributed system. As in [9], the idea is to quantize the space of realizations of
This paper does not represent the end of a story, but ratherggh to arrive atx7". These points are chosen carefully so that

attempt to demonstrate that the Witsenhausen counterésanygth high probability, the second controller can recowdr

still has plenty of life left in it even after 40 years of prding from the noisy observatiog}*. By makingus* = xi*, the

A. The first joint-source channel scheme

inspiration to control researchers. second controller can now forees*, and hence the second
cost, to zero. In the vector case, for a careful choice ofgpin
II. THE PROBLEM: DISTRIBUTED CONTROL the probability of error in recovering}* converges to zero

Ponentially inm [23]. Therefore, for large enougtn, the

. . ex
We generalize the scalar Witsenhausen problem to a vect0 . .
erage cost at time 2 can be made as small as desired.

case. The system is still a two-step control system. Thesta?"



At time 1, the state of the system " = xi* + uf*. that dirty-paper schemes might perform better than thet join
We use the following construction to find]* for eachxj*. source channel scheme. We refer the reader to Costa’s arigin
First, we design a rat& source code for distortio® where paper [20] for more details. We also observe that due to a
o2 > D > o2. A random codebook is constructed, with eacHifferent problem formulation, our notation is differembfn
codeword drawn randomly from distributioN'(0, 0% 1) for that in [20].

0% = of — D. If the code rateR satisfies The scheme proceeds by choosing an auxiliary random
1 52 variable V- ~ N(0, P + o?c?), for somea that will be an
R>R(D) = 510g2 (BO) , (1) optimization parameterd = 2"7 iid sequences are drawn
uniformly at random from the set of typical”, wheré
the average distortion_is no griaater than(in the limit). The 1 (P + 02 +02)(P + a202)
choice ofu?” is the distortionky* — x{*, and the resulting T= 5log2 (P 57 R 5 ) (3)
X = KM, o5(1 —a)? + o3, (P + 03)

Thus x7*, which is the quantizeck™, is itself transmit- These sequences are then distributed uniformly 8¥&rbins.
ted across the channel. Since a random Gaussian codebaqgkarticular bin is choseh The encoding is now performed
achieves the channel capacity [22] for an average pows follows. Given a source sequencg, av™ jointly typical
constraint equal to the average power of the codebook, thith x7* is first found in the chosen bin. Then the contugt
points in the codebook form a good channel code as wel.chosen am}* = v™ — ax}'. The received sequeng&® is,
Since these codewords are generaté@d, 0% 1), the average therefore

power of the codebook is?, = 0§ — D. Thereforex]* can yI =ul + x4+ W (4)
be recovered reliably at the second controller for rdtes C ) . )
where It is shown in [20] that the decoder (in our case the second

9 5 controller), can recover™ from the received sequence as long
1 oD 1 og—D .
C=3logy (142 ) =zlogy 1+ > . (2) asthe rateR? is smaller than
2 oz, 2 o

w 1 PP+ +02)
. . . . Cla.P) = 21 w . 5
Simplifying the capacity expression, (o, P) 5082 <P08(1 —a)2 1 0% (P + a20?) ®)
C = llog (1 + ah — D) We are not interested in getting a high rate. However, we want
2 o to keepP small, sincek2P is our cost at time 1. At time 2, the
1 02 +02—D cost is the average mean-square error in estimatifig- x{".
= 5log, 2 The decoder can recovet™ with arbitrarily high probability.
2 o
1 o2 — (D - 02) Now, v = ul”+ax{". By design,ui” andx{* act as if drawn
= 3 log, <m> independently. Therefore, we can find the error in estingatin
) ) w uf” + xi* from v by MMSE estimation. This turns out to
- % ) _ be
> 5 log, <D> = R(D) Po2(1 — a)?
MSE = —0—-—-. (6)
. . 9 P2 + a0
where the last inequality uses the fadhat D > o2. 0
Therefore, reliable communication is possible at fa{é) < The total cost is, therefore,
R<C. Po2 2
. . . . m m 2 oj(1 —a)
Since D is the mean-square distortichE [||x7* — xg'|[3], KPP+ P2+a02 (7

it is also the mean-square input required to dee to x7"°.

Therefore, the cost at time 1 i€D. Observe thatD is only This cost can be achieved only @(«, P) in (5) is greater

constrained by the inequalit® > 2. Asymptotically, there- than 0. Thus, the optimal cost is obtained by minimizing (7)

fore, the first stage cost i?02. Since the error probability under the constraint that(«, P) > 0.

converges to zero exponentiallyin, for large enoughn, the Considera = 1. In this case, the MSE cost is zero, so only

average cost at second stage can be made as close to zetbefrst cost is retained. Also,

desired. Therefore, the asymptotic total cost is jufst? . 1 log (p(P +o2+ Ugj))
2 T 5/ 1 2N )

1,P) ==
C(L,P) 90 02 (P+03)

B. Another information theoretic scheme 9
which is strictly positive atP = o7,. Therefore, zero second
Note that in the above SCheme the cost at the second Stéggt is poss|b|e for some Va|ue5 Bf< 0-2 for this scheme.
is zero. Dirty-paper coding [20] suggests another scheme fSince the MSE cost is zero, the net cost is smaller than
which the second stage cost is not zero. Notice that this was not possible for the joint source-clenn

Observe that the lossy source code reduces the powgheme, where the cod? is constrained to be greater than
that is fed into the “channel”. This imposes a constraint of2

D > o2. Alternatively, dirty-paper coding techniques [20]

in |nf0rmat|on theory can be thought of as performing a ?M corresponds to the mutual information betwdérand Yz [20].

similar quantization, without reducing the power. Thisgests 3Eventually we will letR — 0, so there’s no loss in choosing any particular
’ ' bin.

(8)

U a>b>0, then$=2 > ¢ forall 0 <z < b.




C. Comparison with linear and scalar schemes

In this section, we compare the vector scheme with thi o
optimal linear scheme, and the scalar nonlinear schem&j.in [

For simplicity, assume2 = 1. For given value ob3, the
cost for the optimal linear scheme is (from [9])

(1 +a)?a3

1+ (1+a)?0d ©

inf kQaQUg +
a

Sinces? = 1, the asymptotic cost for the vector joint source

channel coding based schemekir2 = k2. The ratio of the

optimal linear cost to the cost for the joint source channe

scheme is, therefore,
k20202 1+ (1+a)?08

0?08 + Tty
int k12+(1+ 202
, (14 a)?%

=infa?02 + —— K
a 0 0_13 +(1+a)?

Now let & — 0 and 02 — oo. If a is close to0, the
second term is unbounded. dfis close to—1, the first term
gets unbounded. For any other value @of both terms are
unbounded.

Thus any choice of sequen¢g, o) such thatt — 0 and
op — 00, the ratio diverges to infinity. Observe that there
more flexibility in choice of(k, o) as compared to that in [9]
where a careful choice has been made. The three sche

- = =lower bound on scheme in [9]
——JSCC
10 —DPC
‘‘‘‘‘ Linear
1 5 10 20 40 60 80100

Fig. 2. This figure shows the variation of cost (on a log-loglst with n,
wheren is the parameter that characterizes the family of controblems
in [9]. Thus,k,, = % 00,n» = n?, and for the scheme in [9], the size of bin
B, = n. A lower bound on cost for this scheme is derived in Appendlix |
Since slopes for DPC and JSCC costs are better than that éwea bound
on scheme in [9], the ratio of costs for the scheme in [9] amdehschemes
converges to infinity.

is

_ context? While the limit of large block-lengths is justified

riffgrmation theory by considering it as introducing longed

viz. the optimal linear scheme and the two vector nonline!nger end-to-end delay in an inherently centralized comimu
schemes proposed here are compared in Fig. 1 and Fig. ocation problem [24], this is problematic in a distributedhtrol

In Appendix II, we show that the proposed scheme outpé&etting wherg a longer vector seems to suggest a distributed
forms the scalar nonlinear scheme in [9] by a factor of infinitcontroller acting over a larger geographical area.

as well. This is also evident from Fig. 2.

10° }

—Jscc
3 == DPC
= = =Optimal linear

0.02 0.03 0.04 0.05 0.06 0.07 0.08

Fig. 1. The figure shows the variation of the total cost witfior o2 = 4.
The Joint Source-Channel (JSCC) Scheme and the Dirty-Raqding(DPC)
scheme perform better at low valueskofAt large k, however, the cost at time
1 is larger, therefore the costs for DPC and JSCC scheme=ager However,
the cost for linear schemes is still bounded by choice ofa = 0.

IV. REDISTRIBUTING THE VECTOR CASE FROM CONTROL
BACK TO COMMUNICATION AND COMPUTATION

The schemes in Section Ill raise a natural question: w

does it cost to implement such a scheme in a distributed@lon

It is natural to consider the vector as made uprobcalar

Witsenhausen problems. Therefore, a centralized systegfhtmi

be required to perform the encoding, and another for degodin
which is contrary to the spirit of the counterexample. Inesrd

to address this, we allow for iterative message-passingréef
the actions of both sets of distributed controllers. Messag
passing algorithms can be performed in a distributed manner
and have complexity that scales linearly withm, wherel is

the number of iterations performed, andis the block-length.
Therefore, the normalized computational cost is only lirea

I, and does not scale with block-length. In addition, the
success of sparse-graph codes in coding-theoretic literat
and success of channel coding and source coding techniques
based on sparse-graphs gives hope that these codes may exist
[25].

Next we describe the encoding and decoding model of this

message-passing algorithm. An investigation into cost¢he

full joint lossy source-channel coding problem posed here i
hard, and we are still working on it as it is a new problem in
information theory. Based on results in [21], one expecte®
some fundamental performance-cost tradeoffs. The schemes
proposed in Section Il are implemented in a couple of steps.
In the first step, a quantization d&&™ is performed. The
resulting quantization, can be thought of as a lossy source
code, is transmitted across the channel. This is followed by
a channel decoding, that fails with an error probabilityttha
regnverges to zero exponentially_ fastqsm The performance-
t?OSt tradeoffs for channel coding can be understood from



the ideas in [21]. However, the problem of performance-costosta's output bits. Each of these output bits depends on at
tradeoffs in lossy source coding is entirely new. mostale source bits. Therefore, each reconstruction is based
To begin to understand what such tradeoffs could be fon a “neighborhood” ofx'*'« source symbols (See Fig. 3).
source coding, instead of a Gaussian source we analyz&Va refer to this as the source neighborhood of the particular
binary source, which has the advantage of discrete alphiabetsymbol. Intuitively, an atypical source realization foisttocal
information theory problems, lossless source coding issgenneighborhood of the reconstruction bit should cause eirors
ally easier to understand than lossy source coding. Therefahe reconstruction.
we restrict our attention here to lossless source codintreSi
a binary source that produc@sor 1 with equal probability
is incompressible losslessly, we consider asymmetricripina
sources that produce lawith probability p < 0.5.

Source bits

A. The encoding/decoding model

We now describe a message passing model of the en
coder and the decoder. The model is inspired by distributed
Witsenhausen counterexample. We focus on the distributec
nature of the encoding and the decoding. We assume that
the encoder is physically made of computational nodes tha. 3. The dashed box in the figure shows the source neighbbdrion
have communication links with other nodes in the encoder. Re iteration of_ engoqmg and decoding for reconstructiilr_];icb: Whether

: . the reconstruction is in error depends only on the sourckzatian in the
subset of nodes are designated ‘source nodes’ in that eacRelghborhood.
responsible for storing the value of a particular sourcetsyim
in the initial statex{*. Another subset of nodes, called the ) )
‘coded nodes’ has members that are would eventually stere th The following theorem gives a lower bound on error proba-
encoded symbola?". There may be additional computationapility for given size of local neighborhood. Turned around,
nodes that are just there to help encode. To arrivayatthe these bounds give lower bounds an and hence the total
encoding is performed in an iterative, distributed manAer. Number of iterations at the encoder and the decéderly >
the start, each of the source nodes is first initialized wite 0108, () for given error probability. )
element of the vectax™. In each subsequent iteration, all the Theorem 1: Consider a binary source that generates iid
nodes send messages to the nodes that they are connecte@&goullip) symbols,p < 0.5. Let n. be the maximum size
At the end ofl, encoder iterations, the values stored in thef source neighborhood for each reconstructed bit. Then the

Recovered bits

coded nodes constitute the encoded symodls following lower bound holds on the average probability df bi
The implementation technology is assumed to dictate tHfOr
each computational node is connected to at most1 > 2 5ol _ evn
> O phy " (6(G)) 5 p(l—yg
other nodes. No other restriction is assumed on the topolo@@dp 2 _, sup ) . g~ nPsllp) gEl _p§ )
of the decoder. No restriction is placed on the size or cdnten hy (R)<g<3 (10)

of the messages except for the fact that they must depend gn . . . o

the information that has reached the computational nodev}’%ﬁere fip(:) is the bmaryﬁ entropy functionD(gllp) =
ious iterati i ith @loga (2) + (1 g)log, (1=2

previous iterations. If a node wants to communicate with 2 \p 2\1-p )

more distant node, it has to have its message relayed through 8(G) = hy(g) — R, (11)
other nodes.

The neighborhood size of each node at the encoder fafter 1 | ( 2 ) (12)
. . . . . . € = og — .
iterations, which is the number of nodes it has communicated K(g) °? phy (6(G))

with, is denoted by, < a'*!. The per-node cost associated

with the number of iterations is some functigrfl), that is and 1 1

increasing withi. K(g) = ——— log, ;g) . (13)
The decoding model is analogous, with ‘reconstruction 1-2g 9

des’ ible for storing th tructed symiaoid Proof: See Appendix ill.
noades responsib’e for storing the reconstrucied symanle, -y note that the lower bound in Theorem 1 results look much

another subset of nodes that store the encoding symifols like that in [21]. Conceptually, the two problems differ gl
in their source of randomness and the neighborhood.

B. Derivation of lower bound on complexity for lossless Observe that the neighborhood here is determined by the
source coding number of encoding and decoding operations. This suggests

The source generates symbols that are encoded losslesslthat the encoding costs can be reduced by making the decoding
into & symbols at rateR = £ > hy,(p). The encoding and costs larger. We believe this is an artifact of our bounding
decoding are performed iteratively using a message passigghnique, and is not fundamental to the problem at hand.
algorithm. Encoding is performed Ip encoder iterations, and
the decoding is performed iy decoder iterations. Recon-
struction of each bit is performed by using messages from at



C. Tradeoff between control, communication, and computahere the expectation is with respect to the probabilityridis
tion costs bution on x.

In Section Ill, we determined the communication and Definition 4: A rate distortion pair(E, D) is said to be
control costs for the system. The decentralized encodiAghievableif there exists a sequence (™", m) rate distor-
and decoding framework above allows us to calculate tHEN COdes i, gm) With limy, oo B [d(X™, gm (fm (x™)))] <
computation costs. D. Therate-distortionfunction R(D) is the infimum of rates

Let gap = R — hy(p) to denote the gap from optimality B such thai(R, D) is achievable for a given distortiab. The
for the lossless source coding problem above. For extreméigtortion-ratefunction D(R) is the infimum of all distortions
low error probabilities, analogous to results in [21], we e D such that(R, D) achievable for a given rat&.

following approximate lower bound on the neighborhood size Theorem 2 (R(D) for Gaussian source): The rate-
as a function of the error probab”'ty and tbap distortion function for Gaussian SOUI‘CN(O, 0'3) with
. squared-error distortion is
n>K2w (14) 1log (”—) 0< D < a2
< 5 R(D)=< 27°2\D)> " =7 =50 (20)

gap
, D > crg.
for some constank’, that does not depend gap and(Fe). The proof of this theorem tells us that this codebook can

This lower bound implies that for low computational compe constructed by choosirgj'** points independently from
plexity, the ratelz should be at a finitgap from £ (p). This  xr(g, (02 — D)I) distribution.

suggests that for the joint source-channel scheme proppsed

Section Ill, a similar result could hold. That is, to redube t .

computational costs, the rate should be bounded away fr&‘n Channel coding

R(D) for distortion D. Observe that a similar result holds for Definition 5: An Additive White Gaussian Noise (AWGN)
gap from the channel capacity [21]. Therefore, for optimathannewith an average power constraint consists of a channel
costs, the system should be operated at €ate R > R(D), inputX € R and a channel outpdt = X + Z, whereZ ~
whereR is at a finite gap from botl’ and R(D). Such an N(0,07,). The inputX has an average power constraint
operating point requires that for chosen réethe distortion that is, overm channel uses;- > || X;||> < P

D be strictly larger thanD(R) > o2, thus leading to higher ~ Definition 6: An (1M, m) code for the AWGN channel

costs at time 1 than those estimated in Section Il consists of the following:
1) Anindex set{1,2,...,M}.
APPENDIXI 2) An encoding functionX™ : {1,2,...,M} — R™,
SOME USEFUL INFORMATION THEORETIC CONCEPTS yielding codewordsX™ (1), X™(2),...,X™(M). The
A. Lossy source coding set of codewords is called the codebook.

Assume that we have a source that produces sequehee ~ 3) A decoding functiory : R™ — {1,2,..., M}, which
X™. The encoder describes the source sequeriteby an is a deterministic rule which assigns a guess to each
index f,,(x™) € {1,2,...,2"}. The decoder represents’ possible received vector.
by an estimate&™ € X Definition 7 (Probability of error): Let

Deflnl_tlon 1: A distortion function or distortion measure is A = Pr(g(Y™) # i|X™ = X™(3)) (1)
a mapping

d: X xX —Rt (15) be the conditional probability of error given thatvas sent.

_ The average probability of error is defined as
from the set of source alphabet-reproduction alphabets pair

into the set of non-negative real numbers. The distortion m 1 Y
d(z, %) is a measure of the cost of representing the symbol P = M Z)‘i’ (22)
= by the symbol. =t
Definition 2: The distortion between sequence® and and the maximal probability of error is defined as
x™ is defined by A = max A (23)
1 m o i€{1,2,...,M} ) )
d(x™, &) = — Zd(wi,@) (16) Definition 8: A rate R is said to beachievableif there
ni exists a sequence @2, m) codes such that the maximal
Definition 3: A (2™% m) rate distortion code consists ofprobability of error\(™) — 0 asn — oc.
an encoding function, Definition 9: The capacityof a memoryless channel is the
Pt X {12, 2mR} (17) supremum of all achievable rates.

Theorem 3 (Channel coding theorem):The capacity for
and a decoding (reproduction) function, an additive white Gaussian noise channel of noise variafice
G {1,2, 0, 2 BY pm (18) with an average power constraifitis

The distortion associated with tHg™* m) code is defined C= %log2 (1 + %) (24)
g
as

w

D =E[dX",; gm(fm(x™)))] (19)



In addition, the error probability converges to zeespo- of G with R < h;(g), then average probability of bit-error is
nentially in m [23], and the capacity can be achieved blower bounded by
a choosing a codebook d&™% points independently from _

; P peneenty () = by (holg) = R) (26)

N(0, P distribution. Proof: For R < hy(g), consider hamming distortion be-

tween the source symbols and the reconstruction. The averag
APPENDIXII hamming distortion is also the average error probabilising

PERFORMANCE COMPARISON WITH SCALAR SCHEME IN9] the distortion-rate function for a binary source [22, Pg3]34

For the family of problems and the quantization schenge distortionD(R) is bounded below by
in [9], we find lower bounds on the cost at time 1. We follow

the notation of [9] in this sectionB® is used to denote the D(R) > hy ' (hs(9) — R) (27)
0-th bin (bin that includes the origin), anl is the bin-size. -
costl E [(~B 9 Let x™ denote the source sequence. Consider ithth
k2 [(71 (w0)) } message bite;. Its encoding and decoding are based on a
> E [z3lpoy] particular neighborhood of source symbef§, ; of sizen. The
1 B/2 o encoding is error-free if these neighborhood source sysbol
= x2e /27 dy, XMhq,; lie in the regionD; ¢ if the i—th bit is 0, and inD; ; if
v2mo? J-p/2 the i—th bit is 1.

For the particular sequence of problem parameters[9], the Lemma 2: Let A be a set of source sequence’ such
size ofn' bin is B, = n, 02 = n? andk, = . Therefore, that%r(A) = 4. Then,

n —

costl 1 2 s Pr(A) > f(6 28
n —z%/2n r(A) > f(9) (28)
k2 = V2mn4 /71/2:17 ‘ & !
1 "2 2,-n?/8n" 4 vhere Y o—nD(g||p) p(1—g) v
e T — Z9-—nD(gllp 29
V2rnt -z W) =3 (g(l —p)) 29
_ 1 "/ 2 —1/8n2 is a convex. increasing function of;, and where
= \/2_42 xédx X e
™ 0
S e(y) = | =7 logy (2) (30)
12V27 K(g) Y

that increases to infinity as — co. In comparison, the joint Proof: Define typical set. ¢ as follows

source-channel scheme proposed in Section Ill has cos}.of n
Thus the ratio®2t!= = 1 for the joint source-channel scheme. Toa={x"st Y si—ng<e/n} (31)
Hence, the ratio of the costs for the scalar scheme in [9] and i=1
the vector scheme proposed here diverges to infinity. Then, as shown in [21, Lemma 9], for
APPENDIXIII 1 2
PROOF OF LOWER BOUND ON COMPLEXITY FOR LOSSLESS ‘T K(9) log, Pr(A) |’ (32)
SOURCE CODING G

The proof is similar to that for the rate-complexity tradeof Pr(A)

for channel coding over a BSC [21]. In the following, we PGr( ) < G2 . (33)

use P to denote the underlying source that generates symbols _ _ _ o
distributed Bernoullif). G denotes a test source generatinghat K(g) is as in (13) is derived in [26, Prop. 4.2]. Now,
symbols Bernoulli§). We usePr(x") to denote the probability Under test sourcer,

P
of a sequence of length under source behavid?. (P, ;) %r(x" €A = Z PGr(x”)
denote the error probability af-th source bit conditioned on xnEA®
it being 1. Similar notation is used for chanmgl conditioning = Z Pr(x™) + Z Pr(x™)
on bit 1. (P, ;) , denotes the average error probability xre AT, G xnEATNTE
1 & < Z Pr(x") + Z Pr(x™)
<P€>P o E Zl <P€’i>P (25) xneANT..q ¢ x"GTSC,G “
We proceed by a sequence of Lemmas. Choosinge as in (32), it follows that
Lemma 1 (Lower bound on (P.) under test sourceG): Pr(A)
Consider a test sourc@ that generates iid binary symbols Z %r(x”) > & 5 (34)

distributed Ber§). If a rate R code is used for lossless coding xneANT,



Let nx» be the number of ones k™. Then,
_ n 1
Pr(4) = > Pr(x") [1]
x"EAC [2]
> > Pr(x") @l
xneANT.
Pr(x")
— P n 4]
= 2 o Prx") [
xn GACQ']’e)G %r(x ) P
N7 _ n—nxn [5]
D D oY
X"EACOTE,G * ( _g) * G [6]
- Y R e
N P Al € ) M -
(1—p)" ) (p(1—9)>"*”
= — Pr(x")
A =9)" e homr , \91—9) G [8]
_ )\ ng+eyn
> (1 p)n T (p(llt 9)) Pr(x") [
A=9)" chomr , \91—9) G
_m\n _ ng+tey/n
_ (1 p)n (p(i g)) S Pr(x) 1o
(1=9)" \g(1-9) AT o "
gl (P =9\ Pra(A)
- (1-9) 2

The functionf(-) obtained is the same as that in [21, Lemm3?
8] for the case of rate-complexity tradeoffs for channeliogd
over a BSC. Therefore, the proof of convexity and monotonig-3!
ity of f(-) are the same as that of [21, Lemma 8]. The Lemnjgy
then follows from the monotonicity. [ ]
Now, to complete the proof of Theorem 1, note th&t) ,
p(Pe)p; + (1 = p){P)p,- Conditioned onx; = 1, choose
A =D, in Lemma 2. Then,

(Pei)py = [({Pesi) )
1,2,...,

[15]

[16]
(35)

.17
m, d|V|ng by m, and using

Summing from:
convexity of (),

(18]
g = =3 F (P ) 2 (PG (30
Similarly, - 9]
(Pe)po = f({Pe)g o) [20]
Thus, 21]
(Pp = pIP)py+ (1= p)(Pe)pg
> pf((Pgy) + (1= P ((P)gy) 22
> f p<Pe>G,1+<1—p><Pe>G,o>) (37)
> [ (p(P)gs+p(Pay) (s8)
> f(pmax{(P)g (Plgo}),  (39) sl

sincep < 1 —p. From Lemma 1g(Pe)  + (1 —g)(Pe)go >  [26]

D¢(R). Therefore,
max{ (P,

el

The Theorem follows.

Pe)a} = Da(R). (40)
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