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Abstract— At its core, the renowned Witsenhausen’s coun-
terexample contains an implicit communication problem. Con-
sequently, we argue that the counterexample provides a useful
conceptual bridge between distributed control and communcation
problems. Inspired by the success in studying long block lengths
in information theory, we consider a vector version of the Witsen-
hausen counterexample. For this example, information-theoretic
arguments relating to lossy compression, channel coding, and
dirty-paper-coding are used to show the existence of nonlinear
encoding-decoding control strategies that outperform optimal
linear laws and have the ratio of costs go to infinity asymptotically
in the vector-space dimension over a much broader range of cost
parameters than the previous scalar examples.

The vector example is then in turn viewed as a collection
of scalar random variables with a four-phase distributed control
strategy. First a set of agents make observations and communicate
with each other to coordinate a first-stage control strategy, then
they individually act on their state. A second set of agents
now make noisy observations and communicate to coordinate
a control strategy, and finally they act on the state again. The
vector case can be considered one in which the first and third
phase are free. It is thus natural to impose a cost on the length
of the first and third phases and this can in turn be viewed as
inducing a natural cost function on the information pattern itself.

Inspired by this, we close by considering the simplest possible
information-theoretic analog of the problem — lossless compres-
sion of a binary state vector. It turns out that the information-
pattern can be used as a natural proxy for computational
complexity and this gives a new result on the fundamental
complexity of lossless compression in terms of the tradeoff
between rate, effort, and the probability of error.

I. I NTRODUCTION

For LQG systems with perfectly classical information pat-
terns, it was well known that control laws affine in the
observation are optimal. In [1], Witsenhausen gave an explicit
“counterexample” that demonstrated the importance of infor-
mation patterns in control problems. The counterexample was
a chosen distributed control system (and hence a system witha
non-classical information pattern) that was otherwise quadratic
and Gaussian. For this system, Witsenhausen provided a
nonlinear control law that outperformed the optimal linear
control law and also demonstrated that a measurable optimal
control law should exist.

The counterexample has inspired a large volume of research
along three related themes. The first body of work is devoted
to finding the elusive optimal control law for the problem.

For the simplicity with which the problem is stated, it is
interesting to note that the optimal control law is still unknown.
In [2], a discrete version of the problem is introduced. This
allows for a convex formulation over a set of complicated
constraints. However, in [3], the discrete version was shown
to be NP complete. In search of an optimal law, a sequence of
results were obtained in (amongst other works) [4]–[6] using
tools from information theory, neural networks and stochastic
optimization respectively. Since the problem is nonconvex,
this work has also inspired numerical methods for solving
nonconvex problems.

The second theme is in refining the classification of dis-
tributed LQG systems into those for which affine laws are
optimal, and those for which affine laws are not optimal.
In [4], the authors consider a parametrized family of two-
stage stochastic control problems. The family includes theWit-
senhausen counterexample. The authors show that whenever
the cost function does not contain a product of two decision
variables, affine control laws are optimal. The authors use re-
sults from information theory to arrive at the optimality result.
In [7], the author shows that affine controls are still optimal for
a deterministic variant of the Witsenhausen counterexample
if the cost function is the induced two-norm instead of the
expected two-norm in the stochastic variant.

The third theme has been in viewing the counterexample
as a bridge between control and communication [8]. In [9],
the authors observe that the original Witsenhausen problem
is in essence a communication problem between the two
controllers. They back up this observation by proposing con-
trol strategies that are explicitly based on quantization of the
initial state. The strategy is conceptually related to Tomlinson-
Harashima precoding (see e.g. [10, Pg.454]) for what is called
dirty-paper coding in information theory. The authors then
generate a sequence of problem parameters for which non-
linear strategies based on quantization outperform the optimal
linear strategies by a factor that tends to infinity. This work
inspired a larger body of work that considered explicit (rather
than implicit) communication channels connecting the two
controllers and took asymptotics in time [11]–[16] and even
the idea of implicit communication plays a vital role in [17],
[18]. The counterexample itself was revisited yet again in [19]
where the author adapts the standard information-theoretic
concern withside-informationinto a modified Witsenhausan
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problem. The side-information of the initial state is passed
through a noisy AWGN channel before being received by the
second controller, and is itself subject to an SNR constraint.
The author shows that nonlinear schemes still outperform
linear ones. In fact, at low SNR, nonlinear schemes that do not
make use of the side-information outperform all linear ones,
including those that make use of the side information.

It can be argued that the root of all these connections
between information theory and control can be traced back to
Witsenhausen’s counterexample. It might seem that the explo-
ration of connections between information theory and control
is mature and no longer needs to consider the counterexample
as a bridge. In this work, we challenge that view by returning
to the Witsenhausen counterexample. We investigate how tools
in information theory, specifically the use of asymptotically
long block lengths, can contribute towards improving our
understanding of the counterexample. In Section II, we state
the vector version of Witsenhausen problem. Assuming the
vector length is asymptotically large, in Section III we propose
a pair of nonlinear schemes building on the scalar quantization
ideas introduced in [9]. The first scheme is based on the
information theoretic concepts of lossy compression (vector
quantization) and joint source-channel coding. The secondis
inspired by dirty-paper coding [20]. We show that the proposed
schemes outperform all affine schemes as well as the scalar
scheme of [9].

The new control schemes as proposed treat the entire
vector all at once. While usually accepted without question
in information-theoretic circles, this seems aphysical inthe
context of distributed control. The vector example can be
viewed as a distributed collection of scalar random variables
with a four-phase distributed control strategy. First a setof
agents make observations and communicate with each other
to coordinate a first-stage control strategy, then they act on the
state, a second set of agents now make noisy observations and
communicate to coordinate a second-stage control strategy,
and finally act on the state again. It is thus natural to impose
a cost on the length of the first and third phases and this
can in turn be viewed as inducing a natural cost function on
the information pattern itself. In Section IV, we observe that
the system is a collection of scalar Witsenhausen problems,
with an additional freedom that controllers can send messages
(iteratively) to each other in order to perform the encoding
at time 1, and decoding at time 2. The Witsenhausen coun-
terexample thus leads naturally to a new information-theoretic
problem of understanding the complexity of distributed lossy
compression. Building on our work in [21], we formulate a toy
lossless source-coding problem to explore the tradeoff between
various costs for operating such a distributed system.

This paper does not represent the end of a story, but rather an
attempt to demonstrate that the Witsenhausen counterexample
still has plenty of life left in it even after 40 years of providing
inspiration to control researchers.

II. T HE PROBLEM: DISTRIBUTED CONTROL

We generalize the scalar Witsenhausen problem to a vector
case. The system is still a two-step control system. The states

and the inputs are now vectors of lengthm. A vector is
represented in bold font, with the superscript used to denote
a vector length (e.g.xm). As in conventional notation,x is
used to denote states,u the input, andy the observation.

• The statexm
0 is distributedN (0, σ2

0I).
• The state transition functions :

xm
1 = f1(x

m
0 ,um

1 ) = xm
0 + um

1 , and

xm
2 = f2(x

m
1 ,um

2 ) = xm
1 − um

2 .

• The output equations:

ym
1 = g1(x

m
0 ) = xm

0 , and

ym
2 = g2(x

m
1 ) = xm

1 + wm,

wherew ∼ N (0, σ2
wI). We assume thatσ2

w < σ2
0 .

• The cost expressions:

h1(x
m
1 ,um

1 ) =
1

m
k2||um

1 ||2, and

h2(x
m
2 ,um

2 ) =
1

m
||xm

2 ||2.

The cost expressions are normalized by the vector-length,
so that they do not grow with the problem size.

• The information patterns :

Y1 = {ym
1 }; U1 = ∅,

Y2 = {ym
2 }; U2 = ∅.

Observe that the first controller as assumed to have
complete knowledge ofym

1 , and similarly the second
controller has complete knowledge ofym

2 . Therefore the
system is not completely distributed. Section IV shows
that there are computational costs associated with making
the system completely distributed.

In the next section we provide a pair of nonlinear schemes
that outperform the optimal linear scheme.

III. T HE SCHEMES: CONTROL AND COMMUNICATION

In this section we provide a nonlinear coding scheme that
is based on the concept of joint source-channel coding in
information theory. To enable understanding of the scheme,
we review some fundamental results and definitions from
information theory in Appendix I. These are taken from [22],
and the reader is referred to [22] for further details.

A. The first joint-source channel scheme

We now briefly describe the scheme, before giving a detailed
description and analyzing its performance.

As in [9], the idea is to quantize the space of realizations of
xm

0 to arrive atxm
1 . These points are chosen carefully so that

with high probability, the second controller can recoverxm
1

from the noisy observationym
1 . By makingum

2 = xm
1 , the

second controller can now forcexm
2 , and hence the second

cost, to zero. In the vector case, for a careful choice of points,
the probability of error in recoveringxm

1 converges to zero
exponentially inm [23]. Therefore, for large enoughm, the
average cost at time 2 can be made as small as desired.
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At time 1, the state of the system isxm
1 = xm

0 + um
1 .

We use the following construction to findum
1 for eachxm

1 .
First, we design a rate-R source code for distortionD where
σ2

0 > D > σ2
w. A random codebook is constructed, with each

codeword drawn randomly from distributionN (0, σ2
DI) for

σ2
D = σ2

0 − D. If the code rateR satisfies

R ≥ R(D) =
1

2
log2

(

σ2
0

D

)

, (1)

the average distortion is no greater thanD (in the limit). The
choice of um

1 is the distortionx̂m
0 − xm

0 , and the resulting
xm

1 = x̂m
0 .

Thus xm
1 , which is the quantizedxm, is itself transmit-

ted across the channel. Since a random Gaussian codebook
achieves the channel capacity [22] for an average power
constraint equal to the average power of the codebook, the
points in the codebook form a good channel code as well.
Since these codewords are generatedN (0, σ2

DI), the average
power of the codebook isσ2

D = σ2
0 − D. Therefore,xm

1 can
be recovered reliably at the second controller for ratesR < C

where

C =
1

2
log2

(

1 +
σ2

D

σ2
w

)

=
1

2
log2

(

1 +
σ2

0 − D

σ2
w

)

. (2)

Simplifying the capacity expression,

C =
1

2
log2

(

1 +
σ2

0 − D

σ2
w

)

=
1

2
log2

(

σ2
w + σ2

0 − D

σ2
w

)

=
1

2
log2

(

σ2
0 − (D − σ2

w)

D − (D − σ2
w)

)

≥ 1

2
log2

(

σ2
0

D

)

= R(D)

where the last inequality uses the fact1 that D > σ2
w.

Therefore, reliable communication is possible at rateR(D) <

R < C.
SinceD is the mean-square distortion1mE

[

||xm
1 − xm

0 ||22
]

,
it is also the mean-square input required to drivexm

0 to xm
1 .

Therefore, the cost at time 1 isk2D. Observe thatD is only
constrained by the inequalityD > σ2

w. Asymptotically, there-
fore, the first stage cost isk2σ2

w. Since the error probability
converges to zero exponentially inm, for large enoughm, the
average cost at second stage can be made as close to zero as
desired. Therefore, the asymptotic total cost is justk2σ2

w.

B. Another information theoretic scheme

Note that in the above scheme, the cost at the second stage
is zero. Dirty-paper coding [20] suggests another scheme for
which the second stage cost is not zero.

Observe that the lossy source code reduces the power
that is fed into the “channel”. This imposes a constraint of
D > σ2

w . Alternatively, dirty-paper coding techniques [20]
in information theory can be thought of as performing a
similar quantization, without reducing the power. This suggests

1If a > b > 0, then a−x
b−x

>
a
b

for all 0 < x < b.

that dirty-paper schemes might perform better than the joint
source channel scheme. We refer the reader to Costa’s original
paper [20] for more details. We also observe that due to a
different problem formulation, our notation is different from
that in [20].

The scheme proceeds by choosing an auxiliary random
variableV ∼ N(0, P + α2σ2

0), for someα that will be an
optimization parameter.M = 2nT iid sequences are drawn
uniformly at random from the set of typicalvm, where2

T =
1

2
log2

(

(P + σ2
0 + σ2

w)(P + α2σ2
0)

Pσ2
0(1 − α)2 + σ2

w(P + σ2
0)

)

. (3)

These sequences are then distributed uniformly over2nR bins.
A particular bin is chosen3. The encoding is now performed
as follows. Given a source sequencexm

0 , a vm jointly typical
with xm

0 is first found in the chosen bin. Then the controlum
1

is chosen asum
1 = vm −αxm

0 . The received sequenceym
2 is,

therefore
ym

2 = um
1 + xm

0 + wm. (4)

It is shown in [20] that the decoder (in our case the second
controller), can recovervm from the received sequence as long
as the rateR is smaller than

C(α, P ) =
1

2
log2

(

P (P + σ2
0 + σ2

w)

Pσ2
0(1 − α)2 + σ2

w(P + α2σ2
0)

)

. (5)

We are not interested in getting a high rate. However, we want
to keepP small, sincek2P is our cost at time 1. At time 2, the
cost is the average mean-square error in estimatingum

1 +xm
0 .

The decoder can recovervm with arbitrarily high probability.
Now,vm = um

1 +αxm
0 . By design,um

1 andxm
0 act as if drawn

independently. Therefore, we can find the error in estimating
um

1 + xm
0 from vm by MMSE estimation. This turns out to

be

MSE =
Pσ2

0(1 − α)2

P 2 + α2σ2
0

. (6)

The total cost is, therefore,

k2P +
Pσ2

0(1 − α)2

P 2 + α2σ2
0

. (7)

This cost can be achieved only ifC(α, P ) in (5) is greater
than 0. Thus, the optimal cost is obtained by minimizing (7)
under the constraint thatC(α, P ) > 0.

Considerα = 1. In this case, the MSE cost is zero, so only
the first cost is retained. Also,

C(1, P ) =
1

2
log2

(

P (P + σ2
0 + σ2

w)

σ2
w(P + σ2

0)

)

, (8)

which is strictly positive atP = σ2
w. Therefore, zero second

cost is possible for some values ofP < σ2
w for this scheme.

Since the MSE cost is zero, the net cost is smaller thanσ2
w.

Notice that this was not possible for the joint source-channel
scheme, where the costD is constrained to be greater than
σ2

w.

2M corresponds to the mutual information betweenV andY2 [20].
3Eventually we will letR→ 0, so there’s no loss in choosing any particular

bin.
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C. Comparison with linear and scalar schemes

In this section, we compare the vector scheme with the
optimal linear scheme, and the scalar nonlinear schemes in [9].

For simplicity, assumeσ2
w = 1. For given value ofσ2

0 , the
cost for the optimal linear scheme is (from [9])

inf
a

k2a2σ2
0 +

(1 + a)2σ2
0

1 + (1 + a)2σ2
0

. (9)

Sinceσ2
w = 1, the asymptotic cost for the vector joint source

channel coding based scheme isk2σ2
w = k2. The ratio of the

optimal linear cost to the cost for the joint source channel
scheme is, therefore,

inf
a

k2a2σ2
0 +

(1+a)2σ2

0

1+(1+a)2σ2

0

k2

= inf
a

a2σ2
0 +

(1 + a)2 1
k2

1
σ2

0

+ (1 + a)2

Now let k → 0 and σ2
0 → ∞. If a is close to 0, the

second term is unbounded. Ifa is close to−1, the first term
gets unbounded. For any other value ofa, both terms are
unbounded.

Thus any choice of sequence(k, σ0) such thatk → 0 and
σ0 → ∞, the ratio diverges to infinity. Observe that there is
more flexibility in choice of(k, σ0) as compared to that in [9],
where a careful choice has been made. The three schemes,
viz. the optimal linear scheme and the two vector nonlinear
schemes proposed here are compared in Fig. 1 and Fig. 2.

In Appendix II, we show that the proposed scheme outper-
forms the scalar nonlinear scheme in [9] by a factor of infinity
as well. This is also evident from Fig. 2.
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Fig. 1. The figure shows the variation of the total cost withk for σ2
= 4.

The Joint Source-Channel (JSCC) Scheme and the Dirty-PaperCoding(DPC)
scheme perform better at low values ofk. At largek, however, the cost at time
1 is larger, therefore the costs for DPC and JSCC schemes increase. However,
the cost for linear schemes is still bounded by1 by choice ofa = 0.

IV. REDISTRIBUTING THE VECTOR CASE: FROM CONTROL

BACK TO COMMUNICATION AND COMPUTATION

The schemes in Section III raise a natural question: what
does it cost to implement such a scheme in a distributed control

1 5 10 20 40 60 80100

10
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0

n

C
os

t

lower bound on scheme in [9]
JSCC
DPC
Linear

Fig. 2. This figure shows the variation of cost (on a log-log scale) with n,
wheren is the parameter that characterizes the family of control problems
in [9]. Thus,kn =

1

n2
, σ0,n = n2, and for the scheme in [9], the size of bin

Bn = n. A lower bound on cost for this scheme is derived in Appendix II.
Since slopes for DPC and JSCC costs are better than that for a lower bound
on scheme in [9], the ratio of costs for the scheme in [9] and these schemes
converges to infinity.

context? While the limit of large block-lengths is justifiedin
information theory by considering it as introducing longerand
longer end-to-end delay in an inherently centralized communi-
cation problem [24], this is problematic in a distributed control
setting where a longer vector seems to suggest a distributed
controller acting over a larger geographical area.

It is natural to consider the vector as made up ofm scalar
Witsenhausen problems. Therefore, a centralized system might
be required to perform the encoding, and another for decoding,
which is contrary to the spirit of the counterexample. In order
to address this, we allow for iterative message-passing before
the actions of both sets of distributed controllers. Message-
passing algorithms can be performed in a distributed manner,
and have complexity that scales linearly withl×m, wherel is
the number of iterations performed, andm is the block-length.
Therefore, the normalized computational cost is only linear in
l, and does not scale with block-lengthm. In addition, the
success of sparse-graph codes in coding-theoretic literature,
and success of channel coding and source coding techniques
based on sparse-graphs gives hope that these codes may exist
[25].

Next we describe the encoding and decoding model of this
message-passing algorithm. An investigation into costs for the
full joint lossy source-channel coding problem posed here is
hard, and we are still working on it as it is a new problem in
information theory. Based on results in [21], one expects tosee
some fundamental performance-cost tradeoffs. The schemes
proposed in Section III are implemented in a couple of steps.
In the first step, a quantization ofRm is performed. The
resulting quantization, can be thought of as a lossy source
code, is transmitted across the channel. This is followed by
a channel decoding, that fails with an error probability that
converges to zero exponentially fast inm. The performance-
cost tradeoffs for channel coding can be understood from
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the ideas in [21]. However, the problem of performance-cost
tradeoffs in lossy source coding is entirely new.

To begin to understand what such tradeoffs could be for
source coding, instead of a Gaussian source we analyze a
binary source, which has the advantage of discrete alphabet. In
information theory problems, lossless source coding is gener-
ally easier to understand than lossy source coding. Therefore,
we restrict our attention here to lossless source coding. Since
a binary source that produces0 or 1 with equal probability
is incompressible losslessly, we consider asymmetric binary
sources that produce a1 with probability p < 0.5.

A. The encoding/decoding model

We now describe a message passing model of the en-
coder and the decoder. The model is inspired by distributed
Witsenhausen counterexample. We focus on the distributed
nature of the encoding and the decoding. We assume that
the encoder is physically made of computational nodes that
have communication links with other nodes in the encoder. A
subset of nodes are designated ‘source nodes’ in that each is
responsible for storing the value of a particular source symbol
in the initial statexm

0 . Another subset of nodes, called the
‘coded nodes’ has members that are would eventually store the
encoded symbolsum

1 . There may be additional computational
nodes that are just there to help encode. To arrive atum

1 , the
encoding is performed in an iterative, distributed manner.At
the start, each of the source nodes is first initialized with one
element of the vectorxm

0 . In each subsequent iteration, all the
nodes send messages to the nodes that they are connected to.
At the end ofle encoder iterations, the values stored in the
coded nodes constitute the encoded symbolsum

1 .
The implementation technology is assumed to dictate that

each computational node is connected to at mostα + 1 > 2
other nodes. No other restriction is assumed on the topology
of the decoder. No restriction is placed on the size or content
of the messages except for the fact that they must depend on
the information that has reached the computational node in
previous iterations. If a node wants to communicate with a
more distant node, it has to have its message relayed through
other nodes.

The neighborhood size of each node at the encoder afterle
iterations, which is the number of nodes it has communicated
with, is denoted byne ≤ αle+1. The per-node cost associated
with the number of iterations is some functionφ(l), that is
increasing withl.

The decoding model is analogous, with ‘reconstruction
nodes’ responsible for storing the reconstructed symbols,and
another subset of nodes that store the encoding symbolsum

1 .

B. Derivation of lower bound on complexity for lossless
source coding

The source generatesm symbols that are encoded losslessly
into k symbols at rateR = k

m > hb(p). The encoding and
decoding are performed iteratively using a message passing
algorithm. Encoding is performed inle encoder iterations, and
the decoding is performed inld decoder iterations. Recon-
struction of each bit is performed by using messages from at

mostαld output bits. Each of these output bits depends on at
mostαle source bits. Therefore, each reconstruction is based
on a “neighborhood” ofαle+ld source symbols (See Fig. 3).
We refer to this as the source neighborhood of the particular
symbol. Intuitively, an atypical source realization for this local
neighborhood of the reconstruction bit should cause errorsin
the reconstruction.

X X X X X X XX

X
^
3

1 2 3 4 5 6 7 8
Source bits

Coded bits

Recovered bits X
^

X
^

2 4

Fig. 3. The dashed box in the figure shows the source neighborhood on
one iteration of encoding and decoding for reconstruction bit x̂3. Whether
the reconstruction is in error depends only on the source realization in the
neighborhood.

The following theorem gives a lower bound on error proba-
bility for given size of local neighborhoodn. Turned around,
these bounds give lower bounds onn, and hence the total
number of iterations at the encoder and the decoderle + ld ≥
logα(n) for given error probability.

Theorem 1: Consider a binary sourceP that generates iid
Bernoulli(p) symbols,p < 0.5. Let n be the maximum size
of source neighborhood for each reconstructed bit. Then the
following lower bound holds on the average probability of bit
error

〈Pe〉P ≥ sup
h−1

b
(R)<g≤ 1

2

ph−1
b (δ(G))

2
2−nD(g||p)

(

p(1 − g)

g(1 − p)

)ǫ
√

n

,

(10)
where hb(·) is the binary entropy function,D(g||p) =

g log2

(

g
p

)

+ (1 − g) log2

(

1−g
1−p

)

,

δ(G) = hb(g) − R, (11)

ǫ =

√

1

K(g)
log2

(

2

ph−1
b (δ(G))

)

. (12)

and

K(g) =
1

1 − 2g
log2

(

1 − g

g

)

. (13)

Proof: See Appendix III.
We note that the lower bound in Theorem 1 results look much
like that in [21]. Conceptually, the two problems differ only
in their source of randomness and the neighborhood.

Observe that the neighborhood here is determined by the
number of encoding and decoding operations. This suggests
that the encoding costs can be reduced by making the decoding
costs larger. We believe this is an artifact of our bounding
technique, and is not fundamental to the problem at hand.



6

C. Tradeoff between control, communication, and computa-
tion costs

In Section III, we determined the communication and
control costs for the system. The decentralized encoding
and decoding framework above allows us to calculate the
computation costs.

Let gap = R − hb(p) to denote the gap from optimality
for the lossless source coding problem above. For extremely
low error probabilities, analogous to results in [21], we get the
following approximate lower bound on the neighborhood size
as a function of the error probability and thegap.

n & K2

log2

(

1
〈Pe〉

)

gap2
, (14)

for some constantK2 that does not depend ongap and〈Pe〉.
This lower bound implies that for low computational com-
plexity, the rateR should be at a finitegap from hb(p). This
suggests that for the joint source-channel scheme proposedin
Section III, a similar result could hold. That is, to reduce the
computational costs, the rate should be bounded away from
R(D) for distortionD. Observe that a similar result holds for
gap from the channel capacity [21]. Therefore, for optimal
costs, the system should be operated at rateC > R > R(D),
whereR is at a finite gap from bothC and R(D). Such an
operating point requires that for chosen rateR, the distortion
D be strictly larger thanD(R) > σ2

w, thus leading to higher
costs at time 1 than those estimated in Section III.

APPENDIX I
SOME USEFUL INFORMATION THEORETIC CONCEPTS

A. Lossy source coding

Assume that we have a source that produces sequencexm ∈
Xm. The encoder describes the source sequencexm by an
index fm(xm) ∈ {1, 2, . . . , 2nR}. The decoder representsxm

by an estimatêxm ∈ X̂m.
Definition 1: A distortion function or distortion measure is

a mapping
d : X × X̂ → R

+ (15)

from the set of source alphabet-reproduction alphabet pairs
into the set of non-negative real numbers. The distortion
d(x, x̂) is a measure of the cost of representing the symbol
x by the symbol̂x.

Definition 2: The distortion between sequencesxm and
x̂m is defined by

d(xm, x̂m) =
1

n

m
∑

i=1

d(xi, x̂i) (16)

Definition 3: A (2mR, m) rate distortion code consists of
an encoding function,

fm : Xm → {1, 2, . . . , 2mR} (17)

and a decoding (reproduction) function,

gm : {1, 2, ..., 2mR} → X̂m. (18)

The distortion associated with the(2mR, m) code is defined
as

D = E [d(xm, gm(fm(xm)))] (19)

where the expectation is with respect to the probability distri-
bution on x.

Definition 4: A rate distortion pair(R, D) is said to be
achievableif there exists a sequence of(2mR, m) rate distor-
tion codes(fm, gm) with limm→∞ E [d(xm, gm(fm(xm)))] ≤
D. The rate-distortionfunctionR(D) is the infimum of rates
R such that(R, D) is achievable for a given distortionD. The
distortion-ratefunctionD(R) is the inflmum of all distortions
D such that(R, D) achievable for a given rateR.

Theorem 2 (R(D) for Gaussian source): The rate-
distortion function for Gaussian sourceN (0, σ2

0) with
squared-error distortion is

R(D) =

{

1
2 log2

(

σ2

0

D

)

, 0 ≤ D ≤ σ2
0

0, D > σ2
0 .

(20)

The proof of this theorem tells us that this codebook can
be constructed by choosing2nR points independently from
N (0, (σ2

0 − D)I) distribution.

B. Channel coding

Definition 5: An Additive White Gaussian Noise (AWGN)
channelwith an average power constraint consists of a channel
input X ∈ R and a channel outputY = X + Z, whereZ ∼
N (0, σ2

w). The inputX has an average power constraintP ,
that is, overm channel uses,1m

∑m
i=1 ||Xi||2 ≤ P

Definition 6: An (M, m) code for the AWGN channel
consists of the following:

1) An index set{1, 2, . . . , M}.
2) An encoding functionXm : {1, 2, . . . , M} → R

m,
yielding codewordsXm(1),Xm(2), . . . ,Xm(M). The
set of codewords is called the codebook.

3) A decoding functiong : R
m → {1, 2, . . . , M}, which

is a deterministic rule which assigns a guess to each
possible received vector.

Definition 7 (Probability of error): Let

λi = Pr(g(Ym) 6= i|Xm = Xm(i)) (21)

be the conditional probability of error given thati was sent.
The average probability of error is defined as

Pm
e =

1

M

M
∑

i=1

λi, (22)

and the maximal probability of error is defined as

λ(m) = max
i∈{1,2,...,M}

λi (23)

Definition 8: A rate R is said to beachievableif there
exists a sequence of(2mR, m) codes such that the maximal
probability of errorλ(m) → 0 asn → ∞.

Definition 9: The capacityof a memoryless channel is the
supremum of all achievable rates.

Theorem 3 (Channel coding theorem):The capacity for
an additive white Gaussian noise channel of noise varianceσ2

w

with an average power constraintP is

C =
1

2
log2

(

1 +
P

σ2
w

)

(24)
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In addition, the error probability converges to zeroexpo-
nentially in m [23], and the capacity can be achieved by
a choosing a codebook of2mR points independently from
N (0, P I) distribution.

APPENDIX II
PERFORMANCE COMPARISON WITH SCALAR SCHEME IN[9]

For the family of problems and the quantization scheme
in [9], we find lower bounds on the cost at time 1. We follow
the notation of [9] in this section.B0 is used to denote the
0-th bin (bin that includes the origin), andB is the bin-size.

cost1

k2
= E

[

(γB
1 (x0))

2
]

≥ E
[

x2
011{B0}

]

=
1√

2πσ2

∫ B/2

−B/2

x2e−x2/2σ2

dx.

For the particular sequence of problem parametersn in [9], the
size ofnth bin is Bn = n, σ2

n = n2 andkn = 1
n2 . Therefore,

cost1n

k2
n

≥ 1√
2πn4

∫ n/2

−n/2

x2e−x2/2n4

dx

≥ 1√
2πn4

∫ n/2

−n/2

x2e−n2/8n4

dx

=
1√

2πn4
2

∫ n/2

0

x2dx × e−1/8n2

=
n

12
√

2π
e−1/8n2

,

that increases to infinity asn → ∞. In comparison, the joint
source-channel scheme proposed in Section III has cost ofk2

n.
Thus the ratiocost1n

k2
n

= 1 for the joint source-channel scheme.
Hence, the ratio of the costs for the scalar scheme in [9] and
the vector scheme proposed here diverges to infinity.

APPENDIX III
PROOF OF LOWER BOUND ON COMPLEXITY FOR LOSSLESS

SOURCE CODING

The proof is similar to that for the rate-complexity tradeoff
for channel coding over a BSC [21]. In the following, we
useP to denote the underlying source that generates symbols
distributed Bernoulli(p). G denotes a test source generating
symbols Bernoulli(g). We usePr(xn)

P

to denote the probability

of a sequence of lengthn under source behaviorP . 〈Pe,i〉P,1
denote the error probability ofi−th source bit conditioned on
it being 1. Similar notation is used for channelG, conditioning
on bit 1. 〈Pe,i〉P denotes the average error probability

〈Pe〉P =
1

m

m
∑

i=1

〈Pe,i〉P (25)

We proceed by a sequence of Lemmas.
Lemma 1 (Lower bound on 〈Pe〉 under test sourceG):

Consider a test sourceG that generates iid binary symbols
distributed Ber(g). If a rateR code is used for lossless coding

of G with R < hb(g), then average probability of bit-error is
lower bounded by

〈Pe〉G ≥ h−1
b (hb(g) − R) (26)

Proof: For R < hb(g), consider hamming distortion be-
tween the source symbols and the reconstruction. The average
hamming distortion is also the average error probability. Using
the distortion-rate function for a binary source [22, Pg. 343],
the distortionD(R) is bounded below by

D(R) ≥ h−1
b (hb(g) − R) (27)

Let xm denote the source sequence. Consider thei−th
message bitxi. Its encoding and decoding are based on a
particular neighborhood of source symbolsxn

nbd,i of sizen. The
encoding is error-free if these neighborhood source symbols
xn

nbd,i lie in the regionDi,0 if the i−th bit is 0, and inDi,1 if
the i−th bit is 1.

Lemma 2: Let A be a set of source sequencesxn such
that Pr

G
(A) = δ. Then,

Pr
P

(A) ≥ f(δ) (28)

where

f(y) =
y

2
2−nD(g||p)

(

p(1 − g)

g(1 − p)

)ǫ(y)
√

n

(29)

is a convex-∪ increasing function ofy, and where

ǫ(y) =

√

1

K(g)
log2

(

2

y

)

, (30)

Proof: Define typical setTǫ,G as follows

Tǫ,G = {xn s.t.

n
∑

i=1

si − ng ≤ ǫ
√

n} (31)

Then, as shown in [21, Lemma 9], for

ǫ =

√

√

√

√

√

1

K(g)
log2





2

Pr
G

(A)



, (32)

Pr
G

(T c
ǫ,G) ≤

Pr
G

(A)

2
. (33)

That K(g) is as in (13) is derived in [26, Prop. 4.2]. Now,
under test sourceG,

Pr
G

(xn ∈ A) =
∑

x
n∈Ac

Pr
G

(xn)

=
∑

x
n∈Ac∩Tǫ,G

Pr
G

(xn) +
∑

x
n∈Ac∩T c

ǫ,G

Pr
G

(xn)

≤
∑

x
n∈Ac∩Tǫ,G

Pr
G

(xn) +
∑

x
n∈T c

ǫ,G

Pr
G

(xn)

Choosingǫ as in (32), it follows that

∑

x
n∈Ac∩Tǫ,G

Pr
G

(xn) ≥
Pr
G

(A)

2
. (34)
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Let nx
n be the number of ones inxn. Then,

Pr
P

(A) =
∑

x
n∈Ac

Pr
P

(xn)

≥
∑

x
n∈Ac∩Tǫ,G

Pr
P

(xn)

=
∑

x
n∈Ac∩Tǫ,G

Pr
P

(xn)

Pr
G

(xn)
Pr
P

(xn)

=
∑

x
n∈Ac∩Tǫ,G

pn
x

n (1 − p)n−n
x

n

gn
x

n (1 − g)n−n
x

n
Pr
G

(xn)

=
∑

x
n∈Ac∩Tǫ,G

pn
x

n (1 − p)n−n
x

n

gn
x

n (1 − g)n−n
x

n
Pr
G

(xn)

=
(1 − p)n

(1 − g)n

∑

x
n∈Ac∩Tǫ,G

(

p(1 − g)

g(1 − g)

)n
x

n

Pr
G

(xn)

≥ (1 − p)n

(1 − g)n

∑

x
n∈Ac∩Tǫ,G

(

p(1 − g)

g(1 − g)

)ng+ǫ
√

n

Pr
G

(xn)

=
(1 − p)n

(1 − g)n

(

p(1 − g)

g(1 − g)

)ng+ǫ
√

n
∑

x
n∈Ac∩Tǫ,G

Pr
G

(xn)

≥ 2−nD(g||p)

(

p(1 − g)

g(1 − g)

)ǫ
√

n
PrG(A)

2
.

The functionf(·) obtained is the same as that in [21, Lemma
8] for the case of rate-complexity tradeoffs for channel coding
over a BSC. Therefore, the proof of convexity and monotonic-
ity of f(·) are the same as that of [21, Lemma 8]. The Lemma
then follows from the monotonicity.
Now, to complete the proof of Theorem 1, note that〈Pe〉P =
p〈Pe〉P,1 + (1 − p)〈Pe〉P,0. Conditioned onxi = 1, choose
A = Di,0 in Lemma 2. Then,

〈Pe,i〉P,1 ≥ f(〈Pe,i〉G,1). (35)

Summing from i = 1, 2, . . . , m, diving by m, and using
convexity off(·),

〈Pe〉P,1 =
1

m

m
∑

i=1

f(〈Pe,i〉G,1) ≥ f(〈Pe〉G,1). (36)

Similarly,

〈Pe〉P,0 ≥ f(〈Pe〉G,0).

Thus,

〈Pe〉P = p〈Pe〉P,1 + (1 − p)〈Pe〉P,0

≥ pf(〈Pe〉G,1) + (1 − p)f(〈Pe〉G,0)

≥ f
(

p〈Pe〉G,1 + (1 − p)〈Pe〉G,0)
)

(37)

≥ f
(

p〈Pe〉G,1 + p〈Pe〉G,0

)

(38)

≥ f
(

p max{〈Pe〉G,1, 〈Pe〉G,0}
)

, (39)

sincep < 1−p. From Lemma 1,g〈Pe〉G,1+(1−g)〈Pe〉G,0 ≥
DG(R). Therefore,

max{〈Pe〉G,1, 〈Pe〉G,2} ≥ DG(R). (40)

The Theorem follows.
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