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Abstract— We consider the problem of two-stage signal
cancelation based on noisy observations. This problem turns
out to be an extension of the Witsenhausen counterexample
— a famous open problem in distributed control. Cost is
imposed on the power expended by the first controller, and the
residual signal after the actions of the two controllers. Along
the lines of a recent approximate solution to the Witsenhausen
counterexample, we provide an approximate solution to this
distributed signal cancelation problem to within a constant
factor. This approximation holds uniformly over all problem
parameters and for all vector lengths.

I. INTRODUCTION

Consider the distributed signal canceling system shown
in Fig. 1. The first controller (encoder E) observes a noisy
version of the signal Sm and modifies it by adding a
power-constrained input Um. The resulting signal Xm is
observed noisily by a second controller (decoder D). Based
on this observation, the decoder subtracts an input X̂m from
Xm. The goal is to reduce the mean square value of the
resulting signal Xm − X̂m. Intuitively, it might appear that
the optimal strategy for each controller is to scale down
the signal as much as possible. After all, the system is
a Linear-Quadratic-Gaussian (LQG) system and it is well
known that for centralized LQG systems, control laws linear
in the observation are optimal [1]. Even within information
theory, when the encoder has noiseless observations, if the
objective is to communicate Sm to the decoder, then the
optimal strategy is well known to be linear [2]. The related
problem of state masking, where the transmitter wants to
hide Sm from the decoder (in a mean-square error sense),
also has a linear solution [3].

It may come as a surprise, therefore, that the optimal
strategy for the problem of signal cancelation is nonlinear.
This is because the problem is a generalization1 of the
infamous Witsenhausen counterexample [6], a distributed
control problem for which it is known that the optimal
strategy is nonlinear [6]. Witsenhausen’s counterexample
is still unsolved in that it is unknown what the optimal
strategy or the optimal costs are. The problem formulation
is quite similar to some problems in information theory. For
example, in the problem of remote source coding [7], the
encoders have noisy observations of the source that needs
to be communicated to the decoder. The encoder can also

1In the limit of zero observation noise at the encoder, the signal cancela-
tion problem reduces to a vector extension of the counterexample [4]. To the
best of our knowledge, the connection of Witsenhausen’s counterexample
with signal cancelation was first noticed by Martins [5].

be thought of as an agent that is relaying the source, as
considered in [8], [9]. The main difference in Witsenhausen’s
formulation (as well as our extension here) as compared
to communication problems is that it is the modified state
Xm (and not a message, or the source Sm) that is to
be reconstructed at the decoder. This feels a bit unnatural
from a traditional information-theoretic standpoint, because
it amounts to modification of the information that is meant
to be communicated. However, the problem formulation is
perfectly natural in a control setting because cancelation
and tracking are problems of wide applicability in control
systems.
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Fig. 1. The model for a noise canceling system. This model is an extension
of Witsenhausen’s counterexample, where the noise Zm

1 is not present, and
Sm is observed perfectly by the encoder.

Recently, we formulated a vector version of the Wit-
senhausen counterexample, which allows the application of
laws of large numbers, thus simplifying the problem. For
this simplified problem, we obtained information-theoretic
upper and lower bounds on the cost2, characterizing the
asymptotic (infinite-length) optimal costs to within a factor
of 1.3 (calculated numerically) for all problem parame-
ters [4], [10]. Based on this work, we then obtained similar
approximate-optimality results for the finite-length exten-
sions using lattice-based techniques and sphere-packing outer
bounds [11], [12]. For example, for the original counterexam-
ple, which corresponds to the scalar case, we characterize the
optimal cost to within a factor of 8 (calculated numerically)
for all problem parameters.

Building on our work on the counterexample, this paper
provides approximately optimal solutions to the problem of
distributed signal cancelation. In Section II, we consider the
problem of Fig. 1 where the difference from the counterex-
ample is that the observation of the encoder is noisy. In

2As is usual in control, the cost is defined as a weighted sum of the
power and distortion costs.
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Section III, we provide an equivalent problem, where there is
no noise in the observation at the encoder, but there is noise
in evolution of the state Xm. Using this equivalent problem,
in Section IV, we characterize the asymptotic optimal costs
for the signal cancelation problem to within a factor of 80 for
all problem parameters (numerical evaluation of the bounds
shows that the actual factor is smaller than 10). Using more
sophisticated techniques, we then derive results for finite
vector-lengths, characterizing the optimal costs to within
a constant factor (uniformly over all problem parameters)
for any vector length. In Section V, we observe that our
techniques also provide approximately optimal solutions to
the problem with noises in all inputs, state evolutions,
and observations. This compliments our earlier work [13]
where we provided approximately optimal solutions to the
extension of the counterexample with quadratic costs on all
states and inputs, and suggests that the set of tools developed
in this line of work are rich enough to begin addressing more
sophisticated distributed control problems.

This line of work parallels (and is intimately connected
to) the recent work in information theory where advances
have been made on long-standing problems using similar
approximation approaches. Because of space limitations, we
refer the reader to [4], [12] for survey of related results in
information theory (including connections with deterministic
models [14] and constant gap results for capacity e.g. [15]).

II. PROBLEM STATEMENT, DEFINITIONS, AND NOTATION

A. The signal cancelation problem

The “initial state” Sm is distributed N (0, σ2I). The en-
coder E observes Sm + Zm1 , where Zm1 ∼ N (0, N1) is
independent of Sm. Based on this observation, the encoder
modifies state Sm using an input Um of average power at
most P , resulting in a state Xm, i.e. E

[
‖Sm −Xm‖2

]
≤

mP . The decoder D observes the state Xm through a
noisy channel with additive white Gaussian noise Zm2 ∼
N (0, N2I), which is independent of Xm. Without loss of
generality, we assume that N2 = 1. The decoder maps its
observation Ym = Xm + Zm2 to an estimate X̂m of the
modified state Xm. The objective is to minimize the MMSE
error E

[
‖Xm − X̂m‖2

]
.

Alternatively, the control-theoretic weighted cost formula-
tion [6] defines the total cost to be

J =
1
m
k2‖Um‖2 +

1
m
‖Xm − X̂m‖2, (1)

where k ∈ R+. The objective is to minimize the average cost,
E [J ], in an unconstrained manner. The average is taken over
the realizations of the initial state and the observation noises.
It is this weighted cost formulation that we address in this
paper.

B. Notation and definitions

Let J̄ (γ) denote the average cost for a given strategy γ =
(γ1, γ2) of the encoder and the decoder (γ1 is the function
that maps Sm+Zm1 to Um for the encoder, and similarly, γ2

is the mapping function for the decoder). Where there is no

confusion, we drop the superscript (γ). Let J̄opt = infγ J̄ (γ)

be the optimal cost.
Vectors are denoted in bold font, random variables in upper

case, and their realizations in lower case. We use A ⊥⊥ B to
imply that the random variables A and B are independent.
B is used to denote the unit ball in L2-norm in Rm.

Definition 1 (Lattice): An m-dimensional lattice Λ is a
set of points in Rm such that if xm,ym ∈ Λ, then xm+ym ∈
Λ, and if xm ∈ Λ, then −xm ∈ Λ.

Definition 2 (Packing and packing radius): Given an
m-dimensional lattice Λ and a radius r, the set Λ + rB =
{xm + rym : x ∈ Λ,ym ∈ B} is a packing of Euclidean m-
space if for all points xm,ym ∈ Λ, (xm+rB)

⋂
(ym+rB) =

∅. The packing radius rp is defined as rp := sup{r :
Λ + rB is a packing}.

Definition 3 (Covering and covering radius):
Given an m-dimensional lattice Λ and a radius r, the
set Λ + rB is a covering of Euclidean m-space if
Rm ⊂ Λ + rB. The covering radius rc is defined as
rc := inf{r : Λ + rB is a covering}.

Definition 4 (Packing-covering ratio): The packing-
covering ratio (denoted by ξ) of a lattice Λ is the ratio of
its covering radius to its packing radius, ξ = rc

rp
.

III. EQUIVALENCE OF TWO PROBLEMS

In this section we show that the problem of Section II is
equivalent to a problem with noise in evolution of state Xm,
but noiseless observation at the encoder, shown in Fig. 2(c).
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Fig. 2. The figures show how the signal cancelation problem shown in
Fig. 1 is equivalent to a problem with noise in the evolution of state Xm,
instead of noise in the observation at the encoder. From (c), it is clear
that the encoder can not help much in the reconstruction of eZm

1 since its
observations are independent of eZm

1 .

In the problem of Section II, the encoder takes an action
based on its observation of Sm+Zm1 . Define S̃m := α(Sm+
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Zm1 ), the MMSE estimate of Sm given Sm + Zm1 , where
α = σ2

σ2+N1
. Since S̃m can be obtained from Sm + Zm1

with an invertible mapping, we can equivalently assume that
the encoder observes S̃m. The initial state can be written
as Sm = S̃m + Z̃m1 , where S̃m ⊥⊥ Z̃m1 (orthogonality
principle), and Z̃m1 ∼ N

(
0, σ2N1

σ2+N1

)
. The resulting block

diagram (which represents an equivalent problem) is shown
in Fig. 2(b). By commutativity of addition, we get the
equivalent problem with noise Z̃m1 in state evolution, as
shown in Fig. 2(c). An intermediate state X̃m = S̃m + Um

is also introduced.
In summary, the equivalent noisy-state evolution problem

is the following: the initial state S̃m ∼ N (0, σ̃2I) is observed
noiselessly by the encoder E , where σ̃2 = σ4

σ2+N1
. The

encoder modifies the state using an input Um, resulting in
the system state Xm. State evolution noise Z̃m1 ∼ N (0, Ñ1I)
is added to the state X̃m resulting in state Xm. Here,
Ñ1 = σ2N1

σ2+N1
. The objective, as before, is to minimize

J̄ =
1
m
k2E

[
‖Um‖2

]
+

1
m

E
[
‖Xm − X̂m‖2

]
, (2)

where X̂m is the estimate of Xm at the decoder based on
noisy observations of Xm.

IV. APPROXIMATELY OPTIMAL SOLUTIONS FOR
DISTRIBUTED SIGNAL CANCELATION

A coarse lower bound on the average cost is given in the
following.

Theorem 1:

J̄opt ≥ max
{

σ2N1

σ2N1 + σ2 +N1
,

inf
P≥0

k2P +
((√

κ̃(P )−
√
P
)+
)2}

,

where κ̃(P ) = eσ2

(eσ+
√
P )2+1

, and σ̃2 = σ4

σ2+N1
.

Proof: Consider the equivalent problem of noise in state
evolution of Section III. A lower bound can be derived as
follows.

If the decoder is given side information S̃m, it can simulate
the encoder, reconstructing Um perfectly. Thus the decoder
only has to estimate Z̃m1 , which is independent of S̃m. The
resulting MMSE is therefore given by eN1eN1+1

= σ2N1
σ2N1+σ2+N1

,
yielding the first term in the lower bound.

Alternatively, if side-information Z̃m1 is given to the
decoder, the problem reduces to the vector Witsenhausen
counterexample, where the encoder observes the source S̃m

noiselessly and there is no noise Z̃m1 in state evolution. A
lower bound can now be obtained from [4, Theorem 1] (using
σ̃ in place of σ), yielding the second term in the lower bound.

A. An upper bound on the total cost

Define Nsum := σ2N1
σ2+N1

+ 1.

Theorem 2: For the noisy extension of Witsenhausen’s
counterexample of Section II, an upper bound on the optimal
costs is

J̄opt ≤ min
{
J̄fZI , J̄gZF , J̄gV Q

}
,

where J̄fZI = σ2

σ2+1 , J̄gZF = k2 σ4

σ2+N1
+ σ2N1

σ2+N1+σ2N1
, and

J̄gV Q ≤ inf
P≥0

k2P +
σ2N1

σ2 +N1
+√Nsum

√√√√ψ

(
m+ 2,

√
mP

ξ2Nsum

)

+

√
P

ξ2

√√√√ψ

(
m,

√
mP

ξ2Nsum

)2

, (3)

where ψ(m, r) := Pr(Zm ≥ r) =
∫
zm≥r

e−
zm

2

(
√

2π)m dz
m for

Zm ∼ N (0, I), and ζ is the packing-covering ratio of a
lattice in Rm.

Proof: We provide three strategies. Depending on k,
σ, and N1, we use the best of the three. The obtained upper
bound is therefore the minimum of the costs attained by the
three startegies. The strategies are defined on the equivalent
problem of noise in the state evolution (of Section III).

The first strategy is the Zero-Input (Z̃I) strategy, where
the input Um

1 = 0. The decoder merely estimates S̃m +
Z̃m1 = Sm from the noisy observation Sm+Zm2 . Since Zm2 ∼
N (0, I), the LLSE error is given by

MMSE =
σ2

σ2 + 1
, (4)

which is also the attained cost since P = 0.
Our second strategy is a Zero-Forcing (Z̃F ) strategy,

applied to the equivalent noisy state-evolution problem. The
first input forces the state S̃m to zero, requiring an average
power of P = σ̃2 = σ4

σ2+N1
. The decoder merely performs

an LLSE estimation for Z̃m1 ∼ N (0, Ñ). The MMSE error
is therefore given by

MMSEgZF =
Ñ

Ñ + 1
=

σ2N1

σ2 +N1 + σ2N1
. (5)

The cost for Z̃F is, therefore, J̄gZF = k2 σ4

σ2+N1
+

σ2N1
σ2+N1+σ2N1

.
The first two strategies are linear, and therefore somewhat

uninteresting. Our third strategy is a nonlinear strategy that
is based on the idea of implicit communication (see, for
example, [13]).

This strategy, which we call the Vector Quantization (Ṽ Q)
strategy, uses a lattice Λ ⊂ Rm of covering radius rc, packing
radius rp, and packing-covering ratio of ζ = rc

rp
as follows.

The encoder uses the input Um to force S̃m to a lattice point.
The decoder declares X̂m to be the quantization point that
is within a distance rp of its observation Ym, if any such
quantization point exists. If there is no such quantization
point, the decoder declares X̂m = Ym. It is shown in [16]
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that choosing rc =
√
mP so that rp =

√
mP
ξ2 , the costs

attained by Ṽ Q are bounded by the expression in (3). Note
that this upper bound depends on ξ, the packing-covering
ratio for the chosen lattice Λ ⊂ Rm.

The upper bound can now be obtained by using the best
of Z̃I , Z̃F , and Ṽ Q strategies depending on the values of
k and σ.
It is also shown in [16] that by loosening the upper bound
in (3), one can obtain the following bound

J̄gV Q ≤ inf
P>ζ2Nsum

k2P +
σ2N1

σ2 +N1

+

(√
Nsum +

√
P

ζ2

)2

e
− mP

2ζ2Nsum
+m+2

2

“
1+ln

“
P

ζ2Nsum

””
.

It follows that, for any P > ξ2Nsum, for the asymptotic
problem

lim sup
m→∞

J̄gV Q ≤ k2P +
σ2N1

σ2 +N1
.

B. Approximate asymptotic optimality
Theorem 3 (Approximate asymptotic optimality): In

the limit of m→∞,

max
{

σ2N1
σ2N1+σ2+N1

,

infP≥0 k
2P +

((√
κ(P )−

√
P
)+
)2}

≤ J̄opt

≤ γmax
{

σ2N1
σ2N1+σ2+N1

,

infP≥0 k
2P +

((√
κ(P )−

√
P
)+
)2}

,

where γ ≤ 80.
Proof: See [16].

Numerical evaluations (shown in Fig. 3) show that the ratio
is actually bounded by 10.

C. Approximate optimality for finite lengths
In this section, we derive a lower bound on the cost for

finite lengths. While Theorem 1 gives one such bound that
is valid for each vector length m, it is not sufficient to show
approximate optimality of the quantization-based schemes.
The lower bound in this section is derived using the bound
in [12] which was derived for the original counterexample.

Theorem 4:

J̄opt ≥ max
{

σ2N1

σ2N1 + σ2 +N1
,

inf
P≥0

sup
σ2
G≥1,L>0

k2P + η(P, σ̃2, σ2
G, L)

}
,

where

η(P, σ̃2, σ2
G, L) =

σmG
cm(L)

exp
(
−mL

2(σ2
G − 1)

2

)
((√

κ2(P, σ̃2, σ2
G, L)−

√
P

)+
)2

,
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Fig. 3. Ratio of the upper and lower bound for varying values of N1 in
the asymptotic case. The maximum was observed to be smaller than 10 for
all values of N1 that were tested.

where κ2(P, σ̃2, σ2
G, L) :=

σ̃2σ2
G

c
2
m
m (L)e1−dm(L)

(
(σ̃ +

√
P )2 + dm(L)σ2

G

) ,
cm(L) := 1

Pr(‖Zm2 ‖2≤mL2) = (1− ψ(m,L
√
m))−1,

dm(L) := Pr(‖Zm+2
2 ‖2≤mL2)

Pr(‖Zm2 ‖2≤mL2) = 1−ψ(m+2,L
√
m)

1−ψ(m,L
√
m)

, 0 <

dm(L) < 1, and ψ(m, r) = Pr(‖Zm2 ‖ ≥ r).
Proof: Follows along the same lines as that of The-

orem 1. When side information about Z̃m1 is supplied to
the decoder, the lower bound from [12, Theorem 3] is used
instead of that from [4].

Theorem 5 (Approximate optimality at finite lengths):
For the signal cancelation problem of vector length m
described in Section II,

max
{

σ2N1
σ2N1+σ2+N1

,

inf
P≥0

sup
σ2
G≥1,L>0

k2P + η(P, σ̃2, σ2
G, L)

}
≤ J̄opt

≤ 400ζ2 max
{

σ2N1
σ2N1+σ2+N1

,

inf
P≥0

k2 sup
σ2
G≥1,L>0

P + η(P, σ̃2, σ2
G, L)

}
,

Proof: See [16].
For any m ∈ Z+, there exists a lattice with ζ ≤ 4, and in
the limit m → ∞, ζ ≤ 2 [17]. Thus the problem is solved
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to within a constant factor for all vector lengths.
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Fig. 4. Ratio of the upper and lower bound for varying values of N1 for
the scalar case. The maximum was observed to be smaller than 20 for all
values of N1 that were tested.

V. DISCUSSIONS

Even though these constants seem large, the actual ratios
obtained by numerical evaluations are much smaller (e.g.
see [12]). A straightforward improvement in the upper bound
can be obtained using dirty-paper coding [4], and in the lower
bound using techniques from [10].

It is easy to check that the equivalent problem in Sec-
tion III can represent any problem of noise in state evolution
by varying the parameters σ and N1 in the original problem
of noisy observation at the encoder. Thus the results of this
paper also provide characterizations of optimal cost for noise
in state evolution within a constant factor. Noise in the first
input Um and in evolution of state Sm can also be lumped
with the noise in state evolution. Thus the solution here
extends easily to a general problem with noises in all state
evolutions, inputs, and observations.

An interesting feature that shows up is that the zero-
input strategy is approximately optimal (to within a factor
of 2) for N1 > N2. This suggests that the controllers

operate opportunistically — if the encoder is noisier, it
does not do any work. We expect that this feature will
be retained in extensions of the problem where there are
multiple controllers operating sequentially.
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