The Finite-Dimensional

Witsenhausen Counterexample

Pulkit Grover
UC Berkeley

Joint work with Prof. Anant Sahai, Se Yong Park
There are handouts for this talk, please take one!

Outline

Outline

- Witsenhausen's counterexample

Outline

- Witsenhausen's counterexample
- Infinite-length vector extension

Outline

- Witsenhausen's counterexample
- Infinite-length vector extension
- Approximate optimality

Outline

- Witsenhausen's counterexample
- Infinite-length vector extension
- Approximate optimality
- Finite-length extension

Outline

- Witsenhausen's counterexample
- Infinite-length vector extension
- Approximate optimality
- Finite-length extension
- Approximate optimality in the Scalar case

Outline

- Witsenhausen's counterexample
- Infinite-length vector extension
- Approximate optimality
- Finite-length extension
- Approximate optimality in the Scalar case
- Approximate optimality for any finite length

Outline

- Witsenhausen's counterexample
- Infinite-length vector extension
- Approximate optimality
- Finite-length extension
- Approximate optimality in the Scalar case
- Approximate optimality for any finite length

It is easier to approximate

Witsenhausen's counterexample

$$
\begin{aligned}
& x_{0} \sim \mathcal{N}\left(0, \sigma_{0}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& w \sim \mathcal{N}(0,1) \quad \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

Witsenhausen's counterexample

$$
\begin{aligned}
& x_{0} \sim \mathcal{N}\left(0, \sigma_{0}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

"Implicit channel"

$$
\mathbb{E}\left[u_{1}^{2}\right] \leq P
$$

$\min \mathbb{E}\left[\left(x_{1}-\hat{x}_{1}\right)^{2}\right]$

Implicit channel based signaling strategies

"Implicit channel"

$$
\begin{aligned}
& \mathbb{E}\left[u_{1}^{2}\right] \leq P \quad \min \mathbb{E}\left[\left(x_{1}-\hat{x}_{1}\right)^{2}\right] \\
& \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

Implicit channel based signaling strategies

"Implicit channel"

$$
\begin{aligned}
& \mathbb{E}\left[u_{1}^{2}\right] \leq P \quad \min \mathbb{E}\left[\left(x_{1}-\hat{x}_{1}\right)^{2}\right] \\
& \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

[Mitter and Sahai, '99]

Implicit channel based signaling strategies

"Implicit channel"

$$
\begin{aligned}
& \mathbb{E}\left[u_{1}^{2}\right] \leq P \quad \min \mathbb{E}\left[\left(x_{1}-\hat{x}_{1}\right)^{2}\right] \\
& \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

[Mitter and Sahai, '99]

Implicit channel based signaling strategies

"Implicit channel"

$$
\begin{aligned}
& \mathbb{E}\left[u_{1}^{2}\right] \leq P \quad \min \mathbb{E}\left[\left(x_{1}-\hat{x}_{1}\right)^{2}\right] \\
& \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

[Mitter and Sahai, '99]

Implicit channel based signaling strategies

"Implicit channel"

$$
\begin{aligned}
& \mathbb{E}\left[u_{1}^{2}\right] \leq P \quad \min \mathbb{E}\left[\left(x_{1}-\hat{x}_{1}\right)^{2}\right] \\
& \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

Implicit channel based signaling strategies

"Implicit channel"

$$
\begin{aligned}
& \mathbb{E}\left[u_{1}^{2}\right] \leq P \quad \min \mathbb{E}\left[\left(x_{1}-\hat{x}_{1}\right)^{2}\right] \\
& \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

Implicit channel based signaling strategies

"Implicit channel"

$$
\begin{aligned}
& \mathbb{E}\left[u_{1}^{2}\right] \leq P \quad \min \mathbb{E}\left[\left(x_{1}-\hat{x}_{1}\right)^{2}\right] \\
& \min \left\{k^{2} \mathbb{E}\left[u_{1}^{2}\right]+\mathbb{E}\left[x_{2}^{2}\right]\right\}
\end{aligned}
$$

Infinite-length counterexample

A simplification

[Ho, Kastner, Wong '78]

Vector quantization

A lower bound for the vector extension

$$
\begin{aligned}
& \overline{\mathcal{C}}_{\text {min }} \geq \inf _{P \geq 0} k^{2} P+\left((\sqrt{\kappa(P)}-\sqrt{P})^{+}\right)^{2} \\
& \kappa(P)=\frac{\sigma_{0}^{2}}{\left(\sigma_{0}+\sqrt{P}\right)^{2}+1}
\end{aligned}
$$

Optimal costs within a factor of 4.45

A Dirty Paper Coding-based strategy

A Dirty Paper Coding-based strategy

A Dirty Paper Coding-based strategy

A Dirty Paper Coding-based strategy

A Dirty Paper Coding-based strategy

A Dirty Paper Coding-based strategy

A Dirty Paper Coding-based strategy

[Baglietto, Parisini, Zoppoli]
[Lee, Lau and Ho]

Optimal cost to within a factor of 2

The scalar problem

Quantization-based strategies

Vector lower bound is too loose at finite lengths!

Another look at the vector lower bound

$$
\begin{aligned}
& \overline{\mathcal{C}}_{\min } \geq \inf _{P \geq 0} k^{2} P+\left((\sqrt{\kappa(P)}-\sqrt{P})^{+}\right)^{2} \\
& \kappa(P)=\frac{\sigma_{0}^{2} \sigma_{G}{ }^{2}}{\left(\sigma_{0}+\sqrt{P}\right)^{2}+\sigma_{G}{ }^{2}}
\end{aligned}
$$

Another look at the vector lower bound

$$
\begin{aligned}
& \overline{\mathcal{C}}_{\text {min }} \geq \inf _{P \geq 0} k^{2} P+\left((\sqrt{\kappa(P)}-\sqrt{P})^{+}\right)^{2} \\
& \kappa(P)=\frac{\sigma_{0}^{2} \sigma_{G}{ }^{2}}{\left(\sigma_{0}+\sqrt{P}\right)^{2}+\sigma_{G}{ }^{2}}
\end{aligned}
$$

Another look at the vector lower bound

$$
\begin{aligned}
& \overline{\mathcal{C}}_{\min } \geq \inf _{P \geq 0} k^{2} P+\left((\sqrt{\kappa(P)}-\sqrt{P})^{+}\right)^{2} \\
& \kappa(P)=\frac{\sigma_{0}^{2} \sigma_{G}^{2}}{\left(\sigma_{0}+\sqrt{P}\right)^{2}+\sigma_{G}{ }^{2}}
\end{aligned}
$$

Sphere-packing extension of lower bound

Scalar case : Quantization based strategies are approximately optimal!

Finite vector lengths

"Good" strategies

"Good" strategies

"Good" strategies

What makes "good" lattices?

What makes "good" lattices?

What makes "good" lattices?

What makes "good" lattices?

What makes "good" lattices?

What makes "good" lattices?

What makes "good" lattices?

What makes "good" lattices?

2-D case

Lattices are uniformly approximately optimal over dimension size

$$
\begin{aligned}
& \inf _{P \geq 0} k^{2} P+\eta\left(P, \sigma_{0}^{2}\right) \leq \bar{J} \leq \mu\left(\inf _{P \geq 0} k^{2} P+\eta\left(P, \sigma_{0}^{2}\right)\right) \\
& \mu \leq 300 \zeta^{2}, \quad \zeta \leq 4
\end{aligned}
$$

Summary

Summary

- Provably approximately optimal results can be easier to obtain

Summary

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.

Summary

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems

Summary

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems
- Formulate infinite length problems

Summary

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems
- Formulate infinite length problems
- Solve (perhaps only approximately) using information-theory

Summary

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems
- Formulate infinite length problems
- Solve (perhaps only approximately) using information-theory
- Use sphere-packing techniques to obtain results at finite vector lengths

Summary

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems
- Formulate infinite length problems
- Solve (perhaps only approximately) using information-theory
- Use sphere-packing techniques to obtain results at finite vector lengths

Papers/slides/handouts available at : http://www.eecs.berkeley.edu/~pulkit/

Back-up slides begin

