The Finite-Dimensional Witsenhausen Counterexample

Pulkit Grover

UC Berkeley

Joint work with Prof. Anant Sahai, Se Yong Park

There are handouts for this talk, please take one!

• Witsenhausen's counterexample

- Witsenhausen's counterexample
- Infinite-length vector extension

- Witsenhausen's counterexample
- Infinite-length vector extension
 - Approximate optimality

- Witsenhausen's counterexample
- Infinite-length vector extension
 - Approximate optimality
- Finite-length extension

- Witsenhausen's counterexample
- Infinite-length vector extension
 - Approximate optimality
- Finite-length extension
 - Approximate optimality in the Scalar case

- Witsenhausen's counterexample
- Infinite-length vector extension
 - Approximate optimality
- Finite-length extension
 - Approximate optimality in the Scalar case
 - Approximate optimality for any finite length

- Witsenhausen's counterexample
- Infinite-length vector extension
 - Approximate optimality
- Finite-length extension
 - Approximate optimality in the Scalar case
 - Approximate optimality for any finite length

It is easier to approximate

Witsenhausen's counterexample

Witsenhausen's counterexample

"Implicit channel"

"Implicit channel" $x_{0} \sim \mathcal{N}(0, \sigma_{0}^{2}) \quad w \sim \mathcal{N}(0, 1)$ $\underbrace{w_{1}}_{\text{Encoder}} \quad u_{1} \quad u_{1} \quad u_{1} \quad u_{1} \quad u_{2} \quad u_{2} \quad u_{1} \quad u_{2} \quad u_{2} \quad u_{2} \quad u_{2} \quad u_{1} \quad u_{2} \quad u_$

Infinite-length counterexample

A simplification

[Ho, Kastner, Wong '78]

7

A lower bound for the vector extension

$$\bar{\mathcal{C}}_{\min} \ge \inf_{P \ge 0} k^2 P + \left(\left(\sqrt{\kappa(P)} - \sqrt{P} \right)^+ \right)^2$$

$$\kappa(\mathbf{P}) = \frac{\sigma_0^2}{(\sigma_0 + \sqrt{\mathbf{P}})^2 + 1}$$

Optimal costs within a factor of 4.45

9

Optimal cost to within a factor of 2

11

The scalar problem

Quantization-based strategies

Vector lower bound is too loose at finite lengths!

Another look at the vector lower bound

$$\bar{\mathcal{C}}_{\min} \ge \inf_{P \ge 0} k^2 P + \left(\left(\sqrt{\kappa(P)} - \sqrt{P} \right)^+ \right)^2$$
$$\kappa(P) = \frac{\sigma_0^2 \sigma_G^2}{(\sigma_0 + \sqrt{P})^2 + \sigma_G^2}$$

Another look at the vector lower bound

$$\bar{\mathcal{C}}_{\min} \geq \inf_{P \geq 0} k^2 P + \left(\left(\sqrt{\kappa(P)} - \sqrt{P} \right)^+ \right)^2$$

$$\kappa(P) = \frac{\sigma_0^2 \sigma_G^2}{(\sigma_0 + \sqrt{P})^2 + \sigma_G^2}$$

Another look at the vector lower bound

$$\bar{\mathcal{C}}_{\min} \ge \inf_{P \ge 0} k^2 P + \left(\left(\sqrt{\kappa(P)} - \sqrt{P} \right)^+ \right)^2$$

$$\kappa(P) = \frac{\sigma_0^2 \sigma_G^2}{(\sigma_0 + \sqrt{P})^2 + \sigma_G^2}$$

Scalar case : Quantization based strategies are approximately optimal!

Finite vector lengths

"Good" strategies

"Good" strategies

"Good" strategies

2-D case

Lattices are uniformly approximately optimal over dimension size

$$\inf_{P \ge 0} k^2 P + \eta(P, \sigma_0^2) \le \overline{J} \le \mu \left(\inf_{P \ge 0} k^2 P + \eta(P, \sigma_0^2) \right)$$

 $\mu \le 300\zeta^2, \quad \zeta \le 4$

• Provably approximately optimal results can be easier to obtain

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems
 - Formulate infinite length problems

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems
 - Formulate infinite length problems
 - Solve (perhaps only approximately) using information-theory

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems
 - Formulate infinite length problems
 - Solve (perhaps only approximately) using information-theory
 - Use sphere-packing techniques to obtain results at finite vector lengths

- Provably approximately optimal results can be easier to obtain
- Lattices are good for Witsenhausen's counterexample.
- A possible recipe for some distributed control problems
 - Formulate infinite length problems
 - Solve (perhaps only approximately) using information-theory
 - Use sphere-packing techniques to obtain results at finite vector lengths

Papers/slides/handouts available at : <u>http://www.eecs.berkeley.edu/~pulkit/</u>

Back-up slides begin