
Journal of Computers and Operations Research, Vol. 22, No. 10, pp. 1089-1100, Dec. 1995.

Heterogeneous-Criteria Scheduling: Minimizing Weighted Number
of Tardy Jobs and Weighted Completion Time1

Jon M. Peha
Carnegie Mellon University, Dept. of ECE, Pittsburgh, PA 15213-3890, USA
Phone: (412) 268-7126, Fax: (412) 268-2860, Email: peha@@ece.cmu.edu

Scope and Purpose

The optimal scheduling algorithms in this paper have many applications, but they were mo-
tivated by research into real-time systems and integrated-services networks. Consequently, two
features of the algorithms are of particular importance: they must have low complexity, not just
polynomial complexity, and to the extent possible, they should accommodate diverse performance
objectives. This diversity takes two forms. First, it is more important that the scheduler achieve
good performance for some jobs than others. Second, the performance measure that is appropriate
for one job may not be appropriate for another job. Although there has been research into mul-
ticriteria scheduling algorithms which attempt to optimize the same measures of performance (or
criteria) for all jobs, little work has been done for the case we call heterogeneous-criteria scheduling
where jobs are divided into classes, and the performance measure di�ers from class to class. For ap-
plication in real-time multiprocessor systems, a third property is important; algorithms should work
on multiple machines. This paper presents novel low-complexity scheduling-algorithms that accom-
modate diverse performance objectives on one or more machines, including both single-criteria and
heterogeneous-criteria problems.

Abstract

In this paper, we present a novel O(N2) algorithm to minimize the weighted number of tardy
jobs with unit processing times, integer ready times and deadlines, and M homogeneous parallel
machines, where N is the number of jobs to be scheduled. wi is the weight re
ecting job i's
importance, and Ui is 1 if job i is tardy and 0 otherwise, so

P
wiUi is the measure of performance.

(In standard notation [1], this is the P/ri, pi=1/
P
wiUi problem.) This algorithm is extended

to minimize weighted completion time
P
wiCi for some jobs, where completion time Ci is the

time job i completes processing, and
P
wiUi for other jobs, at the same complexity. (The P/ri,

pi=1/
P
wiUi&

P
wiCi problem.) Complexity can be reduced to O(N logN) if all ready times are

the same (with one additional constraint on weights). (P/pi=1/
P
wiUi&

P
wiCi.) Finally, if one

is trying to �nd the number of tardy jobs of each weight under optimal scheduling, but an actual
schedule is not needed, this (P/ri,pi = 1/

P
wiUi) problem can be solved with an O(WN logN)

algorithm, where W is the number of di�erent weight values. In some cases, this can be done
analytically.

1This material is based upon work supported under Grant NCR-9210626 from the National Science Foundation.

1



Heterogeneous-Criteria Scheduling:
Minimizing Weighted Number of Tardy Jobs and Weighted

Completion Time

Jon M. Peha

1 Introduction

There has been a great deal of research into scheduling algorithms that optimize a single measure
of performance for all jobs, such as the average job completion time or the average tardiness [1].
Although there has been much less research into multicriteria scheduling algorithms that instead
optimize performance of all jobs according to multiple performance measures, this area is now
growing [2, 3, 4]. However, there are important scheduling problems where a single performance
measure, or even set of performance measures, is not appropriate for all jobs. Jobs are divided
into multiple classes, and the appropriate measure of performance di�ers from one class of jobs
to another. We call such problems heterogeneous criteria scheduling problems. For example, this
occurs in integrated-services packet-switched networks such as ATM (asynchronous transfer mode)
networks, and in soft real-time systems. In these systems, it is useful to classify jobs as either time-
constrained, which should be processed any time before their deadlines, or non-time-constrained,
which should simply be processed as early as possible. Regardless of the performance measure, it
is also more important to achieve good performance for some jobs than others. Furthermore, in
many important models that are relevant to the study of integrated-services networks and real-time
systems, the number of jobs to be scheduled can be extremely large, so low complexity is essential.
In this paper, we present novel low-complexity (O(N2) or better) approaches to the scheduling
of constant-length time-constrained jobs, and the scheduling of constant-length heterogeneous job
sets, which are sets that include both time-constrained and non-time-constrained jobs.

Associated with each job i is a ready time ri, which is the earliest job i can begin processing, a
processing time pi, and a weight wi that re
ects job i's importance. If job i is time-constrained, it
also has a deadline di. For non-time-constrained jobs, the objective is to minimize the weighted total
completion time

P
8iwiCi, where Ci is the time job i completes processing. For time-constrained

jobs, it is the weighted number of tardy jobs
P
8iwiUi that should be minimized, where Ui = 0

if Ci � di, and Ui = 1 otherwise. When scheduling heterogeneous jobs, optimal performance is
de�ned through hierarchical minimization, which is speci�ed as follows. Let jobs be divided into
sets Aj : j � 1, such that all of the jobs in a set are homogeneous, i.e. either all time-constrained
or all non-time-constrained, and for any job i in Aj and any job k in Aj+1, wi > wk. (We restrict
weights such that time-constrained and non-time-constrained jobs cannot have equal weights.) Let
Pj(S) be the performance of jobs in set j under schedule S, i.e. Pj(S) =

P
i2Aj

wiCi for a set of
non-time-constrained jobs, or Pj(S) =

P
i2Aj

wiUi for a set of time-constrained jobs. The objective
is to optimize performance for the more important sets, and to optimize performance of the less
important sets to the extent possible without degrading performance of their more important
counterparts. More precisely, the vector ~P (S) is the measure of performance to be minimized,
where ~P (S1) < ~P (S2) if P1(S1) < P1(S2), or if P1(S1) = P1(S2) and P2(S1) < P2(S2), or in

2



general, if Pj(S1) = Pj(S2) for all j < k and Pk(S1) < Pk(S2) for some k.

In order to �nd algorithms of polynomial complexity, constraints must be imposed on the
general scheduling problem de�ned above. Even if all weights are equal, but ri, di, and pi can
vary from job to job, scheduling would be NP-complete if all jobs are time-constrained [5], or if all
jobs are non-time-constrained [1]. Consequently, we assume that pi = 1 for all i. Even if pi (and
ri) are constant for all i, the scheduling of time-constrained jobs is still NP-complete if wi and di
can vary [6], unless we also assume a slotted system, i.e. ri and di are integers for all i. (These
assumptions are appropriate for ATM networks, and reasonably approximate other systems.) With
these assumptions, we will show that low-complexity scheduling is possible even for heterogeneous
jobs.

In the next section, we describe the relevance of this scheduling problem to research in integrated-
services networks and real-time systems. Section 3 presents two approaches for time-constrained
jobs, or in standard notation [1], 1/ri, pi=1/

P
wiUi. In Section 4, we extend the scheduling algo-

rithm from Section 3.1 to accommodate non-time-constrained jobs as well as time-constrained jobs.
This is 1/ri, pi=1/

P
wiUi&

P
wiCi, where we de�ne the performance objective 
1&
2 in heteroge-

neous scheduling as minimizing 
1 for some jobs and 
2 for others. Section 5 presents a less complex
scheduling algorithm for the special case where ri is the same for all i, i.e. 1/pi=1/

P
wiUi&

P
wiCi,

under the constraint that only one set Aj contains time-constrained jobs. Finally, the paper is sum-
marized in Section 6, and the results are extended to M homogeneous parallel machines, i.e. P/ri,
pi=1/

P
wiUi&

P
wiCi and P/pi=1/

P
wiUi&

P
wiCi.

2 Relevance to Networks and Real-Time Systems

This paper was motivated by our research into integrated-services packet-switched networks such
as the emerging ATM networks, and subsequently, from research in real-time systems. Both are
discussed below. In any packet-switched network, information carried by the network is �rst divided
into smaller pieces called packets. Packets are queued in a bu�er at the network access point await-
ing transmission into the network, and a scheduling algorithm orders these packet transmissions.
Integrated-services networks are networks that carry diverse tra�c types such as voice, video, image
transfer, and various kinds of computer data, and diverse tra�c implies diverse performance objec-
tives. For example, for most types of computer data, performance is typically measured in mean
queueing delay. Minimizing mean weighted queueing delay

PN
i=1 wi(Ci�pi�ri)=N is equivalent to

minimizing
P
wiCi, since only Ci depends on the scheduling. For voice and video, however, packets

that are queued too long will not reach their destination in time for playback, and will be lost. Min-
imizing the weighted fraction that are lost

PN
i=1 wiUi=N is equivalent to minimizing

P
wiUi. Thus,

in the transmission of packets in integrated-services networks, there are both time-constrained and
non-time-constrained jobs. Since it is critical that voice and video applications consistently expe-
rience low loss rates, it is often the case that time-constrained jobs have greater weights, although
this is not necessarily always true. Furthermore, not all jobs (packets) are equally important. For
example, the loss of some voice or video packets are far more noticeable to a user than the loss
of others, and it is more important to reduce the mean queueing delay of network control packets
than the mean queueing delay of electronic mail. Thus, unequal weights are required.

The simple, traditional scheduling algorithms used in this context are �rst-comes-�rst-served, in

3



which jobs are served in the order in which they arrive, static priority, in which jobs are assigned pri-
orities (weights) from a �xed range and the queued job with the greatest priority is served next, and
earliest deadline �rst, in which the queued job with the earliest deadline is served next. However,
by adopting a more sophisticated scheduling algorithm, much better performance can be achieved,
or equivalently, the same performance can be achieved at a higher load [7, 8]. Consequently, in
this context, several scheduling algorithms have been suggested in which the network designer can
de�ne an arbitrary number of tra�c classes, and the appropriate measure of performance and
weight can vary from class to class. These scheduling algorithms then discriminate based on each
packet's performance measure, weight, and the delay it has already experienced. Such algorithms
include Cost-Based Scheduling [9, 10],Maximum Utility Scheduling for Transmission [11], and most
recently, the Priority Token Bank [12]. Many other possible approaches such as [13, 14] have been
proposed for less general conditions, such as when there are a small number of tra�c classes, and
speci�c constraints on the performance objectives of each class, but the fact that some packets are
time-constrained and others are not still a�ects scheduling decisions.

The same problems also arise when scheduling the execution of processes in a soft real-time
system. A real-time system is a computer system in which the value of executing a process depends
on when it is completed. For example, a process may be useful only if it completes before its
deadline. In a hard real-time system, it must be guaranteed a priori that all deadlines will be met.
In a soft real-time system, this is not possible, so the objective is to come as close to this ideal as
possible. As in networks, jobs can be time-constrained or non-time-constrained, and some jobs are
more important than others. Since some real-time systems (including the object of our research)
can run on single or multiprocessor systems, it is also important that the scheduling algorithms
extend to multiple machines.

When proposing a novel scheduling algorithm for integrated-services networks or real-time sys-
tems, it is often di�cult to determine whether the algorithm is truly e�ective. Typically, one
compares the new algorithm with the standard alternatives: �rst-come-�rst-served, static priority,
and earliest deadline �rst. However, it is not di�cult to outperform these simple algorithms. Our
goal in developing an optimal algorithm is to enable more meaningful comparisons. The optimal
algorithms described in this paper are assumed to have complete knowledge of future arrivals,
so they always make the correct decision, yielding a valuable bound on achievable performance.
For example, in [9, 10], we were able to demonstrate the e�ectiveness of the proposed Cost-Based
Scheduling algorithm by comparing its performance with the optimum. Similar comparisons are
made in [7], which seeks to show the limitations of the commonly used algorithms.2 To make a
meaningful comparison of expected long-term network performance, the algorithms must be ap-
plied to a large number of packets, so reducing the optimal algorithm's complexity is essential for
keeping computation time practical.

Because the performance of time-constrained jobs is critical, the algorithms in Section 3 are
useful in their own right. Because jobs are actually heterogeneous in networks and real-time systems,
Section 4's enhancement makes the algorithm more valuable. There are also important uses for the

2This paper goes beyond its aforementioned predecessors by fully specifying the optimal algorithms, and then
providing formal proofs of optimality. This paper also presents algorithms for scenarios not employed in [9, 10, 7]
which have proved valuable in our research. These include the O(WN logN) approach for 1/ri, pi = 1/

P
wiUi in

Section 3, the O(N logN) algorithm for 1/pi = 1/
P
wiUi&

P
wiCi in Section 5, and the extension of all of the above

to M machines in Section 6, where N is the number of jobs and W is the number of values for weights.

4



algorithm in Section 5 which assumes all ready times are equal. In some real-time systems, jobs
arrive in bursts, so a scheduler can reasonably operate under the assumption that no additional
time-constrained jobs will arrive before the last burst is served. Furthermore, some advocate greedy
scheduling algorithms that operate under this assumption even when there is actually a steady
stream of new arrivals. This approach has been proposed both for real-time systems [15, 16, 17]
and integrated-services networks [11], although the author has argued against this approach [10].
The algorithms are extended to multiple machines in Section 6.

3 Scheduling Time-Constrained Jobs

An algorithm for minimizing
P
wiUi for time-constrained jobs is known for the case where pi = 1,

and ri and di are integers for all i. As shown in [18], by repeatedly applying Glover's algorithm for
convex bipartite graphs [19],

P
wiUi can be minimized with an O(N3) algorithm, where N is the

number of jobs. In our models of integrated-services networks, it is not unusual to need an N on
the order of one hundred million. This can take on the order of ten hours of computation time with
our O(N2) approach. Excessive computation would make an O(N3) approach unusable. There is
also no obvious way to extend the algorithm in [18] to accommodate non-time-constrained jobs (for
which the objective is to minimize

P
wiCi) as well as time-constrained jobs. A less complex and

more extensible algorithm is needed. We will present an O(N2) algorithm for time-constrained jobs
in Section 3.1, which will be extended to heterogeneous jobs in Section 4. Section 3.2 describes
an alternative method of calculating the optimal achievable performance of time-constrained jobs,
without producing an actual schedule. This approach is more e�cient in some cases.

3.1 An O(N2) Scheduling Algorithm for Time-Constrained Jobs

We now present an algorithm that will �nd a schedule in which
P
wiUi is minimized. Only jobs

that meet their deadlines are included in this schedule. (The other jobs can be scheduled in any
period left idle.) Let A be the set of jobs that will meet their deadlines. Clearly A should contain
as many jobs as possible, particularly of the more important jobs. We initially let A = ;, and then
attempt to add jobs in non-increasing order of weight. For a job x, if all of the jobs in A + fxg
can be served before their deadline, then x is added to A; otherwise, x is discarded. The theorem
below proves that the resulting set A is optimal.

To prove that this approach is optimal, we must prove that once a job is added to A, it should
never be removed. Similarly, once a job is discarded from A, it should never be revived. The latter
clearly follows from the former; if it is not possible to add a given job to A without some job missing
its deadline, and no jobs in A are ever removed, then it will never be possible to add the job. Our
theorem will prove that jobs added to A should never be removed. Note that this is not true unless
pi = 1 for all i, nor is it even true with pi = 1 unless ready times and deadlines are integers. For
example, with two jobs in which w1 = 5, r1 = :5, d1 = 1:5, p1 = 1, and w2 = 4, r2 = 0, d2 = 1,
p2 = 1, only job 1 would meet its deadline, i.e. A =f1g. After adding job 3 in which w3 = 3,
r3 = 1, d3 = 2, p3 = 1, job 1 would no longer meets its deadline in the optimal schedule; A =f2,3g.

To facilitate the proof, we �rst de�ne a useful function. Let there be two schedules S1 and
S2 in which jobs with pi = 1 : 8i begin at integer times. If job J is scheduled to begin at time

5



t in S1, job f (1)(J) is scheduled to begin at time t in S2. If nothing is scheduled in S2 at that
time, then f (1)(J) is idle. This is useful in a proof, because it must be possible to replace J with
f (1)(J) in S1 without violating ready time or deadline constraints. Similarly, it must be possible
to replace f (1)(J) with J in S2. More complex replacements are also possible if f (1)(J) is also
scheduled at some time in S1. f (2)(J) = f (1)(f (1)(J)) is the job scheduled in S2 at the same time
that f (1)(J) is scheduled in S1. f

(2)(J) can now be replaced by J in S2, and J by f (2)(J) in S1. For
example, f (1)(J) is replaced by f (2)(J) in S1, and then J is replaced by f (1)(J) in S1. In general,
f (i+1)(J) = f (1)(f (i)(J)) : 8i > 0. Also, if f (j)(J) 2 S1 : 81 � j < i, then f (i)(J) can replace J in
S1, or J can replace f (i)(J) in S2, for all i > 0. For consistency, f (0)(J) is de�ned to equal J .

Theorem 1: A �nite set A contains jobs in which pi = 1, wi > 0, and ri and di are
integers for all i. An algorithm that minimizes

P
wiUi of jobs in A produces a schedule

S1. (Jobs that do not meet deadlines are not included in the schedule, and no job is
included twice.) Job x is not in A, and x's weight is less than or equal to the weights
of every job in A. There exists a schedule S2 that minimizes

P
wiUi for the jobs in

A+ fxg, where each job in S1 is also in S2.
Proof of Theorem 1 by contradiction: Let S2 be chosen to minimize

P
wiUi of jobs in

A + fxg. Of those schedules in which
P
wiUi is minimized, as many of the jobs in S1

as possible are included in S2. Assume that there exists a job y in S1 that is not in S2.
We will prove that there must then be an in�nite number of jobs that are in both S1
and S2, which is not possible. It is known that f (0)(y) = y is in S1. We will show that
if f (j)(y) is in S1, for all j : 0 � j < k, then f (k)(y) is also in S1 for all k > 0.

The conceivable values of f (k)(y) are: (1) idle, (2) x, (3) f (j)(y) for some j : 1 � i <

k, (4) a job 6= x and 6= f (j)(y) for all j : 1 � i < k, that has a weight less than y's, (5)
such a job with a weight greater than y's, and (6) such a job with a weight equal to y's.
We now consider each possibility, showing that the �rst four are impossible, and the last
two both imply that f (k)(y) is in S1. (In the process, recall that

P
wiUi was minimized

in both S1 and S2.) (1) f
(k)(y) cannot be idle, because if it were,

P
wiUi in S2 could be

improved by scheduling y at that time. (wy > 0). (2) Job f (k)(y) cannot be x, because
if it were, x in S2 could be replaced by y, thereby increasing the number of jobs in S1
that are also in S2 without degrading

P
wiUi. (wx � wy). (3) f (k)(y) cannot be f (j)(y)

for some j : 1 � i < k, because if it were, the job would be duplicated in S2. (4) f
(k)(y)

cannot have a lower weight than y, because if it did,
P
wiUi in S2 could be improved

by replacing f (k)(y) with y. (5) If f (k)(y) has a greater weight than y, then job f (k)(y)
must be in S1. Otherwise, y could be replaced by f (k)(y) in S1, thereby improving
P
wiUi in S1. (6) If f (k)(y) and y have equal weights, then job f (k)(y) must be in S1.

Otherwise, y could be replaced by f (k)(y) in S1, thereby increasing the number of jobs
in S1 that are also in S2 without changing

P
wiUi. Thus, the job f (k)(y) is in both S1

and S2, but not in the same time slot.
Since y = f (0)(y) is in S1, this proves by induction that an in�nite number of unique

jobs are in both S1 and S2, which is not possible, since there are only a �nite number
of jobs in A. Thus, the theorem is proved.

A method is now needed to determine whether the jobs in A+ fxg can all be scheduled before
their deadlines, and if so, to �nd the corresponding schedule. If a schedule exists in which all jobs

6



meet their deadline, the earliest-deadline-�rst algorithm will produce such a schedule [5, 20]. With
this algorithm, the job i scheduled at any time t is the one with the earliest deadline di of those
queued, where a job is queued at time t if it has arrived (ri � t), it has not already begun processing
by time t, and it has not missed its deadline (di � pi � t). The following algorithm generates a
schedule consistent with earliest-deadline-�rst scheduling.

First, an attempt is made to schedule the new job x at time rx. If that time slot is idle, a
new schedule has been found. If not, either job x or the job previously scheduled at time rx is
scheduled at time rx, and the other must be scheduled at a later time. The job allowed to remain
at rx is the one with the earliest deadline. In the next iteration, an attempt is made to schedule the
currently unscheduled job in the next time slot, at time rx + 1. This procedure is continued with
successive time slots until either an idle time slot is found or a time slot is reached in which neither
of the jobs considered can be scheduled at a later time without missing their respective deadlines.
In the former case, the current job is scheduled in the idle time slot. In the latter case, all jobs
are returned to the times at which they were scheduled before job x was introduced, and job x is
discarded. The algorithm can be further enhanced by using a stack to store proposed changes in
the schedule that should be enacted if all jobs can be scheduled before their deadline. If and only
if x can be scheduled, the changes stored in the stack are made. The algorithm is shown below.

Let t = rx [t] is the job scheduled at time t

Let end = dx
Clear stack

Push x onto stack

While (t < end) and (slot t is not idle) do

If (d[t] > end) then

Let end = d[t]
Push t onto stack

Push [t] onto stack

Let t = t + 1

If (slot t is idle) then

Pop stack into j

Schedule job j at time t
While (stack is not empty) do

Pop stack into t
Pop stack into j
Schedule job j at time t

It can be shown that this algorithm is O(N2) as follows. For each job i scheduled, a series
of time slots in the existing schedule must be scanned, beginning with time rx, and ending either
when an idle time slot is found or it is determined that the job cannot meet its deadline. With N

jobs, no more than N time slots can be scanned before �nding one that is idle. Thus, the algorithm
is, at worst, O(N2). Since presorting by weight is only O(N logN) [21], it does not increase this
complexity. Moreover, although theoretical complexity is O(N2), complexity in practice is better.
The number of time slots that must be scanned cannot exceed the number of time slots B in a
busy period, where a busy period is any period that contains no idle slots, and is both preceded
and succeeded by an idle time slot. Complexity in practice is therefore O(BN). In a queueing
system where jobs arrive according to a stochastic arrival process, the average length of a busy

7



period can be derived analytically from that arrival process, and is independent of N , yielding a
linear complexity. In our simulations of integrated-services networks, average B was often in the
hundreds or thousands, while N could be in the hundred millions.

As a simple example of what can be done with this algorithm, consider a CPU queue to which
real-time tasks arrive according to a Poisson process. Weights are distributed exponentially with
mean 1. The amount of queueing delay that a task can tolerate before the result is no longer useful
is 9�3E, where E is an exponentially distributed random variable with mean 1, conditioned on the
fact that 9� 3E > 0. Figure 1 shows mean weighted loss rate (

PN
i=1 wiUi=N) versus load, enabling

the comparison of the following algorithms: optimal (OPT), cost-based scheduling (CBS) [9, 10],
�rst-come-�rst-served (FCFS), static priority (SP), and earliest deadline �rst (EDF).

Figure at end of paper.

Figure 1: Weighted loss rate,
PN

i=1wiUi=N , versus load.

3.2 Method of Calculating Performance for Time-Constrained Jobs

In this section, we present an e�cient means of determining for each weight the number of time-
constrained jobs that would miss their deadlines under optimal scheduling, without ever determining
the actual schedule. If the number of possible values for weight is relatively small, this technique is
more e�cient than the O(N2) algorithm presented in the previous section. In addition, with this
approach, it is sometimes possible to derive long-term expected loss rate

PN
i=1 Ui=N as a function

of weight analytically if one knows the job arrival process. (The latter approach has proved useful
for models of real-time systems and integrated-services networks.)

Let the job types be numbered from 1 to W in descending order of weight, where all jobs of
the same type have the same weight. w(i) is the weight assigned to type i jobs, and L(i) is the
number of type i jobs that miss their deadlines under optimal scheduling. Our goal is then to �nd
L(i) : 1 � i � W . We �rst present a method for determining L(1), and then a technique is presented
for �nding L(j) when given L(i) : 8i < j.

As seen in Section 3, a job with weight < w is scheduled before its deadline only when doing so
will not a�ect the loss rate of the jobs with weights � w. Thus, when determining the loss rates
of jobs with weights � w, the presence of jobs with weights < w can be ignored. In particular,
the loss rate L(1) of type 1 jobs under optimal scheduling can be determined by calculating the
loss rate that would be achieved when only such jobs are present. In this case, optimal scheduling
achieves the same loss rate as the O(N logN) earliest deadline �rst algorithm (EDF) [5, 20], which
can be determined analytically in some cases.

The method of �nding L(j) from L(i) : 8i < j is based on the following theorem.

Theorem 2: In a system where pi = 1 and ri and di are integers for all i, if
P
wiUi

is minimized in a schedule spanning a �nite period for any set of weights in which
wi > 0 : 8i, then

P
Ui is simultaneously minimized.

8



Proof of Theorem 2: S1 is a schedule spanning a �nite time period in which
P
wiUi

is minimized, and S2 is a schedule in which
P
Ui is minimized over the same period.

Jobs that miss their deadlines are not included in S1 or S2. I(S) is the amount of
idle time in schedule S. Since reducing

P
Ui reduces the amount of idle time, I(S)

is minimized when
P
Ui is minimized. Thus, I(S2) � I(S1). Let k be the number of

time slots in S1 in which the job being served (or the idle period) di�ers from that of
the corresponding slot in S2. Let S2 be chosen such that, of all the schedules in which
P
Ui is minimized, k is smallest. We will prove that I(S1) = I(S2) by contradiction.

Assume I(S1) > I(S2). This means there is at least one time slot which is idle in S1
and not in S2. Choose one such time slot, and consider the job i that occupies the slot
in S2. In S1, this job is either lost or it is scheduled at another time. If the job is lost
in S1, then

P
wiUi could be decreased by scheduling job i in this time slot rather than

discarding job i. This contradicts the assumption that
P
wiUi was minimized in S1.

In the other alternative, job i is scheduled at another time. In this case, job i could
be moved to this time slot. This would reduce k by 1, and not change Ui, thereby not
changing

P
Ui. This violates the assumption that S2 was selected to minimize k. Thus,

by contradiction, I(S1) = I(S2), and consequently
P
Ui for S1 and S2 are equal. S1

must therefore have the minimum possible
P
Ui.

To �nd L(j), assume L(i) : 8i < j are known. As described above, the presence of type i : i > j
jobs can be ignored. By Theorem 2, the

P
Ui achieved by optimally scheduling the jobs from every

class i : i � j is the same as the loss rate L achieved when using earliest deadline �rst (EDF) with
the same jobs. Since loss is conserved, L(j) = L�

Pj�1
i=1 L

(i) Thus, all loss rates can be determined
by invoking EDF once for each of the W possible weights, yielding a complexity of O(WN logN).

In some cases, long-term expected loss rate
P
Ui=N with earliest-deadline �rst scheduling can

be found analytically, particularly if di�ri is the same for all i. To show the utility of this approach,
we consider one such case where loss rates with earliest-deadline-�rst have been derived [22]. A
communications channel has 20 independent sources. Each source alternates between active and
inactive periods, and the durations of both are distributed exponentially. When a source is active,
it generates data packets at a constant data rate f , and the mean duration of an active period is
50 ms. (The mean duration of an inactive period is a function of load.) The channel bandwidth
is 150 Mb/s. A packet is considered lost if it is not transmitted within 1.1 ms of its arrival. A
burst of data, which is the data generated in one active period by a single source, is of type 1
with probability p, and type 2 with probability 1� p. The time required to get weighted loss rates
P
wiUi=N with the O(N2) algorithm described in the previous section would be excessive with this

model, because busy periods can be so large. However, we can �nd loss rates analytically. Figure 2
shows the maximum load that can be tolerated with optimal scheduling (OPT) and earliest deadline
�rst (EDF) under the constraint that no more than .3% of type 1 packets and 5% of type 2 packets
are lost as a function of p. Data rates of f = 256 kb/s, 2 Mb/s, and 140 Mb/s are considered,
yielding mean burst lengths of 12.8 kb, 100 kb, and 7 Mb, respectively. Thus, given the data rate
and tra�c mix, one can determine the e�ective capacity with the various algorithms.

9



Figure at end of paper.

Figure 2: Maximum load where requirements are met versus fraction of Class 1 packets, p, with
tra�c from 20 independent bursty sources.

4 An O(N2) Algorithm for Heterogeneous Jobs

The algorithm to schedule heterogeneous jobs attempts to add jobs to an existing schedule one at
a time in a non-increasing order of weights. The new job x cannot degrade performance of any
job y in the existing schedule for one of the following reasons. If both jobs x and y are time-
constrained, this is consistent with the optimal algorithm and theorem in Section 3.1. If both
jobs are non-time-constrained, this conforms to the static priority scheduling algorithm, which is
optimal for non-time-constrained jobs. If one job is time-constrained and the other is not, they are
in di�erent sets. By the de�nition of optimality presented in Section 1, if job 1 2 Aj and job 2
2 Aj+k : k > 0, then job 1 has a greater weight, and the performance of the more important job 1
should be optimized, at the expense of job 2 where necessary. Thus, when job x is added to the
schedule, time-constrained jobs in the existing schedule can only be delayed if none of them will
miss their deadlines, and non-time-constrained jobs cannot be delayed at all.

The algorithm for adding a time-constrained job x is the one presented in Section 3 with a
minor extension. In the algorithm in Section 3, if an attempt is made to schedule a job at a time
in which another job i is currently scheduled, its deadline di is examined to determine whether job
i can be delayed to a later slot. If job i is non-time-constrained, di is not de�ned. Since it is never
appropriate to delay a non-time-constrained job in order to reduce the queueing delay of a job with
a smaller weight, we let the previously unde�ned di for a non-time-constrained job i equal its ready
time ri + 1. (di should not be interpreted as a deadline for a non-time-constrained job; such jobs
have no deadlines.)

Now we consider the case in which the job x to be added to the existing schedule is a non-
time-constrained job. To minimize Cx, job x should be scheduled at time rx or as soon as possible
thereafter. One way to do this would be to repeatedly use the algorithm for time-constrained jobs,
as follows. Set dx = rx + 1 and use the algorithm in Section 3. This will either cause job x to
be scheduled at time rx, or to be discarded. In the latter case, increment both rx and dx, and
invoke the same algorithm again. Continue this procedure at subsequent times until job x can be
scheduled. Although this would work, it could require invoking the O(N2) algorithm to schedule
a new time-constrained job as many as N times, yielding a complexity of O(N3). A more e�cient
algorithm can be employed based on the following observation. As discussed in Section 3.1, the
algorithm for time-constrained jobs scans time slots beginning at time rx until a time slot s � rx
is found which is either idle in the current schedule or for which it can be determined that none of
the jobs currently scheduled at the times 2 [rx; rx+1; : : : ; s] can be delayed without incurring some
performance penalty. In the former case, a new schedule including job x has been found. In the
latter case, when we are trying to schedule a time-constrained job, this means that the job should
be dropped. For the non-time-constrained job in question, it means that it is not necessary to try
to schedule job x at times 2 [rx + 1; rx + 2; : : : ; s]. Thus, an e�cient algorithm could resume its

10



attempts to schedule job x at time s + 1. The resulting algorithm is shown below. Similar to the
algorithm in Section 3, when inserting a new job into an existing schedule, this algorithm scans
successive times until an idle time slot is found and then the new schedule can be determined. Since
this requires scanning at most N times for each of the N jobs to be scheduled, the complexity is
O(N2). (Again, complexity in practice is O(BN) rather than the theoretical O(N2), where B is
the average length of a busy period and is often independent of N .)

11



Let t = rx [t] is the job scheduled at time t

Repeat

Clear stack

Push x onto stack

Let end = t+1

While (t < end) and (slot t is not idle) do

If (d[t] > end) then

Let end = d[t]
Push t onto stack

Push [t] onto stack

Let t = t + 1

Until (slot t is idle)

Pop stack into j
Schedule job j at time t

While (stack is not empty) do

Pop stack into t

Pop stack into j
Schedule job j at time t

As an example of how one might employ this algorithm, consider an integrated services network
in which voice packets arrive according to a Poisson process, generating a load of .5. Voice packets
can tolerate a queueing delay of 15� 5E before they are considered lost, conditioned on the fact
that 15 � 5E > 0, where E is an exponentially distributed random variable with mean 1. The
scheduling algorithm must minimize

P
wiUi=N for voice, and within that constraint, reduce the

mean queueing delay
PN

i=1(Ci � pi � ri)=N of data packets to the extent possible. Figure 3 shows
mean queueing delay of data packets as a function of load from data packets with static priority
(SP), earliest deadline �rst (EDF), and optimal (OPT).

Figure at end of paper.

Figure 3: Mean queueing delay
PN

i=1(Ci�pi�ri)=N of non-time-constrained jobs versus load from
non-time-constrained jobs, with a load from time-constrained jobs of .5.

5 Scheduling Jobs with Equal Ready Times

This section addresses the special case where ri = 0 for all i. Of course, it would be possible to
use the O(N2) algorithm for this problem, but as will be shown below, complexity can be reduced
to O(N logN) as long as there is only one set of time-constrained jobs, i.e. the weight of any non-
time-constrained job is either greater than or less than the weights of all time-constrained jobs.
(A minor variation of this algorithm is also applicable when ri can vary from job to job, but all
time-constrained jobs have equal deadlines.) Since there is only one set of time-constrained jobs,
there are at most three sets. Thus, there are at most three stages of the algorithm. In Stage 1, non-
time-constrained jobs with large weights are scheduled. In Stage 2, the time-constrained jobs are

12



scheduled. Finally, in Stage 3, the remaining non-time-constrained jobs are scheduled. In Stage 1,
the N1 jobs in Set A1 are scheduled in the �rst N1 time slots in non-increasing order of weight,
which is an O(N1logN1) procedure.

In Stage 2, time slots are scheduled in decreasing order, beginning with the latest deadline of all
of the time-constrained jobs, and working back to the earliest free time N1. The job scheduled at
time t is the one with the greatest weight of those that have not already been scheduled, and that
have a deadline � t+ 1. The exact algorithm is shown below. It is based on heaps [21], a standard
data structure in which items can be inserted in any order, and the item with the greatest value
can always be retrieved. In Heap 1, it is the job with the latest deadline that can be retrieved,
whereas in Heap 2, it is the job with the greatest weight. (Heap 1 is simply used to presort jobs by
deadline.) The complexity of adding an item to a heap (and later removing it) is O(logN), where
N is the number of items in the heap. Since each of N2 jobs in Set A2 will be inserted into each
heap exactly once, the complexity is O(N2logN2).

For each job i H(i) is the job at the top of Heap i

Put job i in Heap 1

Let t = dH(1)-1

While (t � N1) do

While (Heap 1 is not empty) and (dH(1) = t) do

Remove job H(1) from Heap 1 and put it in Heap 2

If (Heap 2 is not empty) then

Remove job H(2) from Heap 2 and schedule it at time t

Let t = t � 1

We demonstrate that this algorithm is optimal for time-constrained jobs by induction. Let [t] be
the job scheduled at time t using the algorithm above. We will assume that Zt+1 =

P1
i=t+1 w[i], the

weights of the jobs scheduled after time t, is the maximum possible, and show that Zt = w[t]+Zt+1

is also the maximum possible. Since Zt+1 cannot be improved upon, the only way to increase Zt
is to replace job [t] with a job of greater weight. If there are any jobs of greater weight that have
deadlines � t+1, these jobs are already scheduled at a time > t. It would be possible to move one
of these jobs with a greater weight to time t, and then replace it with an unscheduled job. However,
there are no unscheduled jobs with a weight greater than that of [t], so this cannot increase Zt.
Therefore Zt is the maximum possible value for all t, and Z0 =

P
wiUi.

Finally, in Stage 3, the less important non-time-constrained jobs are scheduled in non-increasing
order of weight, in the time slots that are still idle. Time-constrained jobs were already scheduled
as late as possible, so they cannot be delayed further without missing their deadlines. Sorting by
weight is an O(N3logN3) operation, and scanning for idle time slots is O(N). Since no operation
in any of the stages has a complexity greater than O(N logN), that is the complexity of the entire
algorithm.

6 Summary

This paper addresses the problem of scheduling jobs with diverse performance objectives, i.e. jobs
have di�erent weights, and in some cases, di�erent performance measures or criteria. We call such
problems heterogeneous-criteria scheduling problems. Jobs are classi�ed as either time-constrained,

13



for which
P
wiUi should be minimized, or non-time-constrained, for which

P
wiCi should be min-

imized. All jobs are assumed to be of unit length with integer ready times and deadlines. We have
presented an O(N2) algorithm to schedule both time-constrained and non-time-constrained jobs of
unequal weight, i.e. 1/ri, pi=1/

P
wiUi&

P
wiCi, where we de�ne the objective 
1&
2 in heteroge-

neous criteria scheduling as minimizing 
1 for some jobs and 
2 for others, and N is the number of
jobs. We have also shown how to determine the number of jobs lost at any given weight without
�nding an actual schedule. In some useful cases, this can be done analytically. If not, it can be
done with an O(WN logN) procedure, where W is the number of possible weights. Finally, in cases
where ri = 0 : 8i, and there is only one set of time-constrained jobs, i.e. 1/pi=1/

P
wiUi&

P
wiCi

with the one constraint on weights, we have presented an O(N logN) scheduling algorithm.

All of the algorithms in this paper have been proposed for scheduling on a single machine.
However, comparable problems on M identical parallel machines can also be solved with these al-
gorithms. Simply let ri =M�(job i's ready time) and di =M�(job i's deadline), and then use the
single-machine algorithms. Being scheduled at time t in the single-machine problem is then equiv-
alent to being scheduled on machine (t mod M) at time (t div M), where machines are numbered
from 0 toM � 1. Thus, P/ri, pi=1/

P
wiUi&

P
wiCi is O(N

2), and P/pi=1/
P
wiUi&

P
wiCi with

only one set of time-constrained jobs is O(N logN).

Although these algorithms could be applied to a wide variety of problems, the motivation for
�nding them came from research into both integrated-services packet-switched networks such as
ATM networks, and soft real-time systems. E�cient optimal scheduling will serve as valuable tools
for researchers in these contexts.

References

[1] R. L. Graham, E. L. Lawler, T. K. Lenstra, and A. H. G. Rinnooy Kan, \Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey," Ann. Discrete Math.,
5, 287-326 (1979).

[2] C. K. Chen and R. L. Bul�n, \Scheduling Unit Processing Time Jobs on a Single Machine with
Multiple Criteria," Computers Ops. Res., 17, 1-8 (1990).

[3] P. De, J. Ghosh, and C. E. Wells, \Some Clari�cations on the Bicriteria Scheduling of Unit
Execution Time Jobs on a Single Machine," Computers Ops. Res., 18, 717-20 (1991).

[4] R. L. Carraway, R. J. Chambers, T. L. Morin, and H. Muskowitz, \Single Machine Sequencing
with Nonlinear Multicriteria Cost Functions: An Application of Generalized Dynamic Program-
ming," Computers Ops. Res., 19, 69-77 (1992).

[5] B. Simons, \On Scheduling With Release Times and Deadlines," in Deterministic and Stochastic
Scheduling, M. A. H. Dempster, J. K. Lenstra, and A. H. G. Rinnooy Kan, editors. Dordrecht,
The Netherlands: Reidel, 75-88 (1982).

[6] R. M. Karp, \Reducibility among Combinatorial Problems." Complexity of Computer Commu-
nications, R. E. Miller and J. W. Thatcher editors, Plenum Press, New York, 85-103 (1972).

[7] J. M. Peha and F. A. Tobagi, \Evaluating Scheduling Algorithms For Tra�c With Heteroge-
neous Performance Objectives," Proc. IEEE Globecom-90, Dec. 1990, pp. 21-27.

14



[8] J. M. Peha, \Analysis of Scheduling Algorithms for Integrated-Services Networks using a Semi-
Fluid-Flow Model," Proc. IEEE Globecom-92, Dec. 1992, pp. 330-334.

[9] J. M. Peha and F. A. Tobagi, \A Cost-Based Scheduling Algorithm To Support Integrated
Services," Proc. IEEE Infocom-91, 741-753 (1991).

[10] J. M. Peha and F. A. Tobagi, \Cost-Based Scheduling and Dropping Algorithms To Support
Integrated Services," to appear in IEEE Trans. Communications.

[11] L. P. Clare and A. R. K. Sastry, \Value-Based Multiplexing of Time-Critical Tra�c," Proc.
IEEE Milcom-89, 395-401 (1989).

[12] J. M. Peha, \The Priority Token Bank: Integrated Scheduling and Admission Control for
an Integrated-Services Network," Proc. IEEE Intl. Conf. Communications (ICC-93), Geneva,
Switzerland, 345-51 (1993).

[13] R. Chipalkatti, J. F. Kurose, and D. Towsley, \Scheduling Policies for Real-Time and Non-
Real-Time Tra�c in a Statistical Multiplexer," Proc. IEEE Infocom-89, pp. 774-83 (1989).

[14] J. Hyman, A. A. Lazar, G. Paci�ci, \MARS: The Magnet II Real-Time Scheduling Algorithm,"
Proc. ACM Sigcomm-91, 285-93 (1991).

[15] E. D. Jensen, C. D. Locke, and H. Tokuda, \A Time-Driven Scheduling Model For Real-Time
Operating Systems," Proc. IEEE Real-Time Systems Symp., 112-122 (1985).

[16] H. Tokuda, J. W. Wendorf, and H. Y. Wang, \Implementation of a Time-Driven Scheduler for
Real-Time Operating Systems," Proc. IEEE Real-Time Systems Symp., 271-280 (1987).

[17] S. R. Biyabani, J. A. Stankovic, and K. Ramamritham, \The Integration of Deadline and
Criticalness in Hard Real-Time Scheduling," Proc. IEEE Real-Time Systems Symp., 142-151
(1988).

[18] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Win-
ston, New York (1976).

[19] F. Glover, \Maximum Matching in a Convex Bipartite Graph," Nav. Res. Logist. Q., 14, pp.
313-316 (1967).

[20] S. S. Panwar, D. Towsley, and J. K. Wolf, \Optimal Scheduling Policies for a Class of Queues
with Customer Deadlines to the Beginning of Service," J. ACM, 35, 832-844 (1988).

[21] D. E. Knuth, The Art of Computer Programming. Volume 3: Sorting and Searching, Addison-
Wesley, Reading, MA, (1975).

[22] L. Dittman and S.B. Jacobsen, \Statistical Multiplexing of Identical Bursty Sources in an
ATM Network," Proc. IEEE Globecom-88, 1293-1296 (1988).

15



Figure 1: Weighted loss rate,
PN

i=1 wiUi=N , versus load.

16



Figure 2: Maximum load where requirements are met versus fraction of Class 1 packets, p, with
tra�c from 20 independent bursty sources.

17



Figure 3: Mean queueing delay
PN

i=1(Ci�pi�ri)=N of non-time-constrained jobs versus load from
non-time-constrained jobs, with a load from time-constrained jobs of .5.

18


