
IEEE Transactions on Communications, Vol. 44, No. 2, Feb. 1996, pp. 192-202.

Cost-Based Scheduling and Dropping Algorithms To Support Integrated Services1

Jon M. Peha and Fouad A. Tobagi

Abstract

Applications with diverse performance objectives must be supported on a single packet-switched
network. The e�ciency of such networks can be greatly improved through use of sophisticated
scheduling and dropping algorithms within the queues that form at the network access points and in
switches throughout the network. In our approach, arbitrary performance objectives are expressed
in the form of cost functions, which map the queueing delay experienced by each packet to a cost
incurred. Our heuristic algorithms, cost-based scheduling (CBS) and cost-based dropping (CBD),
then attempt to optimize network performance as perceived by the applications by minimizing the
total cost incurred by all packets. Appropriate cost functions are presented for common applications.
Scheduling and dropping algorithms are de�ned from these cost functions. It is demonstrated
that network performance is better when these algorithms are used as opposed to the common
alternatives. Also, contrary to conventional wisdom, some evidence is presented that sophisticated
scheduling may be preferable to sophisticated dropping as a means of adjusting loss rates.

1 Introduction

There is interest in supporting diverse applications with a single integrated packet-switched network
using asynchronous transfer mode (ATM). The challenge to designers of network algorithms and pro-
tocols comes from the fact that performance objectives vary tremendously from one type of service to
another. In this paper, we show how diverse application performance objectives can be met e�ciently
with an appropriate packet transmission scheduling algorithm and packet dropping algorithm. We also
examine the relative importance of scheduling versus dropping to meeting diverse objectives.

The most appropriate measure of performance depends on the application. The traditional mea-
sure in data networks is mean delay of all packets. Mean delay is meaningful for an application like
interprocess communication in a distributed system, but this measure conveys little about quality of
service in a packet voice or video application. Such packets are bu�ered at the destination and played
out some �xed delay after they are generated at the source. A more meaningful performance measure
for such applications is loss rate, the fraction of packets received after their deadlines or not at all.
Another possible measure is tardiness, which is max(0, actual delay � delay allowance). Consider
a central controller that periodically multicasts a poll to all replicas of a database and waits for re-
sponses [1]. On a path with small propagation delay, large queueing delay is tolerable; only queueing
delay beyond some �xed delay allowance, i.e. tardiness, degrades performance. Finally, consider ap-
plications such as resource monitoring in which status messages are transmitted periodically. The
utility of this information decays with time, until it becomes useless. An appropriate performance
measure for such packets is earliness, which is max(0, delay limit - actual delay). Even when the same
measure is appropriate for two applications, requirements may di�er tremendously quantitatively. For
example, interprocess communication generally requires a much smaller mean delay than �le transfer,
and tolerable loss rates for voice and video streams can easily range from O(.1%) to O(10%).

With such diverse objectives, a network designed so that every packet stream would experience
performance that meets all of the most stringent objectives would be grossly ine�cient [2, 3]. Thus,
algorithms should di�erentiate packets based on performance objectives and adjust each packet's delay
distribution accordingly. (In the special case of public networks, the price should also be adjusted

1The work was supported, in part, by the National Science Foundation under grant NCR-9210626.

1



accordingly [4, 5].) Once a packet's route is selected, the only delay that can be inuenced is queueing
delay, and this is best accomplished by the scheduling algorithm and the dropping algorithm. The
scheduling algorithm, or service discipline, orders the transmissions of queued packets. The dropping
algorithm selects a packet to be dropped when the bu�er overows.

Scheduling occurs at every queue. In a wide-area network (WAN), queues form in two places: at
bu�ers in packet switches inside the WAN, and at network access points. Once an admission control
algorithm has admitted a given packet stream, whenever the source decides to transmit a message,
that message is in e�ect queued at the network access point awaiting entry into the network. (It does
not matter whether this queue is considered part of the source or part of the network, as long as
propagation delay from data to network is insigni�cant.) For example, in an enterprise network, this
queue may form at the interface between the public common carrier and the private local network.
The arrival rate of packets into the queue at the network access point at any given time can exceed the
rate at which packets can enter the network. Bu�er sizes and therefore worst-case mean delays are also
less limited at access points. Consequently, queueing delay at the access points is likely to be more
signi�cant, making scheduling especially important there. In a local or metropolitan-area network
(LAN/MAN), the entire network can be considered a server with a queue that is distributed among
all stations. Therefore, in this paper, we address scheduling in a single queue, as is appropriate for
scheduling at a WAN access point, or a LAN. Although beyond the scope of this paper, the approach
can be extended to a network of queues. To demonstrate the value of sophisticated scheduling,
implementation considerations are ignored in this paper. (Such issues are addressed in [6, 3].)

Section 2 reviews scheduling and dropping algorithms. Section 3 describes our approach: cost-

based scheduling and cost-based dropping, and related approaches that use the cost abstraction. In
Sections 4 and 5, the performance of the scheduling and dropping algorithms, respectively, are com-
pared. Also, in Section 5, some evidence is presented that sophisticated scheduling is more e�ective
in meeting diverse objectives than sophisticated dropping. Section 6 concludes the paper.

2 Current Scheduling and Dropping Algorithms

The common scheduling algorithms are �rst-come �rst-served (FCFS), static priority (SP), and earliest

deadline �rst (EDF). Unlike FCFS, SP allows simple di�erentiation; packets are given a priority from
a �nite range before entering the network, and the queued packet with the highest priority is selected
for transmission at every queue. Among those of equal priority, FCFS is generally used. An advantage
of SP is that it is optimal when the measure of performance is weighted mean delay, where weighted
mean delay is a linear combination of the delays experienced by all packets. (Priority equals the ratio
of a packet's weight to its expected transmission duration [7].) However, SP does not let the urgency
of delivering a packet vary with time. For example, a voice packet's priority should increase as its
deadline approaches. To handle packets with deadlines, EDF has been proposed. EDF is optimal
with respect to mean tardiness in discrete-time G/D/1 (i.e., slotted) queues [8]. The variant of EDF
in which packets that have missed their deadlines are dropped is optimal with respect to loss rate in
discrete-time G/D/1 queues and continuous-time M/D/1 queues [9]. The problem with EDF is that
real tra�c is generally not homogeneous. First, not all packets have deadlines (although in an EDF
algorithm called HOL-PJ [10], packets with mean-delay objectives are assigned an arbitrary deadline,
and no packets are dropped after missing their deadlines.). Even if all performance objectives are in
terms of loss rate, the loss of some packets is generally more signi�cant than the loss of others, since
loss probability objectives can vary quantitatively from one packet to another. This is not considered
with EDF. Disadvantages of SP and EDF are further demonstrated in [2, 3, 11].

An EDF extension has therefore been proposed [12] that di�ers from EDF in two ways. First,
let packets be divided into classes such that class i packets are more important than class i + 1 for

2



all i. A class i+ 1 packet has priority over a class i packet if the former's deadline is earlier than the
latter's by at least 1 class i + 1 packet transmission time (where a deadline is the time by which a
packet must begin transmission). Second, the deadlines of class 1 packets are reduced where necessary
such that all currently queued class 1 packets can begin transmission at their deadline without any
of these transmissions overlapping. Although the broader framework proposed in [12] may have some
value, there is no obvious advantage to this algorithm. If the laxity, i.e. time until a packet must
begin transmission, of arriving packets is large compared to packet transmission time, then the �rst
modi�cation to EDF has little e�ect. As for the second modi�cation, the justi�cation in [12] is
that their scheduling and admission control algorithms will prevent class 1 packets from ever missing
deadlines. However, this claim is incorrect2.

Some have also advocated polling-based approaches [13]-[19]. With such an approach, for ex-
ample, voice packets may be given higher priority than data packets if and only if the number of
voice packets transmitted in the current cycle has not yet exceeded a �xed threshold. This approach
has advantages, such as insuring fairness without need for an external policing function to prevent a
source from ooding the network with packets marked as voice. However, the approach does little
to optimize performance. In particular, there is no way to set parameters such that a voice packet
has priority over data packets only when the former is in danger of missing its deadline. Indeed, if
voice arrival rate does not uctuate, this polling-based approach is roughly equivalent to giving voice
a greater static priority, with all of the corresponding disadvantages.

A more sophisticated scheduling algorithm called MARS [20] was proposed to run on top of a
polling-based algorithm. A schedule is maintained that contains the fraction of cycle dedicated to each
tra�c class in future cycles, and that schedule is modi�ed continually based on the arrival stream.
MARS assumes all tra�c can be divided into just three classes. For class 1 packets, the sole objective
is that queueing delay cannot exceed some maximum which is identical for all class 1 packets. There is
also a maximum delay which is identical for all class 2 packets, but some class 2 packets can miss their
deadlines. Class 3 packets should simply be transmitted as early as possible, but should not degrade
class 1 or class 2 performance. MARS is e�ective for tra�c meeting its assumptions about performance
objectives, but relaxing these assumptions is di�cult. We hope to support more heterogeneity.

Another approach is occupancy-based scheduling. There are multiple classes of tra�c, and
scheduling decisions depend on how many packets of each class are queued. An example in the
networking context [21] de�nes voice and data classes. Voice has priority over data unless the number
of queued data packets exceeds some threshold. Unfortunately, data bursts cause prolonged periods
when no voice is transmitted. It would be better if data had priority unless the number of voice
packets exceeded a threshold, but this works poorly if voice arrival rate can uctuate signi�cantly [3].

The most obvious dropping algorithms are last-come �rst-dropped (LCFD), static priority drop-
ping (SPD), and earliest deadline �rst dropped (EDFD), each of which is similar to one of the common
scheduling algorithms described above, although the choice of dropping algorithms is orthogonal to the
choice of scheduling algorithms. With LCFD, when the bu�er is full, any arriving packet is dropped,
regardless of performance objectives. SPD allows simple di�erentiation of packets; the queued packet
with the smallest static priority is dropped. Like static priority scheduling (SP), SPD does not allow
priority to reect deadlines, but EDFD can. The packet with the earliest deadline is the one most
likely to miss its deadline, so EDFD is the best dropping algorithm for minimizing the loss rate of
equal-length packets. Like earliest deadline �rst scheduling (EDF), EDFD does not consider the fact
that the loss of some packets is more signi�cant than the loss of others. Random dropping (RND) is
also advocated sometimes for fairness, but it obviously allows no discrimination.

2Let all packet transmission times be 1 unit. Two class 1 packets arrive at time 0 with deadlines (when transmission
must begin) 10 and 11. Another class 1 packet arrives at time 10 with deadline 11. The algorithm in [12] may spend the
time from 0 to 10 transmitting packets from other classes, so one class 1 packet would unnecessarily miss its deadline.

3



3 Cost-Based Scheduling and Dropping

Several scheduling algorithms capable of handling arbitrary performance objectives have been pre-
sented [22, 23, 24]. Section 3.1 discusses how arbitrary performance objectives have been expressed
with cost functions. In Section 3.2, Clare and Sastry's algorithm [24] is presented. In Section 3.3,
cost-based scheduling (CBS) [25, 3] is presented of which Nassehi's [23] and Fisher's [22] algorithms
are special cases. A novel extension of CBS, cost-based dropping (CBD), is presented in Section 3.4.
Then, in Section 3.5, we apply this approach to some common performance objectives.

3.1 Cost Functions

To optimize network performance, we must de�ne some quantitative measure that reects network
performance as observed by all users, but as described in Section 1, di�erent applications perceive and
therefore measure performance di�erently. In scheduling theory, such diverse objectives are typically
described with cost functions. The cost function ci(�) de�nes the cost incurred if packet i experiences
a queueing delay of � . Cost functions are chosen to best represent the application's performance
objectives, so total cost incurred reects the extent to which all performance objectives are met. For
example, for a loss-rate objective, if a packet's queueing delay exceeds its allowance A, a cost C is
incurred. Otherwise, no cost is incurred. This cost function is a step function. The less loss an
application can tolerate, the more C should be. Cost functions are expressed in cost per unit of packet
length. For example, if the value of a digitized voice packet is proportional to its length, all such
packets have identical cost functions. Average cost M can be expressed as follows. For i : 1 � i � N ,
let qi be the queueing delay experienced by packet i, and Li be its length. M =

PN
i=1 Li � ci(qi)=N .

3.2 Maximum Utility Scheduling for Transmission (MUST)

A heuristic called Maximum Utility Scheduling for Transmission (MUST) [24] was proposed to min-
imize cost M , and it generalizes previous similar algorithms developed for real-time systems [26, 27].
MUST orders all currently queued packets such that performance would be optimized by transmit-
ting packets in this order, assuming no additional packets will arrive. Packets are transmitted in this
order until the next new packet does arrive, at which time all queued packets must be ordered again.
(In�nite bu�er size is assumed, so no corresponding dropping algorithm has been suggested.)

The biggest problem with MUST is its complexity. Each time a packet arrives and n� 1 packets
are already queued, n! di�erent packet orders must be evaluated, where evaluating a packet order
means determining the cost each of the n packets would incur. This is an O(n � n!) operation. For
example, when n is geometrically distributed, the expected length of time required to execute the
scheduling algorithm is proportional to

P
1

n=1 a
n � n � n! = 1 for any a > 0. Thus, this algorithm's

extraordinary complexity makes it impractical. The authors' solution [24] is to consider only a �nite
time horizon, e.g. to order the packets at time t such that cost incurred would be minimized if there
were no future arrivals and if any packet still queued at time t+h is dropped. This relieves complexity
only if h is small, while thoroughly neutralizing MUST's e�ectiveness. For example, consider a packet
with a step cost function, where the magnitude of the step is great. Unless h > laxity, MUST would
select this packet for transmission immediately, even if it has ample time before its deadline.

3.3 Cost-Based Scheduling

We now present cost-based scheduling [25, 3], which is designed to avoid these limitations. Selecting a
queued packet i for transmission reduces the cost that will be incurred due to the queueing delay of
packet i, but packet i then consumes a scarce resource: transmission time. Thus, a packet's priority
reects the estimated cost that will be saved by transmitting the packet rather than keeping it in
the queue, divided by the duration of its transmission. Whenever a packet transmission completes
or a packet arrives to an empty queue, the scheduling algorithm is invoked, and the packet with the

4



greatest priority is selected for transmission. As long as the calculation of a single packet's priority is
independent of the characteristics of other (n� 1) queued packets, the complexity is only O(n).

Since the duration of a packet's transmission is proportional to packet length, priority is the ratio
of estimated cost saved to packet length. Cost per unit of packet length incurred by transmitting
packet i with a queueing delay of � is simply ci(�). The di�culty is in estimating cost incurred by
not transmitting packet i immediately. To understand the problem, �rst consider a simpler special
case where cost increases linearly with queueing delay. ci(�) = mi� : 8i. Both packets 1 and 2
arrive at time t and m1 > m2. One will be transmitted immediately, and the other at time tx. If
packet 2 is selected for transmission, then a greater cost of m1 � (tx � t) +m2 � 0 is incurred rather
than m1 � 0 +m2 � (tx � t). Optimal scheduling can be achieved by assigning each packet i a priority
equal to its cost at time tx minus its cost at time t, i.e. mi � (tx � t) for any tx : tx > t. (Note that tx
must be the same for all packets, even though the lower-priority packet may be delayed again at time
tx by newly arrived high-priority packets.) Returning to the case of arbitrary cost functions, a similar
approach is possible, but the selection of tx becomes more important; a packet's priority is a�ected
by a jump in cost that occurs before time tx. Our approach is to estimate costs as if a(�) were the
distribution of anticipated delay, i.e. the time until transmission tx, and calculate priority accordingly.

pi(t) =
Z
1

0
a(�) � ci(t+ �)d� � ci(t)

The extent to which priority is a�ected by the cost of a queueing delay of � is proportional to
a(�). Our scheduler should perform better if priority is more strongly inuenced by imminent events,
so a(�) is always-decreasing. There is no way to determine what the optimal function is, but we have
found that an exponential distribution a(�) = 1=� � e��=� outperforms other functions we have tried
in a single queue. This distribution also has intuitive appeal, since it is roughly what would occur if
the probability of selecting a packet for transmission, given that it is still queued, did not change over
time. More importantly, as will be seen in Section 4, CBS with an exponential distribution for a(�)
leads to e�ective scheduling when compared to rival algorithms.

� is the mean of a(�), so cost is estimated as if a packet will be delayed on the order of � if not
transmitted immediately. For step cost functions, for example, CBS becomes SP as � approaches 1,
and EDF as � approaches 0. For any value in between, CBS considers both the packet's importance
and its current laxity, so CBS generally outperforms SP and EDF. For a given tra�c scenario, some
value of � is optimal. Luckily, it has been shown though simulation [3] that, for a wide range of tra�c
types and loads varying from .5 to 1.5, performance is insensitive to � near the optimum.

The priority function for CBS with an arbitrary distribution a(�) for anticipated delay is a
generalization of the algorithms of Nassehi [23] and Fisher [22], although these two algorithms were
originally expressed in very di�erent forms. Fisher's algorithm, which only schedules packets with
tardiness objectives, is equivalent to CBS when anticipated delay is uniformly distributed from 0 to
the time it would take to transmit all currently queued packets.3 Nassehi's algorithm [23] (which
was designed for implementation in attempt-and-defer networks such as Expressnet [28]) has been
shown [25, 3] to be roughly equivalent to CBS with an exponential a(�) (and identical to CBS for
equal-length packets). The generalization of these algorithms facilitates development of our comparable
dropping algorithm. Furthermore, although it is beyond the scope of this paper, scenarios involving
networks of queues can also be accommodated by choosing alternate functions for a(�).

Assuming ci(�) is non-decreasing, pi(t) can only equal 0 if c(�) = c(t) for all � � t. In this case,
there is no penalty for giving packet i an in�nite delay, so a packet can be dropped once pi = 0.

3In Fisher's algorithm, packets can have arbitrary precedence constraints. A packet i is considered queued only if all
packets whose transmission must precede packet i have already been transmitted.

5



This approach can also be used to determine when a multipacket message should be transmitted,
or preempted. A message is preempted if all of its packets are not transmitted consecutively. The
only assumption is that all packets in a message enter the queue as fast or faster than they depart.
A priority is assigned to each queued message or portion thereof. Since a message fragment is useless
until the entire message has been received, the cost of delaying a fragment equals the cost of delaying a
message. However, transmission time of a fragment is less, so cost per unit of message length must be
scaled accordingly. Let pi;r(t) be the priority of message fragment i, and r : 0 � r < 1 is the fraction
of the message that has already been transmitted. pi;r(t) = pi(t)=(1� r).

3.4 Dropping Algorithm

Cost-based dropping (CBD) is analogous to cost-based scheduling (CBS). CBD also attempts to mini-
mize cost by allocating a scarce resource, although that resource is bu�er space rather than transmis-
sion time. Thus, we assign a dropping priority to packet i reecting the estimated cost that would be
saved by storing it in the queue as opposed to dropping it, divided by the bu�er space it will require.
When the bu�er overows causing the dropping algorithm to be invoked, as many of the packets with
high dropping priorities as possible are held in the queue; the low-priority packets are dropped.

The expected additional cost per unit length (of bu�er space) that would be incurred if packet i
is dropped, or equivalently if it has an in�nite queueing delay, is ci(�) as � goes to 1. The expected
cost incurred if packet i is held in the queue was estimated in the previous section using a(�). Thus,
dropping priority of packet i with queueing delay t is di(t).

di(t) = lim
�!1

ci(�)�
Z
1

0
a(�) � ci(t+ �)d�

Again, when queueing delay comes from a single queue such as at a network access point, an exponential
distribution is used for a(�). In the case of a message fragment, dropping priority must be scaled just
like scheduling priority is. Dropping priority of message i, di;r(t), where r is the fraction of the message
that has been transmitted already is di;r(t) = di(t)=(1� r).

3.5 CBS and CBD for Common Performance Objectives

We �rst qualitatively describe two cost functions that we expect to be common. (See [3] for a descrip-
tion of other likely cost functions.) We then address the selection of quantitative parameters.

As discussed in Section 3.1, for performance objectives measured in loss rate, the cost function
is a step function. c(t) = C � UA(t), where UA(t) is a unit step function that changes value at time
t = A. The resulting scheduling and dropping priority functions are p(t) = Ce�(A�t)=� � UA(t) and
d(t) = C(1� e�(A�t)=�) � UA(t), respectively. Since p(t) = 0 for t > A, late packets are dropped. If
tra�c is homogeneous with step cost functions, CBS becomes earliest deadline �rst (EDF) and CBD
becomes earliest deadline �rst dropped (EDFD), which is optimal. If cost functions are step functions
but C varies from packet to packet, CBS generalizes an algorithm in [29]

Temporal characteristics of packet loss may also matter. For example, the loss of two voice packets
is generally more noticeable if they are consecutive. One solution (without use of dependent cost
functions, in which cost incurred by packet i depends on the queueing delay of packet j, i 6= j [25, 3])
is to assign di�erent values to C for di�erent packets in a stream, even if they are equally valuable.
For example, let loss penalty be C1 for odd-numbered packets and C2 for even-numbered packets. If
an odd-numbered packet has a deadline of d1 and an even numbered packet has a deadline of d2, the
odd-numbered packet has greater priority at time t (t < d1, t < d2) if and only if d1 < d2+�ln(C1=C2).
If C1 > C2, fewer odd-numbered packets are lost. As shown in [25, 3], for a slight increase in overall

6



loss rate, the frequency of consecutive loss can be reduced signi�cantly.4 For all periodic streams with
identical periods, a random element to C can also improve fairness.

Another common measure of performance is mean delay. The corresponding cost function in-
creases linearly with delay, so priority is constant. If all tra�c is of this type, the algorithm becomes
static priority (SP) using optimal priorities [7]. However, even data packets become useless eventually,
so a deadline is appropriate. Thus, performance is measured in mean delay for those that arrive before
some deadline D, while packets that are queued past their deadlines incur an additional cost C and
then stop incurring cost. Thus, c(t) = mt for t � D, but c(t) = mD+C for t > D. This objective is a
combination of earliness and loss rate. Scheduling priority p(t) = [m�+ (C�m�) � e�(D�t)=�] �UD(t),
and dropping priority d(t) = [m � (D � t) + (C �m�) � (1� e�(D�t)=�)] �UD(t).

Quantitative parameters in these cost functions must be selected next. Consider the step function
as an example. The timing of the step is just the amount of queueing delay that can be tolerated, but
the step magnitude is unknown. More precisely, relative magnitudes for all packets must be found,
since it is relative priorities that matter. Relative magnitudes for packets from the same application
can often be derived based on application objectives. For example, one might determine the cost of
losing a voice packet based on the extent to which the packet's loss would reduce signal to noise ratio,
or if all packet streams advance the same \mission" as in many military or enterprise networks [24], it
may be possible to quantify relative importance. However, this is not always possible. For example,
consider two packet streams from unrelated applications. Stream 1 consists of voice packets for which
loss rate should not exceed 5%. A loss rate of only 1% is desired for stream 2, but a stream 2 packet
can tolerate more queueing delay before it is lost. Clearly the cost of losing a stream 2 packet should
be greater, but to determine the ratio of costs, one must �rst declare the range of anticipated network
conditions (load and tra�c mix). Through experimentation, analysis, or simulation, one must �nd a
ratio that meets the requirements even in the most congested anticipated state. This approach may
sound inelegant, but it is required for any scheduling algorithm. Indeed, with static priority, it is not
even possible to say which stream should get the greater priority without going through the same
process. Luckily, with CBS, values need not be close to optimal to be e�ective.

4 Scheduling Algorithm Performance

Three approaches are used to evaluate scheduling algorithms. First, to qualitatively understand the
behavior of the di�erent algorithms, average cost is determined as a function of load in simple tra�c
scenarios. Second, we demonstrate CBS's ability to trade o� the performance of one type of packet
with another, thereby meeting more sets of performance requirements. Finally, we employ realistic
tra�c scenarios and show the performance of one tra�c class as a function of load, under the constraint
that performance objectives of the other tra�c are met. To eliminate inuence from the dropping
algorithm, we assume an in�nite bu�er in Section 4. For all simulations in this paper, the 95%
con�dence interval is, at worst, within 5% of the value shown.

4.1 Minimizing Costs

We now compare CBS's ability to minimize cost with the common algorithms. For the scenario where
e�cient versions are known, the complex MUST algorithm [24] and an unachievable optimal algorithm
[2, 3, 11] are also included. The latter makes optimal decisions based on complete knowledge of future
arrivals, so it provides a bound on achievable performance. We also vary CBS's anticipated delay
function a(�) to show its impact.

4A minor modi�cation is required if resequencing at the destination is not supported. Out-of-order transmissions are
possible if interarrival time � < �jln(C1=C2)j. If the ratio of costs is great, then we e�ectively increase � by replacing A
with A � (�jln(C1=C2)j � �) when de�ning the cost function for low-priority packets. When queueing delays are large,
low-penalty packets are dropped before their deadlines so that high-penalty packets will not miss their deadlines.

7



We �rst consider two simple scenarios in which arrivals are Poisson. The laxity of an arriving
packet is distributed as follows; for constant s and exponentially distributed random variable B, the
laxity of an arriving packet is s � B, conditioned on the fact that s � B > 0. Packet lengths, cost
functions, and interarrival times are all independent. For tra�c set 1, average cost M is weighted loss
rate, so cost functions are step functions. Step magnitudes are distributed exponentially with mean
1. Packet lengths are equal and de�ned to be 1. s = 11 and B = 3. In tra�c set 2, M is weighted
earliness, so cost functions increase linearly until their deadlines, at which point the slope becomes 0.
Both cost function slopes and packet lengths are distributed exponentially with mean 1. s = 9 and
B = 3. M is shown as a function of the load � for both tra�c sets in Figure 1. � = 1:4, 1.0, and 4.0
for exponential, Erlang-2, and uniform distributions, respectively. (These were found to be e�ective
values for a wide range of tra�c types and loads < 1.) For tra�c set 2, we also include latest deadline
�rst (LDF), since it is optimal with respect to (unweighted) mean earliness of equal-length packets.

The results for both tra�c sets are similar. Performance is worst with FCFS and best (excluding
the optimal algorithm) with CBS using an exponential a(�). CBS is especially e�ective when load is
high, which is when e�ective scheduling is most important. In Figure 1-a, we see that the performance
di�erence between CBS and OPT is much smaller than the di�erence between CBS and the common
algorithms. Also, CBS slightly outperforms MUST, despite CBS's relative simplicity. Among the
simpler algorithms (SP, EDF with late packets dropped, EDF with late packets queued, LDF), the
most e�ective algorithm varies with tra�c type and load. (This is also true for tra�c types not shown
here and when load exceeds 1 for prolonged periods [25, 3].) CBS is e�ective for all tra�c types and
loads, which is especially important since the mix of tra�c can change over time.

CBS is even better during periods of congestion. For example, load = 1, half with a loss-rate
objective and delay allowance of 1000 (e.g. 3.3 ms, 150 Mb/s, 500-bit packets), and half with a mean-
delay objective. SP, HOL-PJ, and POLL would yield a loss rate of 1 for the former, in�nite mean
delay for the latter, or both. CBS can yield a mean delay close to 1 and a loss rate of .3%.

4.2 Performance Tradeo�s

To further observe how CBS meets heterogeneous performance requirements e�ciently, let tra�c
consist of two classes. It is projected that, during periods of heavy utilization, there will be a sustained
Poisson load of .9, half from each class. (We will subsequently consider a uctuating arrival rate.) A
scheduling algorithm must therefore meet speci�c performance requirements for each class at this load.
In Figure 2, we compare the feasible regions, which show which sets of performance requirements can
be achieved. For MUST and SP, weights are assigned randomly with �xed probabilities that depend
only on the packet's class, e.g. 60% of class 1 packets are high priority and 40% are low. This
approach will transmit packets out of order, and the performance achieved is dangerously sensitive to
the aforementioned probabilities, but it yields the best feasible regions MUST and SP can achieve.
(This is not necessary with CBS, where all packets in a class are treated the same.) Also, we assume
that no algorithm drops packets that have not yet missed their deadlines.

Figure 2-a shows the loss rates that can be achieved for each class at � = :9, s = 9, and B = 3.
For example, the feasible region for FCFS corresponds to the area on the �gure bounded by the curve
marked FCFS, the line where class 1 loss rate = 1, and the line where class 2 loss rate = 1. The
feasible region for CBS incorporates those of SP, EDF, FCFS, and virtually all that of MUST, as well
as many sets of loss requirements that cannot be achieved with any of these algorithms. More striking
is the fact that virtually all loss requirements that can be accommodated with the optimal algorithm
(OPT) that has complete knowledge of future arrivals can also be achieved with CBS.

Figure 2-b shows the feasible regions of FCFS, SP, EDF, HOL-PJ, the occupancy-based approach
in [21] (OCC), and CBS when the performance of class 1 is measured in loss rate with s = 9 and B = 3
as in Figure 2-a, but the performance of class 2 is now measured in mean delay. With HOL-PJ [10],

8



arriving packets with mean delay objectives are assigned a given laxity. Again, the feasible region for
CBS includes the feasible regions of all the other algorithms, and considerably more.

Figure 3 shows the loss rates that can be achieved with the more realistic Markov Modulated
Poisson Process (MMPP) tra�c model. (This paper was submitted to Trans. on Communications
long before the ground-breaking research on self-similar tra�c models in [30] or related advances [31].)
Channel bandwidth is 150 Mb/s. Packet arrivals are Poisson at a rate of 1.5 Mb/s times the number
of active calls. New calls begin according to a Poisson process, and their durations are exponentially
distributed with a mean of 100 ms. Average load is .95. Packets are 500 bits long, and are considered
lost after 100 packet transmission times (s = 100, B = 0). Feasible regions are shown for CBS, OPT,
OCC (as proposed in [21]), SP, EDF, and FCFS. The results are the same; CBS outperforms the other
algorithms and its performance is virtually indistinguishable from the optimum.

4.3 Typical Tra�c Scenarios

To compare CBS with other algorithms in typical scenarios, we employ two tra�c classes. The
performance requirements of class 1 are held constant, and each scheduling algorithm is used such
that class 1 requirements are met. Algorithms are compared by showing the relation between the
performance required for class 2 and the load from class 2 that can be carried. Three tra�c types
are considered for class 1: constant bit-rate (CBR) voice, variable bit-rate high-de�nition television
(HDTV), and image transfer. We compare cost-based scheduling (CBS), static priority (SP), earliest
deadline �rst (EDF), and polling-based algorithms (POLL) such as [13]-[19]. Also, although the
speci�c algorithm in [21] could not meet voice or video requirements as explained in Section 2, we
consider a similar occupancy-based algorithm (OCC) in which class 1 packets have priority over class
2 if and only if the number of queued class 1 packets exceeds a threshold.

Voice tra�c has a maximum delay of 30 ms, and no more than 5% of voice packets can be lost
even during periods of congestion. Video packets are also lost after 30 ms, but we assume each loss
is noticeable to viewers. Video uses the model which Maglaris et al. [32] found experimentally to be
representative: a video stream is represented by ten CBR on-o� streams with exponential on and o�
periods of roughly 116 and 229 ms, respectively. Results are shown for mean arrivals rate of 22.5 Mb/s
and 45 Mb/s. In the case of image transfer, 30 Mb must be transferred within .5 sec. In each case, class
2 tra�c consists of exponentially distributed data bursts of mean length 500 kb. These bursts arrive
according to a Poisson process. Performance of class 2 tra�c is measured in mean queueing delay per
burst, and bursts must be transmitted �rst-come-�rst-served, not shortest burst �rst. Transmission
is at 150 Mb/s. During periods of duration T where class 1 arrives at a constant rate, the amount
of class 1 data arriving is proportional to T . Results can be achieved analytically for the CBR tra�c
[33], and e�ciently via simulation in the other scenarios [34].

Results are shown in Figures 4 through 6. The simple SP performs poorly in each case, since class
2 packets must always be given low priority. EDF is equivalent to SP in these cases, since all class 1
packets arrive with the same laxities, and class 1 requirements cannot be met by assigning arriving
class 2 packets some �nite laxity [10]. POLL must give high priority to enough class 1 packets per
cycle that requirements are met even at maximum arrival rates. This is almost as bad as giving voice
and video packets higher static priorities, but it is valuable in the last scenario when a large burst of
data arrives at once and can be transmitted gradually over time. In contrast, the threshold in OCC
must be set such that requirements are met even when the class 1 arrival rate is at its minimum.
This is e�ective for CBR tra�c, but not for VBR video or image transfer, where arrival rate can be
negligible for an extended period. CBS outperforms all alternatives in all cases.

9



5 Dropping Algorithm Performance

The dropping algorithms will now be evaluated by imposing a maximum bu�er size. Simulation
results are presented for two tra�c sets. The cost functions of tra�c set 1 are step functions, with loss
penalties distributed exponentially with mean 1. In a cost function from tra�c set 2, cost increases
linearly until the packet's deadline. At that instant, cost jumps by 4, and remains constant thereafter
as was suggested for data tra�c in Section 3.5. The slopes of the cost functions are distributed
exponentially with mean 1. For both tra�c sets, packet lengths are equal, and the bu�er can hold 10
packets, excluding the packet being transmitted. Since the ratio of the laxity of arriving packets to
bu�er size greatly a�ects performance, s is varied with B = s=3. Arrivals are Poisson with load 1.5 to
simulate a period of congestion. Because such extreme loads must be tolerated, � = 10.

We �rst evaluate the relative e�ectiveness of using sophisticated scheduling versus using sophis-
ticated dropping as a means of improving performance. An astonishing number of researchers have
simply assumed that the only way to adjust the fraction of packets lost due to bu�er overow for
each tra�c type is by assigning heterogeneous dropping priority values. In fact, the scheduling algo-
rithm is also important; a packet that has a high scheduling priority is unlikely to be in the bu�er
long enough to be dropped. We compare average cost with the most sophisticated scheduling algo-
rithm (cost-based scheduling) in conjunction with the simplest dropping algorithm (last come �rst
dropped) versus average cost with the simplest scheduling algorithm (�rst come �rst served) and the
most sophisticated dropping algorithm (cost-based dropping). If and only if this ratio exceeds 1, then
sophisticated scheduling is more e�ective. Figure 7 shows the ratio as a function of the maximum
tolerable delay, s, for both tra�c sets. This ratio is large for small s, but decreases as s grows large.
This is because when s is small relative to bu�er size, with a scheduling algorithm that drops packets
that have missed their deadlines, queue length remains small, and the dropping algorithm is seldom
invoked. However, when s is large with respect to bu�er size, since the mean delay of transmitted
packets is proportional to bu�er size, there is less need to control queueing delays, so scheduling is less
important. What is important in this case is which packets are dropped and which are transmitted,
which is inuenced more by the dropping algorithm.

Even with a load as great as 1.5, smust greatly exceed the bu�er size (10) before the cost ratio falls
below one, where sophisticated dropping is more e�ective than sophisticated scheduling. With future
networks and applications, it is likely that s will be less than the bu�er size at the network access point,
making scheduling more important than dropping. Furthermore, although we have only considered
scheduling in a single queue in this paper, this condition could also hold in the switch bu�ers that
constitute a network of queues. Current memory costs little more than a penny per packet that can
be stored, so large bu�ers make sense. Sophisticated scheduling is probably also simpler to implement
than sophisticated dropping, since there is at least one packet transmission time between invocations
of the scheduling algorithm. Thus, if complexity is limited by implementation considerations, and the
laxities of arriving packets are not much larger than the bu�er size, that complexity should probably
be invested in scheduling rather than dropping. Further research is in order here.

Figure 8 shows average cost as a function of s for tra�c set 1 with �rst come �rst served (FCFS)
scheduling, and with CBS. With FCFS, the relative e�ectiveness of static priority dropping (SPD),
earliest deadline �rst dropped (EDFD), and random dropping (RND) depends on s, but CBD performs
as well or better than all the other algorithms for all s. (The same is true with tra�c set 2 [25, 3].)

Figure 8 also shows that the situation is di�erent with FCFS. The di�erences in performance
between these dropping algorithms are much smaller. (Performance di�ers even less with tra�c set 2
[25, 3].) When the scheduler considers laxity (or importance), there is less reason for the dropping
algorithm to do the same; late (or unimportant) packets are not transmitted any way. Thus, with
CBS, SPD performs about as well as CBD, and SPD is simpler to implement. Implementation is even

10



simpler if low-priority packets are blocked from entering the bu�er when it is nearly full, and it has
been argued that resulting performance is still comparable to that of SPD [35].

6 Conclusions

This paper has presented a new scheduling algorithm, cost-based scheduling (CBS), and a new dropping
algorithm, cost-based dropping (CBD), to e�ciently support tra�c with diverse performance objectives
in a packet-switched network. CBS was evaluated through comparison with a variety of scheduling
algorithms, including static priority, earliest deadline �rst [8, 9, 10], occupancy-based scheduling [21],
polling-based approaches [13]-[19], MUST [24], and an optimal algorithm [2, 3, 11]. The latter makes
optimal decisions based on complete knowledge of future arrivals, so it provides a bound on achievable
performance. A variety of tra�c scenarios were employed. It was shown that at a given load, CBS
can achieve better performance, and meet more stringent and more diverse tra�c requirements than
these alternatives. Furthermore, CBS can meet the same performance requirements at a signi�cantly
greater load. Indeed, CBS's ability to meet diverse performance objectives and minimize cost was
close to the unachievable optimum in those scenarios where an e�cient optimal algorithm is known.

By demonstrating the e�ectiveness of CBS over the proposed alternatives, this paper has shown
that network performance and e�ciency can be improved signi�cantly with sophisticated scheduling.
In some environments, like real-time systems, CBS may be suitable exactly as described in this paper,
since its implementation is already simpler than alternatives such as [26]. In very high-speed networks,
however, implementation can be di�cult. One solution is to modify the algorithm slightly [6, 3]. As
an alternative, we have developed a new set of algorithms called the Priority Token Bank [36], based
on lessons learned from CBS. This scheduler is almost as e�ective as CBS, is far simpler to implement,
and has the added advantage that it is integrated with an admission control algorithm.

As for dropping, with both voice and data packets, CBD outperformed the common dropping
algorithms when FCFS is used with a load of 1.5. However, even with this heavy load, we found
that if one must choose between implementing sophisticated dropping such as CBD and sophisticated
scheduling such as CBS, sophisticated scheduling is more valuable unless the amount of queueing delay
an application can tolerate (as measured in transmission periods) greatly exceeds the bu�er size. In
addition, when sophisticated scheduling such as CBS is used rather than FCFS, there is little di�erence
in performance between CBD and the simpler static priority dropping (SPD).

References
[1] A. R. Downing, I. B. Greenberg, and J. M. Peha, \OSCAR: An Architecture for Weak-Consistency

Replication," Chap. 4 in Databases: Theory, Design, and Applications, N. Rishe, S. Navathe, and
D. Tal, editors, IEEE Press, 1991, pp. 55-72. Based on earlier version in Proc. IEEE Parbase, Mar.
1990, pp. 350-358.

[2] J. M. Peha and F. A. Tobagi, \Evaluating Scheduling Algorithms For Tra�c With Heterogeneous
Performance Objectives," in Proc. IEEE Globecom-90, Dec. 1990, pp. 21-27.

[3] J. M. Peha, \Scheduling and Dropping Algorithms to Support Integrated Services in Packet-
Switched Networks," Ph.D. Thesis, Tech. Report CSL-TR-91-489, Computer Systems Laboratory,
Stanford University, Stanford, CA, 94305, June 1991.

[4] Qiong Wang, Jon M. Peha, and Marvin Sirbu, \The Design of an Optimal Pricing Scheme for
ATM Intergrated-Services Networks," to appear in Journal of Electronic Publishing, Special Issue
on Internet Economics, University of Michigan Press.

[5] S. Tewari and J. M. Peha, \Competition Among Telecommunications Carriers That O�er Multiple
Services," Proc. 23th Telecommunications Policy Research Conference, Oct. 1995.

11



[6] J. M. Peha and F. A. Tobagi, \Implementation Strategies for Scheduling Algorithms in Integrated
Services Packet-Switched Networks," in Proc. IEEE Globecom, Dec. 1991, pp. 1733-40.

[7] J. M. Harrison, \Dynamic Scheduling of a Multiclass Queue: Discount Optimality," Operations
Research, vol. 23, no. 2, Mar. 1975, pp. 370-382.

[8] P. P. Bhattacharya and A. Ephremides, \Optimal Scheduling with Strict Deadlines," IEEE Trans.
Automat. Contr., vol. 34, no. 7, pp. 721-728, July 1989.

[9] S. S. Panwar, D. Towsley, and J. K. Wolf, \Optimal Scheduling Policies for a Class of Queues with
Customer Deadlines to the Beginning of Service," J. ACM, vol. 35, no. 4, pp. 832-44, Oct. 1988.

[10] Y. Lim, J. E. Kobza, \Analysis of a Delay-dependent Priority Discipline in an Integrated Multi-
class Tra�c Fast Packet Switch," IEEE Trans. Commun., vol. 38, no. 5, pp. 659-65, May 1990.

[11] J. M. Peha, \Heterogeneous-Criteria Scheduling: Minimizing Weighted Number of Tardy Jobs
and Weighted Completion Time," Computers and Operations Research, vol. 22, no. 10, Dec. 1995,
pp. 1089-1100.

[12] D. Ferrari and D. C. Verma, \A Scheme for Real-Time Channel Establishment in Wide-Area
Networks," IEEE J. Sel. Areas Commun., vol. 8, no. 3, Apr. 1990, pp. 368-79.

[13] S. J. Golestani, \A Framing Strategy for Congestion Management," IEEE J. Select. Areas Com-
mun., Vol. 9, no. 7, pp. 1064-77, Sept. 1991.

[14] K. K�ummerle, \Multiplexer Performance for Integrated Line and Packet-Switched Tra�c," Proc.
ICCC, 1974, pp. 517-523.

[15] C. R. Kalmanek, H. Kanakia, and S. Keshav, \Rate Controlled Servers for Very High-Speed
Networks," Proc. IEEE Globecom-90, Dec. 1990, pp. 12-20.

[16] K. Sriram, \Dynamic Bandwidth Allocation and Congestion Control Schemes for Voice and Data
Multiplexing in Wideband Packet Technology," Proc. IEEE ICC-90, Apr. 1990, pp. 1003-9.

[17] A. Demers, S. Keshav, and S. Shenker, \Analysis and Simulation of a Fair Queueing Algorithm,"
Proc. ACM Sigcomm-89, Sept. 1989, pp. 1-12.

[18] A. K. Parekh and R. G. Gallager, \A Generalized Processor Sharing Approach to Flow Control
in Integrated Services Networks: The Single-Node Case," IEEE/ACM Trans. Networking, Vol. 1,
no. 3, pp. 344-57, June 1993.

[19] D. D. Clark, S. Shenker, L. Zhang, \Supporting Real-Time Applications in an Integrated Services
Packet Network: Architecture and Mechanism," Proc. ACM Sigcomm-92, Aug. 1992, pp. 17-20.

[20] J. Hyman, A. A. Lazar, G. Paci�ci, \MARS: The Magnet II Real-Time Scheduling Algorithm,"
in Proc. ACM Sigcomm, Sept. 1991, pp. 285-93.

[21] R. Chipalkatti, J. F. Kurose, and D. Towsley, \Scheduling Policies for Real-Time and Non-Real-
Time Tra�c in a Statistical Multiplexer," in Proc. IEEE Infocom, Apr. 1989, pp. 774-83.

[22] M. L. Fisher, \A Dual Algorithm for the One-Machine Scheduling Problem," Mathematical Pro-
gramming, vol. 11, 1976, pp. 229-251.

[23] M. M. Nassehi, \Channel Access Schemes and Fiber Optic Con�gurations For Integrated-Services
Local Area Networks," Ph.D. Thesis, Dept. of Electrical Engineering, Stanford University, Stanford,
CA, Mar. 1987.

[24] L. P. Clare and A. R. K. Sastry, \Value-Based Multiplexing of Time-Critical Tra�c," in Proc.
IEEE Milcom, Oct. 1989, pp. 395-401.

[25] J. M. Peha and F. A. Tobagi, \A Cost-Based Scheduling Algorithm To Support Integrated Ser-
vices," in Proc. IEEE Infocom, Mar. 1991, pp. 741-753.

12



[26] E. D. Jensen, C. D. Locke, and H. Tokuda, \A Time-Driven Scheduling Model For Real-Time
Operating Systems," in Proc. IEEE Real-Time Systems Symp., Dec. 1985, pp. 112-122.

[27] S. R. Biyabani, J. A. Stankovic, K. Ramamritham, \The Integration of Deadline and Criticalness
in Hard Real-Time Scheduling," in Proc. IEEE Real-Time Systems Symp., Dec. 1988, pp. 142-51.

[28] F. A. Tobagi, F. Borgonovo, and L. Fratta, \Express-Net: A High Performance Integrated-
Services Local Area Network," IEEE J. Sel. Areas Commun., vol. 1, no. 5, pp. 898-912, Nov. 1983.

[29] S. Pingali and J. F. Kurose, \On Scheduling Two Classes of Real-Time Tra�c With Identical
Deadlines," IEEE Globecom, Dec. 1991, paper 14.4.

[30] W.E. Leland, M.S. Taqqu, W.Willinger and D.V.Wilson, \On the Self-Similar Nature of Ethernet
Tra�c," in Proc. ACM Sigcomm, Sept. 1993, pp. 183-193.

[31] J. M. Peha, \Retransmission Mechanisms and Self-Similar Tra�c," submitted for publication.

[32] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. D. Robbins, \Performance Models of
Statistical Multiplexing in Packet Video Communications," IEEE Trans. Commun., vol. 36, no. 7,
pp. 834-44, July 1988.

[33] J. M. Peha, \Analysis of Scheduling Algorithms for Integrated-Services Networks using a Semi-
Fluid-Flow Model," in Proc. IEEE Globecom, Dec. 1992, pp. 330-334.

[34] J. M. Peha, \Simulating ATM Integrated-Services Networks," to appear in Proc. 29th Annual
IEEE/ACM/SCS Simulation Symposium, April 1996.

[35] H. Kr�oner, \Priority Management in ATM Switching Nodes," IEEE J. Sel. Areas Commun., vol.
9, no. 3, pp. 418-27, Apr. 1991.

[36] J. M. Peha, \The Priority Token Bank: Integrated Scheduling and Admission Control for an
Integrated-Services Network," in Proc. IEEE Intl. Conf. on Commun. ICC-93, Geneva, Switzer-
land, May 1993, pp. 345-51.

Figure 1: Average cost M , vs. load �, (a) tra�c set 1 (weighted loss rate), (b) tra�c set 2 (weighted
earliness).

Figure 2: Feasible regions. Poisson arrivals. Load of .45 for each class. Class 1 performance measured
in loss rate, s = 9, B = 3. (a) Class 2 performance measured in loss rate, s = 9, B = 3. (b) Class 2
performance measured in mean delay.

Figure 3: Feasible regions, i.e., the loss rates that can be achieved by two tra�c classes, each consisting
of MMPP arrivals with load of .475. s = 100, B = 0.

13



Figure 4: Mean queueing delay of class 2 messages versus load �2 from class 2. Class 1 is voice with
load �1 = :5, and a maximum tolerable delay of 30 ms

Figure 5: Mean queueing delay of class 2 messages versus load �2 from class 2. Class 1 is VBR HDTV
with a maximum tolerable delay of 30 ms.

Figure 6: Mean queueing delay of class 2 messages versus load �2 from class 2. Class 1 is 30 Mb
images that must be transmitted within .5 sec.

Figure 7: Average cost with FCFS and CBD divided by average cost with CBS and LCFD versus
maximum laxity s. Tra�c sets 1 and 2. � = 1:5.

Figure 8: Average cost for tra�c set 1 versus maximum laxity s. � = 1:5. Various dropping algorithms.
(a) FCFS scheduling. (b) CBS scheduling.

14


