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Abstract
The memory system is a fundamental performance and energy bottleneck
in almost all computing systems. Recent system design, application, and
technology trends that require more capacity, bandwidth, efficiency, and
predictability out of the memory system make it an even more important
system bottleneck [48, 51]. At the same time, DRAM and flash technolo-
gies are experiencing difficult technology scaling challenges that make the
maintenance and enhancement of their capacity, energy efficiency, and re-
liability significantly more costly with conventional techniques (see, for
example [17, 24–26, 28, 32, 34, 35, 38, 39, 54]). In fact, recent reliabil-
ity issues with DRAM [46], such as the RowHammer problem [32], are
already threatening system security and predictability.

In this talk, we first discuss major challenges facing modern mem-
ory systems in the presence of greatly increasing demand for data and
its fast analysis. We then examine some promising research and design
directions to overcome these challenges and thus enable scalable mem-
ory systems for the future. We discuss three key solution directions: 1)
enabling new memory architectures, functions, interfaces, and better inte-
gration of memory and the rest of the system (e.g., [1, 2, 4, 13–15, 20–
23, 25, 31, 36–38, 41, 52–54, 56–58]), 2) designing a memory system
that intelligently employs emerging non-volatile memory (NVM) tech-
nologies and coordinates memory and storage management (e.g., [33–
35, 40, 44, 55, 63–65]), 3) reducing memory interference and provid-
ing predictable performance to applications sharing the memory system
(e.g., [3, 16, 18, 19, 27, 29, 30, 47, 49, 50, 59–62]). If time permits, we
will also touch upon our ongoing related work in combating scaling chal-
lenges of NAND flash memory (e.g., [5–12, 42, 43, 45]).
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