
Designing High-Performance and Fair
Shared Multi-Core Memory Systems:

Two Approaches

Onur Mutlu
onur@cmu.edu
March 23, 2010

GSRC

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Modern Memory Systems (Multi-Core)

2

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

The Memory System

  The memory system is a fundamental performance and
power bottleneck in almost all computing systems

  Recent technology, architecture, and application trends lead
to new requirements from the memory system:
  Scalability (technology and algorithm)
  Fairness and QoS-awareness
  Energy/power efficiency

  Focus of this talk: enabling fair and high-performance
sharing of the memory system among multiple cores/threads

3

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Agenda

  Technology, Application, Architecture Trends
  Requirements from the Memory Hierarchy
  The Problem: Interference in Memory System
  Two Solution Approaches

  Smart resources: ATLAS Memory Scheduler
  Dumb resources: Fairness via Source Throttling

  Future Work
  Conclusions

4

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Technology Trends
  DRAM does not scale well beyond N nm

  Memory scaling benefits: density, capacity, cost

  Energy/power already key design limiters
  Memory system responsible for a large fraction of power

  More transistors (cores) on chip (Moore’s Law)
  Pin bandwidth not increasing as fast as number of

transistors
  Memory subsystem is a key shared resource among cores
  More pressure on the memory hierarchy

5

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Application/System Trends
  Many different threads/applications/virtual machines will

share the memory system

  Cloud computing/servers: Many workloads consolidated on-chip
to improve efficiency

  GP-GPUs: Many threads from multiple parallel applications
  Mobile: Interactive + non-interactive consolidation

  Different applications with different requirements (SLAs)
  Some applications/threads require performance guarantees
  Memory system does not distinguish between applications

  Different goals for different systems/users
  System throughput, fairness, per-application performance
  Memory system does not control application interference, is not

configurable
6

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Architecture Trends

  More cores and components
  More pressure on the memory hierarchy

  Asymmetric cores: Performance asymmetry, CPU+GPUs,
accelerators, …
  Motivated by energy efficiency and Amdahl’s Law

  Different cores have different performance requirements
  Memory hierarchies do not distinguish between cores

7

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Agenda

  Technology, Application, Architecture Trends
  Requirements from the Memory Hierarchy
  The Problem: Interference in Memory System
  Two Solution Approaches

  Smart resources: ATLAS Memory Scheduler
  Dumb resources: Fairness via Source Throttling

  Future Work
  Conclusions

8

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Requirements from an Ideal Hierarchy

  Traditional
  High system performance
  Enough capacity
  Low cost

  New
  Technology scalability
  QoS support and configurability
  Energy (and power, bandwidth) efficiency

9

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Requirements from an Ideal Hierarchy

  Traditional
  High system performance: Reduce inter-thread interference
  Enough capacity
  Low cost

  New
  Technology scalability

  Emerging non-volatile memory technologies (PCM) can help

  QoS support and configurability
  Need HW mechanisms to control interference and build QoS policies

  Energy (and power, bandwidth) efficiency
  One size fits all wastes energy, performance, bandwidth

10

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Agenda

  Technology, Application, Architecture Trends
  Requirements from the Memory Hierarchy
  The Problem: Interference in Memory System
  Two Solution Approaches

  Smart resources: ATLAS Memory Scheduler
  Dumb resources: Fairness via Source Throttling

  Future Work
  Conclusions

11

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Memory System is the Major Shared Resource

12

threads’ requests
interfere

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Inter-Thread/Application Interference

  Problem: Threads share the memory system, but memory
system does not distinguish between threads’ requests

  Existing memory systems
  Free-for-all, shared based on demand
  Control algorithms thread-unaware and thread-unfair
  Aggressive threads can deny service to others
  Do not try to reduce or control inter-thread interference

13

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Problems due to Uncontrolled Interference

14

  Unfair slowdown of different threads [MICRO’07, ISCA’08, ASPLOS’10]

  Low system performance [MICRO’07, ISCA’08, HPCA’10]

  Vulnerability to denial of service [USENIX Security’07]

  Priority inversion: unable to enforce priorities/SLAs [MICRO’07]

  Poor performance predictability (no performance isolation)

Cores make
very slow
progress

Memory performance hog Low priority

High priority
N

or
m

al
iz

ed
 M

em
or

y
St

al
l-T

im
e DRAM is the only shared resource

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Problems due to Uncontrolled Interference

15

  Unfair slowdown of different threads [MICRO’07, ISCA’08, ASPLOS’10]

  Low system performance [MICRO’07, ISCA’08, HPCA’10]

  Vulnerability to denial of service [USENIX Security’07]

  Priority inversion: unable to enforce priorities/SLAs [MICRO’07]

  Poor performance predictability (no performance isolation)

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

QoS-Aware Memory Systems: Challenges
  How do we reduce inter-thread interference?

  Improve system performance and utilization
  Preserve the benefits of single-thread performance techniques

  How do we control inter-thread interference?
  Provide scalable mechanisms to enable system software to

enforce a variety of QoS policies
  All the while providing high system performance

  How do we make the memory system configurable/flexible?
  Enable flexible mechanisms that can achieve many goals

  Provide fairness or throughput when needed
  Satisfy performance guarantees when needed

16

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Agenda

  Technology, Application, Architecture Trends
  Requirements from the Memory Hierarchy
  The Problem: Interference in Memory System
  Two Solution Approaches

  Smart resources: ATLAS Memory Scheduler
  Dumb resources: Fairness via Source Throttling

  Future Work
  Conclusions

17

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Designing QoS-Aware Memory Systems: Approaches

  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
  Fair/QoS-aware memory schedulers, interconnects, caches, arbiters

  Fair memory schedulers [Mutlu MICRO 2007], parallelism-aware memory
schedulers [Mutlu ISCA 2008], ATLAS memory scheduler [Kim et al. HPCA 2010]

  Application-aware on-chip networks [Das et al. MICRO 2009, ISCA 2010, Grot et
al. MICRO 2009]

  Dumb resources: Keep each resource free-for-all, but control
access to memory system at the cores/sources
  Estimate interference/slowdown in the entire system and throttle cores

that slow down others
  Fairness via Source Throttling [Ebrahimi et al., ASPLOS 2010]
  Coordinated Prefetcher Throttling [Ebrahimi et al., MICRO 2009]

18

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Agenda

  Technology, Application, Architecture Trends
  Requirements from the Memory Hierarchy
  The Problem: Interference in Memory System
  Two Solution Approaches

  Smart resources: ATLAS Memory Scheduler
  Dumb resources: Fairness via Source Throttling

  Future Work
  Conclusions

19

ATLAS Memory Scheduler

Kim et al., “ATLAS: A Scalable and High-Performance
Scheduling Algorithm for Multiple Memory Controllers,”

HPCA 2010.

20

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Desired Properties of Memory Scheduling Algorithm

  Maximize system performance
  Without starving any cores

  Configurable by system software
  To enforce thread priorities and QoS/fairness policies

  Scalable to a large number of controllers
  Should not require significant coordination between controllers

21

No previous scheduling algorithm satisfies
all these requirements

Multiple memory controllers

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Multiple Memory Controllers

22

Core

MC Memory

Single-MC system Multiple-MC system

Difference?

The need for coordination

Core MC Memory

MC Memory

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

MC 1 T1 T2

Memory service timeline

Thread 1’s request

Thread 2’s request

T2

Thread Ranking in Single-MC

of requests: Thread 1 < Thread 2

Thread 1 Shorter job

Optimal average
stall time: 2T Thread 2 STALL

Thread 1 STALL

Execution timeline

23

Thread ranking: Thread 1 > Thread 2

Thread 1 Assigned higher rank

Assume all requests are
to the same bank

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Thread Ranking in Multiple-MC

24

MC 1 T2 T1 T2

MC 2 T1 T1 T1
MC 1 T1 T2 T2

MC 2 T1 T1 T1

Uncoordinated Coordinated

MC 1’s shorter job: Thread 1
Global shorter job: Thread 2

MC 1 incorrectly assigns
higher rank to Thread 1

Global shorter job: Thread 2

MC 1 correctly assigns
higher rank to Thread 2

Coordination

Coordination Better scheduling decisions

Thread 1

Thread 2

STALL

STALL

Avg. stall time: 3T

Thread 1

Thread 2

STALL

STALL
SAVED

CYCLES!

Avg. stall time: 2.5T

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Coordination Limits Scalability

25

Coordination?

MC 1 MC 2

MC 3 MC 4
Meta-MC

MC-to-MC

Meta-MC

To be scalable, coordination should:
  exchange little information
  occur infrequently

Consumes bandwidth

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

The Problem and Our Goal

Problem:
  Previous best memory scheduling algorithms are not
scalable to many controllers

  Not designed for multiple MCs
  Low performance or require significant coordination

Our Goal:
  Fundamentally redesign the memory scheduling algorithm
such that it

  Provides high system throughput
  Requires little or no coordination among MCs

26

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Rethinking Memory Scheduling
A thread alternates between two states (episodes)

 Compute episode: Zero outstanding memory requests High IPC

 Memory episode: Non-zero outstanding memory requests Low IPC

27

Goal: Minimize time spent in memory episodes

O
ut

st
an

di
ng

m

em
or

y
re

qu
es

ts

Time

Memory episode Compute episode

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

How to Minimize Memory Episode Time

  Minimizes time spent in memory episodes across all threads
  Supported by queueing theory:

  Shortest-Remaining-Processing-Time scheduling is optimal in
single-server queue

Remaining length of a memory episode?

 Prioritize thread whose memory episode will end the soonest

Time

O
ut

st
an

di
ng

m

em
or

y
re

qu
es

ts

How much longer?

28

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Predicting Memory Episode Lengths

Large attained service Large expected remaining service

Q: Why?
A: Memory episode lengths are Pareto distributed…

29

We discovered: past is excellent predictor for future

Time

O
ut

st
an

di
ng

m

em
or

y
re

qu
es

ts

Remaining service
FUTURE

Attained service
PAST

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Pareto Distribution of Memory Episode Lengths

30

401.bzip2

Favoring least-attained-service memory episode
 = Favoring memory episode which will end the soonest

Pr
{M

em
. e

pi
so

de
 >

 x
}

x (cycles)

Memory episode lengths of
SPEC benchmarks

Pareto distribution

Attained service correlates with
remaining service

The longer an episode has lasted
 The longer it will last further

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Prioritize the job with
shortest-remaining-processing-time

Provably optimal   Remaining service: Correlates with attained service

  Attained service: Tracked by per-thread counter

Least Attained Service (LAS) Memory Scheduling

31

Prioritize the memory episode with
least-remaining-service

Our Approach Queueing Theory

Least-attained-service (LAS) scheduling:

Minimize memory episode time

However, LAS does not consider
long-term thread behavior

Prioritize the memory episode with
least-attained-service

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Long-Term Thread Behavior

32

Mem.
episode

Thread 1 Thread 2

Short-term
thread behavior

Mem.
episode

Long-term
thread behavior

Compute
episode

Compute
episode

>
priority

<
priority

Prioritizing Thread 2 is more beneficial:
results in very long stretches of compute episodes

Short memory episode Long memory episode

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Quantum-Based Attained Service of a Thread

33

Time
O

ut
st

an
di

ng

m
em

or
y

re
qu

es
ts

Attained service

Short-term
thread behavior

We divide time into large, fixed-length intervals:
quanta (millions of cycles)

Attained service

Long-term
thread behavior

O
ut

st
an

di
ng

m

em
or

y
re

qu
es

ts

Time

…
Quantum (millions of cycles)

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Quantum-Based LAS Thread Ranking

Each thread’s attained service (AS) is tracked by MCs

ASi = A thread’s AS during only the i-th quantum

Each thread’s TotalAS computed as:

TotalASi = α · TotalASi-1 + (1- α) · ASi
High α More bias towards history

Threads are ranked, favoring threads with lower TotalAS

Threads are serviced according to their ranking

During a quantum

End of a quantum

Next quantum

34

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

ATLAS Scheduling Algorithm

ATLAS
  Adaptive per-Thread Least Attained Service

  Request prioritization order
 1. Prevent starvation: Over threshold request
 2. Maximize performance: Higher LAS rank
 3. Exploit locality: Row-hit request
 4. Tie-breaker: Oldest request

35

How to coordinate MCs to agree upon a consistent ranking?

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

ATLAS Coordination Mechanism

During a quantum:
  Each MC increments the local AS of each thread

End of a quantum:
  Each MC sends local AS of each thread to centralized meta-MC
  Meta-MC accumulates local AS and calculates ranking
  Meta-MC broadcasts ranking to all MCs

 Consistent thread ranking

36

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Coordination Cost in ATLAS

37

ATLAS PAR-BS
(previous best work [ISCA08])

How often?

Very infrequently

Every quantum boundary
(10 M cycles)

Frequently

Every batch boundary
(thousands of cycles)

Sensitive to
coordination

latency?

Insensitive

Coordination latency <<
Quantum length

Sensitive

Coordination latency ~
Batch length

How costly is coordination in ATLAS?

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Properties of ATLAS

  LAS-ranking
  Bank-level parallelism
  Row-buffer locality

  Very infrequent coordination

  Scale attained service with
thread weight

  Low complexity: Attained
service requires a single
counter per thread in each MC
(<9K bits for 24-core, 4-MC)

38

  Maximize system performance

  Scalable to large number of controllers

  Configurable by system software

Goals Properties of ATLAS

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

ATLAS Evaluation Methodology

  4, 8, 16, 24, 32-core systems
  5 GHz processor, 128-entry instruction window
  512 Kbyte per-core private L2 caches

  1, 2, 4, 8, 16-MC systems
  128-entry memory request buffer
  4 banks, 2Kbyte row buffer
  40ns (200 cycles) row-hit round-trip latency
  80ns (400 cycles) row-conflict round-trip latency

  Workloads
  Multiprogrammed SPEC CPU2006 applications
  32 program combinations for 4, 8, 16, 24, 32-core experiments

39

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

4

6

8

10

12

14

16

1 2 4 8 16

Memory controllers

Sy
st
em

 th
ro
ug
hp

ut

FCFS FR_FCFS STFM PAR‐BS ATLAS

System Throughput: 24-Core System

40

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%

8.4%

5.9%

3.5%

Sy
st

em
 t

hr
ou

gh
pu

t

of memory controllers

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

0
2
4
6
8

10
12
14

4 8 16 24 32

Cores

Sy
st
em

 th
ro
ug
hp

ut

PAR‐BS ATLAS

System Throughput: 4-MC System

of cores increases ATLAS performance benefit increases

41

1.1%
3.5%

4.0%

8.4%
10.8%

Sy
st

em
 t

hr
ou

gh
pu

t

of cores

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

System Software Support

  ATLAS enforces system priorities, or thread weights
  Linear relationship between thread weight and speedup

42

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

ATLAS: Summary

  Existing memory scheduling algorithms are low performance
  Especially with multiple memory controllers

  ATLAS is a fundamentally new approach to memory scheduling
  Scalable: Thread ranking decisions at coarse-grained intervals
  High-performance: Minimizes system time spent in memory

episodes (Least Attained Service scheduling principle)
  Configurable: Enforces thread priorities

  ATLAS provides the highest system throughput compared to
five previous scheduling algorithms
  Performance benefit increases as the number of cores increases

43

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Agenda

  Technology, Application, Architecture Trends
  Requirements from the Memory Hierarchy
  The Problem: Interference in Memory System
  Two Solution Approaches

  Smart resources: ATLAS Memory Scheduler
  Dumb resources: Fairness via Source Throttling

  Future Work
  Conclusions

44

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Designing QoS-Aware Memory Systems: Approaches

  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
  Fair/QoS-aware memory schedulers, interconnects, caches, arbiters

  Fair memory schedulers [Mutlu MICRO 2007], parallelism-aware memory
schedulers [Mutlu ISCA 2008], ATLAS memory scheduler [Kim et al. HPCA 2010]

  Application-aware on-chip networks [Das et al. MICRO 2009, ISCA 2010, Grot et
al. MICRO 2009]

  Dumb resources: Keep each resource free-for-all, but control
access to memory system at the cores/sources
  Estimate interference/slowdown in the entire system and throttle cores

that slow down others
  Fairness via Source Throttling [Ebrahimi et al., ASPLOS 2010]
  Coordinated Prefetcher Throttling [Ebrahimi et al., MICRO 2009]

45

Fairness via Source Throttling

Ebrahimi et al., “Fairness via Source Throttling: A
Configurable and High-Performance Fairness Substrate

for Multi-Core Memory Systems,” ASPLOS 2010.

46

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip Boundary
On-chip
Off-chip

47

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Motivation for Source Throttling

  Partitioning (fairness/QoS) mechanisms in each resource
might be difficult to get right (initially)

  Independent partitioning mechanisms in caches,
interconnect, and memory can contradict each other

  Approaches that coordinate interaction among techniques
for different resources require complex implementations

48

Our Goal: Enable fair sharing of
the entire memory system by dynamically detecting
and controlling interference in a coordinated manner

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

An Alternative Approach
  Manage inter-thread interference at the cores, not at the

shared resources

  Dynamically estimate unfairness in the memory system
  Feed back this information into a controller
  Throttle cores’ memory access rates accordingly

  Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

  E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

49

Oldest ⎧

｜

｜

⎩

Shared Memory
Resources

A:
B:

 Request Generation Order:
A1, A2, A3, A4, B1

Unmanaged
Interference

Core A’s stall time
Core B’s stall time

⎧

｜

｜

⎩
Shared Memory

Resources

A:

B:

Dynamically detect application A’s interference for
application B and throttle down application A

Core A’s stall time

Core B’s stall time

Fair Source
Throttling

Request Generation Order
A1, A2, A3, A4, B1B1, A2, A3, A4

queue of requests to
shared resources

queue of requests to
shared resources

Saved Cycles Core B
Oldest

Intensive application A generates many requests and
causes long stall times for less intensive application B

Throttled
Requests

Extra Cycles
Core A

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Fairness via Source Throttling (FST)

  Two components (interval-based)

  Run-time unfairness evaluation (in hardware)
  Dynamically estimates the unfairness in the memory system
  Estimates which application is slowing down which other

  Dynamic request throttling (hardware/software)
  Adjusts how aggressively each core makes requests to the

shared resources
  Throttles down request rates of cores causing unfairness

  Limit miss buffers, limit injection rate

51

GSRC E-Seminar, 3/23/2010, © Onur Mutlu 52

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

｜

⎨

｜

⎧

⎩
 Slowdown

Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST)

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

53

Fairness via Source Throttling (FST)

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Estimating System Unfairness

  Unfairness =

  Slowdown of application i =

  How can be estimated in shared mode?

  is the number of extra cycles it takes
application i to execute due to interference

 

54

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i

Shared
Ti

Ti
Alone

Ti
Alone

Ti
Excess

Ti
Shared

= Ti
Alone

- Ti
Excess

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Tracking Inter-Core Interference

55

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7 ...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank
3. DRAM row-buffers

FST hardware

Bank 2

Row

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Row A

Tracking DRAM Row-Buffer Interference

56

Core 0 Core 1

Bank 0 Bank 1 Bank 2 Bank 7…

Shadow Row Address Register
(SRAR) Core 1:

Shadow Row Address Register
(SRAR) Core 0:

Queue of requests to bank 2 0 0

Row B

Row A

Row A

Row B

Row B

Interference
per core bit vector Row Conflict Row Hit

Interference
induced row conflict

1

Row A

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Tracking Inter-Core Interference

57

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0

0

0

0

Excess Cycles
Counters per core

1

TCycle Count T+1

1

T+2

2
FST hardware

1

T+3

3

1

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7 ...

Memory Controller

Shared Cache

Ti
Excess

｜

｜

Ti
Shared

= Ti
Alone

- Ti
Excess

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

58

Fairness via Source Throttling (FST)

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Tracking Inter-Core Interference

  To identify App-interfering, for each core i
  FST separately tracks interference caused by each core j

(j ≠ i)

59

Cnt 3Cnt 2Cnt 1Cnt 00

0 0 0 -

Interference per core
bit vector

Core #0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles
Counters per core

0 0 - 0
0 - 0 0
- 0 0 0

｜

⎨

｜

⎧

⎩

｜
⎨
｜
⎧

⎩

Interfered with core

Interfering
core

Cnt 0,1

-

Cnt 2,1

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

1
core 2

interfered
with

core 1

Cnt 2,1+

0
1
2
3

Row with largest count
determines App-interfering

App-slowest = 2

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Fairness via Source Throttling (FST)

60

Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest slowdown
(App-slowest)
3- Find app. causing most interference
for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Dynamic Request Throttling

  Goal: Adjust how aggressively each core makes requests to
the shared memory system

  Mechanisms:
  Miss Status Holding Register (MSHR) quota

  Controls the number of concurrent requests accessing shared
resources from each application

  Request injection frequency
  Controls how often memory requests are issued to the last level

cache from the MSHRs

61

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Dynamic Request Throttling

  Throttling level assigned to each core determines both
MSHR quota and request injection rate

62

Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles
Total # of
MSHRs: 128

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

FST at Work

63

Time
Interval i Interval i+1 Interval i+2

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%
25% 100% 25% 100%
25% 50% 50% 100%

Interval i
Interval i + 1
Interval i + 2

3

Core 2

Core 0

Core 0 Core 2
Throttle down Throttle up

2.5

Core 2

Core 1

Throttle down Throttle up

System software �
fairness goal: 1.4

Slowdown
Estimation

｜

⎨

｜

⎧

⎩

Slowdown
Estimation

｜

⎨

｜

⎧

⎩

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

System Software Support

  Different fairness objectives can be configured by
system software
  Estimated Unfairness > Target Unfairness
  Estimated Max Slowdown > Target Max Slowdown
  Estimated Slowdown(i) > Target Slowdown(i)

  Support for thread priorities
  Weighted Slowdown(i) =

 Estimated Slowdown(i) x Weight(i)

64

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

FST Hardware Cost

  Total storage cost required for 4 cores is ~12KB

  FST does not require any structures or logic that are on the
processor’s critical path

65

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

FST Evaluation Methodology

  x86 cycle accurate simulator
  Baseline processor configuration

  Per-core
  4-wide issue, out-of-order, 256 entry ROB

  Shared (4-core system)
  128 MSHRs
  2 MB, 16-way L2 cache

  Main Memory
  DDR3 1333 MHz
  Latency of 15ns per command (tRP, tRCD, CL)
  8B wide core to memory bus

66

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

FST: System Unfairness Results

67

44.4%

36%

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

FST: System Performance Results

68
68

25.6%

14%

68

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

FST Summary
  Fairness via Source Throttling (FST)

is a new fair and high-performance
shared resource management approach for CMPs

  Dynamically monitors unfairness and throttles down
sources of interfering memory requests

  Reduces the need for multiple per-resource interference
reduction/control techniques

  Improves both system fairness and performance
  Incorporates thread weights and enables

different fairness objectives
69

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Agenda

  Technology, Application, Architecture Trends
  Requirements from the Memory Hierarchy
  The Problem: Interference in Memory System
  Two Solution Approaches

  Smart resources: ATLAS Memory Scheduler
  Dumb resources: Fairness via Source Throttling

  Future Work
  Conclusions

70

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Ongoing/Future Work

  Combined approaches are even more powerful
  Source throttling and resource-based interference control

  Interference control/reduction in on-chip networks
  Application-aware prioritization mechanisms

[Das et al., MICRO 2009, ISCA 2010]
  Bandwidth partitioning mechanisms [Grot et al., MICRO 2009]

  Power partitioning in the shared memory system

71

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Agenda

  Technology, Application, Architecture Trends
  Requirements from the Memory Hierarchy
  The Problem: Interference in Memory System
  Two Solution Approaches

  Smart resources: ATLAS Memory Scheduler
  Dumb resources: Fairness via Source Throttling

  Future Work
  Conclusions

72

GSRC E-Seminar, 3/23/2010, © Onur Mutlu

Conclusions

  Many-core memory systems need scalable mechanisms to
control and reduce application/thread interference

  Two approaches to solve this problem
  Smart resources: ATLAS is a scalable memory access

scheduling algorithm that intelligently prioritizes threads
  Dumb resources: Fairness via Source Throttling is a generalized

core throttling mechanism for fairness/performance

  Both approaches
  Significantly improve system throughput
  Configurable by the system software enable QoS policies

73

Designing High-Performance and Fair
Shared Multi-core Memory Systems:

Two Approaches

Onur Mutlu
onur@cmu.edu
March 23, 2010

GSRC

