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Modern Memory Systems (Multi-Core) 
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The Memory System 

  The memory system is a fundamental performance and 
power bottleneck in almost all computing systems 

  Recent technology, architecture, and application trends lead 
to new requirements from the memory system: 
  Scalability (technology and algorithm) 
  Fairness and QoS-awareness 
  Energy/power efficiency 

  Focus of this talk: enabling fair and high-performance 
sharing of the memory system among multiple cores/threads 
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Agenda 

  Technology, Application, Architecture Trends 
  Requirements from the Memory Hierarchy 
  The Problem: Interference in Memory System 
  Two Solution Approaches 

  Smart resources: ATLAS Memory Scheduler 
  Dumb resources: Fairness via Source Throttling 

  Future Work 
  Conclusions 
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Technology Trends 
  DRAM does not scale well beyond N nm 

  Memory scaling benefits: density, capacity, cost 

  Energy/power already key design limiters 
  Memory system responsible for a large fraction of power 

  More transistors (cores) on chip (Moore’s Law) 
  Pin bandwidth not increasing as fast as number of 

transistors 
  Memory subsystem is a key shared resource among cores 
  More pressure on the memory hierarchy 
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Application/System Trends 
  Many different threads/applications/virtual machines will   

share the memory system 

  Cloud computing/servers: Many workloads consolidated on-chip 
to improve efficiency 

  GP-GPUs: Many threads from multiple parallel applications 
  Mobile: Interactive + non-interactive consolidation 

  Different applications with different requirements (SLAs) 
  Some applications/threads require performance guarantees 
  Memory system does not distinguish between applications 

  Different goals for different systems/users 
  System throughput, fairness, per-application performance 
  Memory system does not control application interference, is not 

configurable 
6 
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Architecture Trends 

  More cores and components 
  More pressure on the memory hierarchy 

  Asymmetric cores: Performance asymmetry, CPU+GPUs, 
accelerators, … 
  Motivated by energy efficiency and Amdahl’s Law 

  Different cores have different performance requirements 
  Memory hierarchies do not distinguish between cores 
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Requirements from an Ideal Hierarchy 

  Traditional 
  High system performance 
  Enough capacity 
  Low cost 

  New 
  Technology scalability 
  QoS support and configurability 
  Energy (and power, bandwidth) efficiency 
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Requirements from an Ideal Hierarchy 

  Traditional 
  High system performance: Reduce inter-thread interference 
  Enough capacity 
  Low cost 

  New 
  Technology scalability 

  Emerging non-volatile memory technologies (PCM) can help 

  QoS support and configurability 
  Need HW mechanisms to control interference and build QoS policies 

  Energy (and power, bandwidth) efficiency 
  One size fits all wastes energy, performance, bandwidth 
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Memory System is the Major Shared Resource 

12 

threads’ requests  
interfere 
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Inter-Thread/Application Interference 

  Problem: Threads share the memory system, but memory 
system does not distinguish between threads’ requests 

  Existing memory systems  
  Free-for-all, shared based on demand 
  Control algorithms thread-unaware and thread-unfair 
  Aggressive threads can deny service to others 
  Do not try to reduce or control inter-thread interference 
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Problems due to Uncontrolled Interference 
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  Unfair slowdown of different threads [MICRO’07, ISCA’08, ASPLOS’10] 

  Low system performance [MICRO’07, ISCA’08, HPCA’10] 

  Vulnerability to denial of service [USENIX Security’07] 

  Priority inversion: unable to enforce priorities/SLAs [MICRO’07] 

  Poor performance predictability (no performance isolation) 

Cores make  
very slow  
progress 

Memory performance hog Low priority 

High priority 
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Problems due to Uncontrolled Interference 

15 

  Unfair slowdown of different threads [MICRO’07, ISCA’08, ASPLOS’10] 

  Low system performance [MICRO’07, ISCA’08, HPCA’10] 

  Vulnerability to denial of service [USENIX Security’07] 

  Priority inversion: unable to enforce priorities/SLAs [MICRO’07] 

  Poor performance predictability (no performance isolation) 
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QoS-Aware Memory Systems: Challenges 
  How do we reduce inter-thread interference? 

  Improve system performance and utilization 
  Preserve the benefits of single-thread performance techniques 

  How do we control inter-thread interference? 
  Provide scalable mechanisms to enable system software to 

enforce a variety of QoS policies  
  All the while providing high system performance 

  How do we make the memory system configurable/flexible?  
  Enable flexible mechanisms that can achieve many goals 

  Provide fairness or throughput when needed 
  Satisfy performance guarantees when needed 
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Designing QoS-Aware Memory Systems: Approaches 

  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
  Fair/QoS-aware memory schedulers, interconnects, caches, arbiters 

  Fair memory schedulers [Mutlu MICRO 2007], parallelism-aware memory 
schedulers [Mutlu ISCA 2008], ATLAS memory scheduler [Kim et al. HPCA 2010] 

  Application-aware on-chip networks [Das et al. MICRO 2009, ISCA 2010, Grot et 
al. MICRO 2009] 

  Dumb resources: Keep each resource free-for-all, but control 
access to memory system at the cores/sources 
  Estimate interference/slowdown in the entire system and throttle cores 

that slow down others  
  Fairness via Source Throttling [Ebrahimi et al., ASPLOS 2010] 
  Coordinated Prefetcher Throttling [Ebrahimi et al., MICRO 2009] 
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ATLAS Memory Scheduler 

Kim et al., “ATLAS: A Scalable and High-Performance 
Scheduling Algorithm for Multiple Memory Controllers,” 

HPCA 2010. 
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Desired Properties of Memory Scheduling Algorithm 

  Maximize system performance 
  Without starving any cores 

  Configurable by system software 
  To enforce thread priorities and QoS/fairness policies 

  Scalable to a large number of controllers 
  Should not require significant coordination between controllers 

21 

No previous scheduling algorithm satisfies  
all these requirements  

Multiple memory controllers 
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Multiple Memory Controllers 
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Core 

MC Memory 

Single-MC system Multiple-MC system 

Difference? 

The need for coordination 

Core MC Memory 

MC Memory 
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MC 1 T1 T2 

Memory service timeline 

Thread 1’s request 

Thread 2’s request 

T2 

Thread Ranking in Single-MC 

# of requests: Thread 1 < Thread 2 

Thread 1  Shorter job 

Optimal average 
stall time: 2T Thread 2 STALL 

Thread 1 STALL 

Execution timeline 
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Thread ranking: Thread 1 > Thread 2 

Thread 1  Assigned higher rank 

Assume all requests are  
to the same bank 
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Thread Ranking in Multiple-MC 
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MC 1 T2 T1 T2 

MC 2 T1 T1 T1 
MC 1 T1 T2 T2 

MC 2 T1 T1 T1 

Uncoordinated Coordinated 

MC 1’s shorter job: Thread 1 
Global shorter job: Thread 2 

MC 1 incorrectly assigns  
higher rank to Thread 1 

Global shorter job: Thread 2 

MC 1 correctly assigns  
higher rank to Thread 2  

Coordination 

Coordination  Better scheduling decisions 

Thread 1 

Thread 2 

STALL 

STALL 

Avg. stall time: 3T 

Thread 1 

Thread 2 

STALL 

STALL 
SAVED  

CYCLES! 

Avg. stall time: 2.5T 
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Coordination Limits Scalability 
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Coordination? 

MC 1 MC 2 

MC 3 MC 4 
Meta-MC 

MC-to-MC 

Meta-MC 

To be scalable, coordination should: 
  exchange little information 
  occur infrequently 

Consumes bandwidth 
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The Problem and Our Goal 

Problem:  
  Previous best memory scheduling algorithms are not 
scalable to many controllers 

  Not designed for multiple MCs 
  Low performance or require significant coordination 

Our Goal:  
  Fundamentally redesign the memory scheduling algorithm 
such that it 

  Provides high system throughput 
  Requires little or no coordination among MCs 
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Rethinking Memory Scheduling 
A thread alternates between two states (episodes) 

 Compute episode: Zero outstanding memory requests  High IPC 

 Memory episode: Non-zero outstanding memory requests  Low IPC 
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Goal: Minimize time spent in memory episodes 
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How to Minimize Memory Episode Time 

   Minimizes time spent in memory episodes across all threads 
   Supported by queueing theory: 

  Shortest-Remaining-Processing-Time scheduling is optimal in 
single-server queue 

Remaining length of a memory episode? 

 Prioritize thread whose memory episode will end the soonest  
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Predicting Memory Episode Lengths 

Large attained service  Large expected remaining service 

Q: Why? 
A: Memory episode lengths are Pareto distributed… 
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We discovered: past is excellent predictor for future 
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Pareto Distribution of Memory Episode Lengths 
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401.bzip2 

Favoring least-attained-service memory episode  
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Memory episode lengths of  
SPEC benchmarks 

Pareto distribution 

Attained service correlates with 
remaining service 

The longer an episode has lasted 
 The longer it will last further 
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Prioritize the job with  
shortest-remaining-processing-time 

Provably optimal   Remaining service: Correlates with attained service 

  Attained service: Tracked by per-thread counter 

Least Attained Service (LAS) Memory Scheduling 
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Prioritize the memory episode with 
least-remaining-service 

Our Approach Queueing Theory 

Least-attained-service (LAS) scheduling: 

Minimize memory episode time 

However, LAS does not consider  
long-term thread behavior 

Prioritize the memory episode with 
least-attained-service 
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Long-Term Thread Behavior 
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Mem. 
episode 

Thread 1 Thread 2 

Short-term 
thread behavior 

Mem. 
episode 

Long-term 
thread behavior 

Compute  
episode 

Compute 
episode 

> 
priority 

< 
priority 

Prioritizing Thread 2 is more beneficial:  
results in very long stretches of compute episodes 

Short memory episode Long memory episode 
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Quantum-Based Attained Service of a Thread 
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Quantum-Based LAS Thread Ranking 

Each thread’s attained service (AS) is tracked by MCs 

ASi = A thread’s AS during only the i-th quantum 

Each thread’s TotalAS computed as: 

TotalASi = α · TotalASi-1 + (1- α) · ASi 
High α  More bias towards history 

Threads are ranked, favoring threads with lower TotalAS 

Threads are serviced according to their ranking 

During a quantum 

End of a quantum 

Next quantum 
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ATLAS Scheduling Algorithm 

ATLAS 
  Adaptive per-Thread Least Attained Service 

  Request prioritization order 
 1. Prevent starvation: Over threshold request 
 2. Maximize performance: Higher LAS rank 
 3. Exploit locality: Row-hit request 
 4. Tie-breaker: Oldest request 

35 

How to coordinate MCs to agree upon a consistent ranking? 
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ATLAS Coordination Mechanism 

During a quantum:  
  Each MC increments the local AS of each thread 

End of a quantum:  
  Each MC sends local AS of each thread to centralized meta-MC 
  Meta-MC accumulates local AS and calculates ranking 
  Meta-MC broadcasts ranking to all MCs  

  Consistent thread ranking 
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Coordination Cost in ATLAS 
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ATLAS PAR-BS 
(previous best work [ISCA08]) 

How often? 

Very infrequently 

Every quantum boundary  
(10 M cycles) 

Frequently 

Every batch boundary  
(thousands of cycles) 

Sensitive to 
coordination 

latency? 

Insensitive 

Coordination latency << 
Quantum length 

Sensitive 

Coordination latency ~  
Batch length 

How costly is coordination in ATLAS? 
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Properties of ATLAS 

  LAS-ranking 
  Bank-level parallelism 
  Row-buffer locality 

  Very infrequent coordination 

  Scale attained service with 
thread weight 

  Low complexity: Attained 
service requires a single 
counter per thread in each MC 
(<9K bits for 24-core, 4-MC) 

38 

  Maximize system performance 

  Scalable to large number of controllers 

  Configurable by system software 

Goals Properties of ATLAS 
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ATLAS Evaluation Methodology 

  4, 8, 16, 24, 32-core systems 
  5 GHz processor, 128-entry instruction window 
  512 Kbyte per-core private L2 caches 

  1, 2, 4, 8, 16-MC systems 
  128-entry memory request buffer 
  4 banks, 2Kbyte row buffer 
  40ns (200 cycles) row-hit round-trip latency 
  80ns (400 cycles) row-conflict round-trip latency 

  Workloads 
  Multiprogrammed SPEC CPU2006 applications 
  32 program combinations for 4, 8, 16, 24, 32-core experiments 
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System throughput = ∑ Speedup 

ATLAS consistently provides higher system throughput than 
all previous scheduling algorithms 
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System Software Support 

  ATLAS enforces system priorities, or thread weights 
  Linear relationship between thread weight and speedup 

42 
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ATLAS: Summary 

  Existing memory scheduling algorithms are low performance 
  Especially with multiple memory controllers 

  ATLAS is a fundamentally new approach to memory scheduling 
  Scalable: Thread ranking decisions at coarse-grained intervals  
  High-performance: Minimizes system time spent in memory 

episodes (Least Attained Service scheduling principle) 
  Configurable: Enforces thread priorities 

  ATLAS provides the highest system throughput compared to 
five previous scheduling algorithms 
  Performance benefit increases as the number of cores increases 
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Agenda 

  Technology, Application, Architecture Trends 
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  Smart resources: ATLAS Memory Scheduler 
  Dumb resources: Fairness via Source Throttling 

  Future Work 
  Conclusions 
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Designing QoS-Aware Memory Systems: Approaches 

  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
  Fair/QoS-aware memory schedulers, interconnects, caches, arbiters 

  Fair memory schedulers [Mutlu MICRO 2007], parallelism-aware memory 
schedulers [Mutlu ISCA 2008], ATLAS memory scheduler [Kim et al. HPCA 2010] 

  Application-aware on-chip networks [Das et al. MICRO 2009, ISCA 2010, Grot et 
al. MICRO 2009] 

  Dumb resources: Keep each resource free-for-all, but control 
access to memory system at the cores/sources 
  Estimate interference/slowdown in the entire system and throttle cores 

that slow down others  
  Fairness via Source Throttling [Ebrahimi et al., ASPLOS 2010] 
  Coordinated Prefetcher Throttling [Ebrahimi et al., MICRO 2009] 
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Fairness via Source Throttling 

Ebrahimi et al., “Fairness via Source Throttling: A 
Configurable and High-Performance Fairness Substrate 

for Multi-Core Memory Systems,” ASPLOS 2010. 

46 



GSRC E-Seminar, 3/23/2010, © Onur Mutlu 

Many Shared Resources 

Core 0 Core 1 Core 2 Core N 

Shared Cache 

Memory Controller 

DRAM 
Bank 0 

DRAM 
Bank 1 

DRAM 
Bank 2 

... DRAM 
Bank K 

... 

Shared Memory 
Resources 

Chip Boundary 
On-chip 
Off-chip 
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Motivation for Source Throttling 

  Partitioning (fairness/QoS) mechanisms in each resource 
might be difficult to get right (initially) 

  Independent partitioning mechanisms in caches, 
interconnect, and memory can contradict each other 

  Approaches that coordinate interaction among techniques 
for different resources require complex implementations 

48 

Our Goal: Enable fair sharing of 
the entire memory system by dynamically detecting 
and controlling interference in a coordinated manner 
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An Alternative Approach 
  Manage inter-thread interference at the cores, not at the 

shared resources 

  Dynamically estimate unfairness in the memory system  
  Feed back this information into a controller 
  Throttle cores’ memory access rates accordingly 

  Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

  E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 
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Fairness via Source Throttling (FST) 

  Two components (interval-based) 

  Run-time unfairness evaluation (in hardware) 
  Dynamically estimates the unfairness in the memory system 
  Estimates which application is slowing down which other 

  Dynamic request throttling (hardware/software) 
  Adjusts how aggressively each core makes requests to the 

shared resources 
  Throttles down request rates of cores causing unfairness 

  Limit miss buffers, limit injection rate 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST 
Unfairness Estimate 

App-slowest 
App-interfering 
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⎨
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⎧
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 Slowdown 

Estimation 

Time 
Interval 1 Interval 2 Interval 3 

Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

Fairness via Source Throttling (FST) 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST 
Unfairness Estimate 

App-slowest 
App-interfering 
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Fairness via Source Throttling (FST) 
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Estimating System Unfairness 

  Unfairness =  

  Slowdown of application i =  

  How can            be estimated in shared mode? 

              is the number of extra cycles it takes  
application i to execute due to interference 

    

54 

Max{Slowdown i} over all applications i 

Min{Slowdown i} over all applications i 

Shared 
Ti 

Ti 
Alone 

Ti 
Alone 

Ti 
Excess 

Ti 
Shared 

= Ti 
Alone 

- Ti 
Excess 
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Tracking Inter-Core Interference 
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0 0 0 0 

Interference per core 
bit vector 

Core # 0 1 2 3 

Core 0 Core 1 Core 2 Core 3 

Bank 0 Bank 1 Bank 2 Bank 7 ... 

Memory Controller 

Shared Cache 

Three interference sources: 
1. Shared Cache 
2. DRAM bus and bank 
3. DRAM row-buffers 

FST hardware 

Bank 2 

Row 
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Row A 

Tracking DRAM Row-Buffer Interference 
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Core 0 Core 1

Bank 0 Bank 1  Bank 2 Bank 7… 

Shadow Row Address Register 
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(SRAR) Core 0: 

Queue of requests to bank 2 0 0 
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Row A 
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induced row conflict 
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Row A 
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Tracking Inter-Core Interference 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST 
Unfairness Estimate 

App-slowest 
App-interfering 
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Fairness via Source Throttling (FST) 
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Tracking Inter-Core Interference 

  To identify App-interfering, for each core i 
  FST separately tracks interference caused by each core j 

( j ≠ i ) 
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Fairness via Source Throttling (FST) 
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Runtime Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness  
2- Find app. with the highest slowdown 
(App-slowest) 
3- Find app. causing most interference 
for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST
Unfairness Estimate

App-slowest
App-interfering
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Dynamic Request Throttling 

  Goal: Adjust how aggressively each core makes requests to 
the shared memory system  

  Mechanisms: 
  Miss Status Holding Register (MSHR) quota 

  Controls the number of concurrent requests accessing shared 
resources from each application 

  Request injection frequency 
  Controls how often memory requests are issued to the last level 

cache from the MSHRs 
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Dynamic Request Throttling 

  Throttling level assigned to each core determines both 
MSHR quota and request injection rate 
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Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles
Total # of 
MSHRs: 128 
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FST at Work 
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Time
Interval i Interval i+1 Interval i+2 

Runtime Unfairness
Evaluation Dynamic

Request Throttling

FST
Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%
25% 100% 25% 100%
25% 50% 50% 100%

Interval i
Interval i + 1
Interval i + 2

3

Core 2

Core 0

Core 0 Core 2
Throttle down Throttle up

2.5

Core 2

Core 1

Throttle down Throttle up

System software �
fairness goal: 1.4

Slowdown 
Estimation
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⎧

 

⎩
 

Slowdown 
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System Software Support 

  Different fairness objectives can be configured by       
system software 
  Estimated Unfairness > Target Unfairness 
  Estimated Max Slowdown > Target Max Slowdown 
  Estimated Slowdown(i) > Target Slowdown(i) 

  Support for thread priorities 
  Weighted Slowdown(i) =  

        Estimated Slowdown(i) x Weight(i) 

64 



GSRC E-Seminar, 3/23/2010, © Onur Mutlu 

FST Hardware Cost 

  Total storage cost required for 4 cores is ~12KB 

  FST does not require any structures or logic that are on the 
processor’s critical path 
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FST Evaluation Methodology 

  x86 cycle accurate simulator 
  Baseline processor configuration 

  Per-core 
  4-wide issue, out-of-order, 256 entry ROB 

  Shared (4-core system) 
  128 MSHRs  
  2 MB, 16-way L2 cache 

  Main Memory 
  DDR3 1333 MHz 
  Latency of 15ns per command (tRP, tRCD, CL) 
  8B wide core to memory bus 
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FST: System Unfairness Results 
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44.4%

36%



GSRC E-Seminar, 3/23/2010, © Onur Mutlu 

FST: System Performance Results 
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25.6%

14%
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FST Summary 
  Fairness via Source Throttling (FST)  

is a new fair and high-performance  
shared resource management approach for CMPs 

  Dynamically monitors unfairness and throttles down 
sources of interfering memory requests 

  Reduces the need for multiple per-resource interference 
reduction/control techniques 

  Improves both system fairness and performance 
  Incorporates thread weights and enables  

different fairness objectives 
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Agenda 

  Technology, Application, Architecture Trends 
  Requirements from the Memory Hierarchy 
  The Problem: Interference in Memory System 
  Two Solution Approaches 

  Smart resources: ATLAS Memory Scheduler 
  Dumb resources: Fairness via Source Throttling 

  Future Work 
  Conclusions 
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Ongoing/Future Work 

  Combined approaches are even more powerful  
  Source throttling and resource-based interference control 

  Interference control/reduction in on-chip networks 
  Application-aware prioritization mechanisms                      

[Das et al., MICRO 2009, ISCA 2010] 
  Bandwidth partitioning mechanisms [Grot et al., MICRO 2009] 

  Power partitioning in the shared memory system 

71 



GSRC E-Seminar, 3/23/2010, © Onur Mutlu 
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Conclusions 

  Many-core memory systems need scalable mechanisms to 
control and reduce application/thread interference  

  Two approaches to solve this problem 
  Smart resources: ATLAS is a scalable memory access 

scheduling algorithm that intelligently prioritizes threads 
  Dumb resources: Fairness via Source Throttling is a generalized 

core throttling mechanism for fairness/performance 

  Both approaches  
  Significantly improve system throughput 
  Configurable by the system software  enable QoS policies 
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