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First, Let’s Start With … 

 The Real Reason We Are Here Today 

 

 Yale @ 35 
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Some Teachings of Yale Patt 
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Design Principles 

• Critical path design 
 

• Bread and Butter design 
 

• Balanced design 

from Yale Patt’s EE 382N lecture notes 



(Micro)architecture Design Principles 

 Bread and butter design 

 Spend time and resources on where it matters (i.e. improving 
what the machine is designed to do) 

 Common case vs. uncommon case 

 

 Balanced design 

 Balance instruction/data flow through uarch components 

 Design to eliminate bottlenecks 

 

 Critical path design 

 Find the maximum speed path and decrease it 

 Break a path into multiple cycles? 
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from my ECE 740 lecture notes 



My Takeaways 

 Quite reasonable principles 
 

 Stated by other principled thinkers in similar or different 
ways 

 E.g., Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 E.g., Gene M. Amdahl, "Validity of the single processor 
approach to achieving large scale computing capabilities," 
AFIPS Conference, April 1967. 

 E.g., Butler W. Lampson, “Hints for Computer System Design,” 
SOSP 1983. 

 … 

 

 Will take the liberty to generalize them in the rest of the talk 
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The Problem 

 Systems designed today violate these principles 

 

 Some system components individually might not (or might 
seem not to) violate the principles 

 

 But the overall system 

 Does not spend time or resources where it matters 

 Is grossly imbalanced 

 Does not optimize for the critical work/application 
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A Computing System 

 Three key components 

 Computation  

 Communication 

 Storage/memory 
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Today’s Systems 

 Are overwhelmingly processor centric 

 Processor is heavily optimized and is considered the master 

 Many system-level tradeoffs are constrained or dictated by 
the processor – all data processed in the processor 

 Data storage units are dumb slaves and are largely 
unoptimized (except for some that are on the processor die) 
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Yet … 

 “It’s the memory, stupid” (Anonymous DEC engineer) 
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Yet … 

 Memory system is the major performance, energy, 
QoS/predictability and reliability bottleneck in many (most?) 
workloads 

 

 And, it is becoming increasingly so 

 Increasing hunger for more data and its (fast) analysis 

 Demand to pack and consolidate more on-chip for efficiency 

 Memory bandwidth and capacity not scaling as fast as demand  

 Demand to guarantee SLAs, QoS, user satisfaction 

 DRAM technology is not scaling well to smaller feature sizes, 
exacerbating energy, reliability, capacity, bandwidth problems 
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This Processor-Memory Disparity 

 Leads to designs that 

 do not spend time or resources where it matters 

 are grossly imbalanced 

 do not optimize for the critical work/application 

 

 Processor becomes overly complex and bloated 

 To tolerate memory related issues  

 Complex hierarchies are built just to move and store data 
within the processor 

 

 “The forgotten” memory system becomes dumb and 
inadequate in many aspects 
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Several Examples 

 Bulk data copy (and initialization) 

 

 DRAM refresh 

 

 Memory reliability 

 

 Disparity of working memory and persistent storage 

 

 Homogeneous memory 

 

 Predictable performance and fairness in memory 
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Today’s Memory: Bulk Data Copy 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) High latency 

2) High bandwidth utilization 

3) Cache pollution 

4) Unwanted data movement 

17 1046ns, 3.6uJ    (for 4KB page copy via DMA) 



Future: RowClone (In-Memory Copy) 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) Low latency 

2) Low bandwidth utilization 

3) No cache pollution 

4) No unwanted data movement 

18 1046ns, 3.6uJ 90ns, 0.04uJ 



DRAM Subarray Operation (load one byte) 

Row Buffer (4 Kbits) 

Data Bus 

8 bits 

DRAM array 

4 Kbits 

Step 1: Activate row 

 

Transfer 

row 

Step 2: Read   

Transfer byte 

onto bus 



RowClone: In-DRAM Row Copy 

Row Buffer (4 Kbits) 

Data Bus 

8 bits 

DRAM array 

4 Kbits 

Step 1: Activate row A 

Transfer 

row 

Step 2: Activate row B 

 

Transfer 

row 
0.01% area cost 



RowClone: Latency and Energy Savings 
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013. 



End-to-End System Design 
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 DRAM (RowClone) 

Microarchitecture 

ISA 

Operating System 

Application 
How does the software 
communicate occurrences 
of bulk copy/initialization 
to hardware? 

How to maximize latency 
and energy savings? 

How to ensure data 
coherence? 

How to handle data reuse? 



RowClone: Overall Performance 
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RowClone: Multi-Core Performance 
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Goal: Ultra-Efficient Processing Near Data 

CPU 
core 

CPU 
core 

CPU 
core 

CPU 
core 

mini-CPU 
core 

video 
core 

GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

LLC 

Memory Controller 

Specialized 
compute-capability 

in memory 

Memory imaging 
core 

Memory Bus 

Memory similar to a “conventional” accelerator 



Enabling Ultra-Efficient Search 

 

 

 

 

 

 

▪ What is the right partitioning of computation 

capability? 

▪ What is the right low-cost memory substrate? 

▪ What memory technologies are the best 

enablers? 

▪ How do we rethink/ease (visual) search 

algorithms/applications? 

Cache 

Process
or 
Core 

 Interconnect 

 Memory 

Databa
se   

Query vector 

Results 



Several Examples 

 Bulk data copy (and initialization) 

 

 DRAM refresh 

 

 Memory reliability 

 

 Disparity of working memory and persistent storage 

 

 Homogeneous memory 

 

 Memory QoS and predictable performance 
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DRAM Refresh 

 DRAM capacitor charge leaks over time 

 

 The memory controller needs to refresh each row 
periodically to restore charge 

 Activate each row every N ms 

 Typical N = 64 ms 

 

 Downsides of refresh 

    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 

-- Refresh rate limits DRAM capacity scaling  
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Refresh Overhead: Performance 

29 

8% 

46% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Refresh Overhead: Energy 
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15% 

47% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Retention Time Profile of DRAM 
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RAIDR: Eliminating Unnecessary Refreshes 

 Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13] 
 

 Key idea: Refresh rows containing weak cells  

    more frequently, other rows less frequently 

1. Profiling: Profile retention time of all rows 

2. Binning: Store rows into bins by retention time in memory controller 

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory) 

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates 

 

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 

 74.6% refresh reduction @ 1.25KB storage 

 ~16%/20% DRAM dynamic/idle power reduction 

 ~9% performance improvement  

 Benefits increase with DRAM capacity 
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Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Several Examples 

 Bulk data copy (and initialization) 

 

 DRAM refresh 

 

 Memory reliability 

 

 Disparity of working memory and persistent storage 

 

 Homogeneous memory 

 

 Memory QoS and predictable performance 
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The DRAM Scaling Problem 

 DRAM stores charge in a capacitor (charge-based memory) 

 Capacitor must be large enough for reliable sensing 

 Access transistor should be large enough for low leakage and high 
retention time 

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

 

 

 

 

 

 

 

 

 DRAM capacity, cost, and energy/power hard to scale 
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The DRAM Scaling Problem 

 DRAM scaling has become a real problem the 
system should be concerned about 

 And, maybe embrace 

35 



 Row of Cells 
 Row 
 Row 
 Row 
 Row 

 Wordline 

 VLOW  VHIGH 
 Victim Row 

 Victim Row 
 Aggressor Row 

Repeatedly opening and closing a row 
induces disturbance errors in adjacent rows 
in most real DRAM chips [Kim+ ISCA 2014] 

Opened Closed 
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An Example of  The Scaling Problem 



Most DRAM Modules Are at Risk 

86% 
(37/43) 

83% 
(45/54) 

88% 
(28/32) 

A company B company C company 

Up to 

1.0×107  
errors  

Up to 

2.7×106 
errors  

Up to 

3.3×105  
errors  

37 
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014. 



DRAM Module x86 CPU 

Y 

X 

loop: 

  mov (X), %eax 

  mov (Y), %ebx 

  clflush (X)   

  clflush (Y) 

  mfence 

  jmp loop 



DRAM Module x86 CPU 

  

  

loop: 

  mov (X), %eax 

  mov (Y), %ebx 

  clflush (X)   

  clflush (Y) 

  mfence 

  jmp loop 

Y 

X 



DRAM Module x86 CPU 

  

  

loop: 

  mov (X), %eax 

  mov (Y), %ebx 

  clflush (X)   

  clflush (Y) 

  mfence 

  jmp loop 

Y 

X 



DRAM Module x86 CPU 

  

  

loop: 

  mov (X), %eax 

  mov (Y), %ebx 

  clflush (X)   

  clflush (Y) 

  mfence 

  jmp loop 

Y 

X 



Observed Errors in Real Systems 

 

 

 

 

 
 

• In a more controlled environment, we can 
induce as many as ten million disturbance errors 

• Disturbance errors are a serious reliability issue 

CPU Architecture Errors Access-Rate 

Intel Haswell (2013) 22.9K 12.3M/sec 

Intel Ivy Bridge (2012) 20.7K 11.7M/sec 

Intel Sandy Bridge (2011) 16.1K 11.6M/sec 

AMD Piledriver (2012) 59 6.1M/sec 

42 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014. 



How Do We Solve The Problem? 

 Tolerate it: Make DRAM and controllers more intelligent 

 Just like flash memory and hard disks 

 

 Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology 

 

 Embrace it: Design heterogeneous-reliability memories that 
map error-tolerant data to less reliable portions 

 

 … 
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Vulnerable 
data 

Tolerant 
data 

Exploiting Memory Error Tolerance 

Heterogeneous-Reliability Memory 

Low-cost memory Reliable memory 

Vulnerable 
data 

Tolerant 
data 

Vulnerable 
data 

Tolerant 
data 

• ECC protected 
• Well-tested chips 

• NoECC or Parity 
• Less-tested chips 
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On Microsoft’s Web Search application 
Reduces server hardware cost by 4.7 % 
Achieves single server availability target of 99.90 % 



Several Examples 

 Bulk data copy (and initialization) 

 

 DRAM refresh 

 

 DRAM reliability 

 

 Disparity of working memory and persistent storage 

 

 Homogeneous memory 

 

 Memory QoS and predictable performance 
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Some Directions for the Future 
 

 We need to rethink the entire memory/storage system 

 Satisfy data-intensive workloads 

 Fix many DRAM issues (energy, reliability, …) 

 Enable emerging technologies 

 Enable a better overall system design 
 

 

 We need to find a better balance between moving data 
versus moving computation  

 Minimize system energy and bandwidth 

 Maximize system performance and efficiency 
 

 

 We need to enable system-level memory/storage QoS 

 Provide predictable performance 

 Build controllable and robust systems 
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Some Solution Principles (So Far) 

 More data-centric system design 

 Do not center everything around computation units 

 

 Better cooperation across layers of the system 

 Careful co-design of components and layers: system/arch/device 

 More flexible interfaces 

 

 Better-than-worst-case design 

 Do not optimize for the worst case 

 Worst case should not determine the common case 

 

 Heterogeneity in design (specialization, asymmetry) 

 Enables a more efficient design (No one size fits all)  

 48 
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Role of the Architect 

from Yale Patt’s EE 382N lecture notes 



A Quote from Another Famous Architect 

 “architecture […] based upon principle, and not upon 
precedent” 
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Concluding Remarks 

 

 It is time to design systems to be more balanced, i.e., more 
memory-centric 

 

 It is time to make memory/storage a priority in system 
design and optimize it & integrate it better into the system 

 

 It is time to design systems to be more focused on critical 
pieces of work 

 

 Future systems will/should be data-centric and memory-
centric, with appropriate attention to principles 
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Finally, people are always telling you: 

Think outside the box 

from Yale Patt’s EE 382N lecture notes 



I prefer: Expand the box 

from Yale Patt’s EE 382N lecture notes 



Rethinking  

the Systems We Design 

Onur Mutlu 

onur@cmu.edu 

September 19, 2014 

Yale @ 75 

 

mailto:onur@cmu.edu

