
Modernizing the Computer Architecture Curriculum at Carnegie Mellon:
A Multi-Core-Systems Centered Approach

Onur Mutlu (onur@cmu.edu)
Carnegie Mellon University

http://www.ece.cmu.edu/ ˜ omutlu

The Setting: Computer science and engineering is undergoing a revolution. Computationally very powerfulparallel
computers, which used to be the luxury of the government and billion-dollar corporations, are already in the laptops and
desktops of millions of ordinary users. Computer architects are building existing computer chips withmultiple processing
cores inside them, as opposed to with solely asingle processing core, which used to be the traditional way of designing
mainstream computer chips until around 2004. Essentially,a processing core is analogous to the brain of the computing
system: the more cores there are, the more tasks the system can perform in parallel. Chips with multiple processing cores
are commonly calledmulti-core chips. Existing Intel and AMD chips in the market already have 4 cores, IBM and Sun
Microsystems have chips with respectively 9 and 16 cores, and Intel has demonstrated prototypes of an 80-core chip. Both
academic and industrial researchers, including us at Carnegie Mellon, are envisioning and charting out designs of 1000-
core chips in the 10-20-year timeframe [1, 2]. Soon, unprecedented amounts of computing power will be in the hands of
almost every single computer user and programmer. And, boththe programmers and the users need to be aware of how to
harness this power.

To aid understanding, Figure 1 shows an example single-coresystem and an example multi-core system with nine
processing cores. Major differences between the two systems are highlighted in terms of designers’, programmers’ and
users’ perspectives.

Shared
Memory
Control

Shared
Memory
Control

Shared
Memory
Control

Shared
Memory
Control

* Simple to write software for
* Executes only one program at a time

MULTI−CORE SYSTEM
* Standard from 2004
* Enormous computation power

SINGLE−CORE SYSTEM

* Less computation power
* Standard until ~2004

* Much harder to control (due to shared resources)
* Much harder to design (due to shared resources)

* Executes more than one task/program at a time
* Much harder to write software for

 ways of designing hardware and
* Requires fundamentally different

 writing software
* Requires a strong understanding of both
 the single−core system and interconnection of
 multiple cores together

Core 1 Core 2 Core 3

Core 4 Core 5 Core 6

Core 7 Core 8 Core 9

Shared Cache

Shared Cache

S
hared C

ache

S
hared C

ache
Shared Memory

S
hared M

em
ory

Shared Memory

S
hared M

em
oryControl

Memory

Core

Cache

Memory

Single−Core Chip

* Hardware and software design
 assumed single−core systems for
 at least five decades

Multi−Core Chip

Figure 1. Illustration of the difference between tradition al single-core and modern multi-core systems. The figure sho ws a nine-core multi-core

system on the left; future systems are projected to have hund reds and thousands of processing cores.

The Problem: Computer architecture is the science and art of understanding, designing, and interconnecting hardware
components and designing the hardware/software interfacesuch that the resulting computer chip/system satisfies specific
performance, power consumption, energy-efficiency, and reliability requirements. Traditionally,computer architecture ed-
ucation and practice have largely assumed that there is only one single processing core on a chip. The assumption stems
from the fact that software programs that execute on the hardware weresequential, i.e. had single thread of execution.
However, with multi-core chips, this assumption is violated. To obtain satisfactory and scalable performance from multi-
core chips, not only should the chip/system be architected from scratch with keeping the parallel execution of multiple
programs in mind, but also software should be re-designed from scratch to use multiple cores. This changes the way in
which fundamental computer architecture concepts should be thought of and taught, as well as the way in which fundamen-
tal programming and software design concepts are thought ofand taught. Literally every aspect of computer architecture
design and thinking changes with the existence of multiple cores instead of a single one (Figure 1 provides a glimpse of
such changes).If we would like future generations to truly understand how current and future computers work and if we
would like future hardware/software designers to push the boundaries of hardware/software design, we, as educators, need
to make multi-core architectures a central part of the computer architecture and systems software curriculum. But, is our
computer architecture curriculum ready to prepare the students adequately to understand, design, and program multi-core
systems?

Existing Computer Architecture Curriculum at Carnegie Mellon: Current major computer architecture courses (18-
447, the undergraduate course, and 18-741, the advanced graduate course) in the ECE Department at Carnegie Mellon
cover almost exclusively single-core architectures. Multiprocessors (in the traditional sense, where single-core processors
are simply connected instead of placing multiple cores on chip) are very briefly covered in one lecture in the graduate
course, but not in enough detail and emphasis to give students a strong understanding of existing multi-core systems. Even
the parallel computer architecture course, 18-742, which was last taught in Spring 2006, focuses on traditionalmultiple
single-core chips instead ofmulti-core chips, which are fundamentally different from each other [1, 4]. As such, existing
core courses at Carnegie Mellon do not adequately prepare students for industrial or research jobs in which they will have
to design the hardware or software for multi-core chips.
Our Goals: Carnegie Mellon has traditionally been a powerhouse in computer architecture education and research in the
world. Our goal is to re-design the computer architecture curriculum such that we adapt our curriculum to the multi-core
revolution and continue to keep our edge in the forefront of computer architecture education and research by providing the
necessary background and skills for students to design and innovate multi-core systems. To achieve this goal, this proposal
aims to accomplish the following synergistic sub-goals:

1. One of our major goals is tore-design the existing fundamental computer architecture courses such that their
focus is on the design of multi-core systems rather than single-core systems. The focus will initially be on graduate-level
courses (18-741 and 18-742), but eventually (not as part of this proposal) the undergraduate-level computer architecture
course will be re-designed as well (18-447). The major themeof the re-design, which is elaborated below, is to start
the course with the assumption that existing computers are multi-core computers and to teach all fundamental computer
architecture concepts (even those related to single-core systems) within the context of a multi-core system. We believe
this re-design of fundamental courses will adequately prepare our graduates to jobs in industry as well as basic research in
computer architecture.

2. The second major goal is todevelop a focused graduate-level course on the hardware/software design of multi-
core systems. The purpose is twofolds. First, to teach the Ph.D., masters, and motivated undergraduate students the
fundamental challenges and research problems in designinghardware and software for multi-core systems, and the basic
solutions to them as we know now. Second, to challenge the students to develop out-of-the-box thinking and solutions to
the described problems via a focused research project wherethe students will work in groups. We believe such a new course
will prepare our students to do advanced research in multi-core systems related topics in hardware as well as software.

3. The final major goal is todevelop synergistic activities to foster broader multi-core education to enable Carnegie
Mellon to be a leader in “mainstream parallel computing.” This consists of two components. First, we will work with
other faculty members to incorporate concepts of multi-core systems into related courses. The software stack that runson
hardware is very much affected by the movement of hardware from single-core to multi-core and therefore needs to be
re-designed and re-thought. Operating systems, compilers, user interfaces, and algorithms are all affected by the multi-
core revolution. Incorporating multi-core concepts in such courses will enable our students to stay up-to-date with current
technology. We will work with faculty members teaching these courses to devise a comprehensive plan for incorporating
multi-core revolution and thinking into the courses in a consistent manner. Second, we will educate the broader Carnegie
Mellon community by giving accessible seminars within the university about the potential and caveats of multi-core systems
as well as inviting prominent speakers from industry to givesimilar seminars. The widespread availability of very low-cost
and very powerful parallel computers can enable sophisticated uses of technology in other fields than engineering, suchas
fine arts, motion arts, natural sciences, business administration, and social sciences. Our broader education will be aimed at
enabling professionals and students in these fields to make the best use of multi-core computers for their purposes without
requiring them to know about the underlying technical details.

Teaching Philosophy (as related to this proposal): A cutting-edge school needs to educate its students and staff in
cutting-edge concepts. There are two aspects to this education. First, the fundamental concepts need to be taught strongly
so that students can acquire the necessary skills to think independently without being restricted to the state-of-the-art.
Second, the state-of-the-art in a field needs to be woven tightly into the teaching of the fundamental concepts such that
students acquire a strong perspective of the existing approaches to fundamental problems and develop the ability to improve
cutting-edge concepts. These two aspects can be seen as conflicting, but they do not need to be. In my teaching, my goal
is to hammer home the fundamentals while providing the students the necessary contemporary perspective of cutting-edge
practice and research. As a concrete example,caching is a fundamental concept in computer architecture that has been
proven to be useful over 50 years of research and practice. Almost all systems built since the early 1980s included the
concept of caching by implementing hardware-based caches to improve system performance (as demonstrated pictorially
in the single-core system depicted in Figure 1). Almost all computer architecture courses in the country teach caching
within the context of a single-core system. However, the fundamental concept of caching requires a very different way of

thinking if we consider a multi-core system instead of a single-core system. In a multi-core system, multiple processors
share the hardware-based cache, which fundamentally changes the way caching is designed, implemented, and evaluated
to achieve high system performance. Figure 1 pictorially shows the differences between a shared cache in a multi-core
system and a cache in a single core system: the cache in the multi-core system is distributed into multiple pieces, and
each piece can be accessed by each core via a network of wires.In fact, even the definition of “optimal caching” changes
when we move to a multi-core system from a single-core system[5]. If the students are taught the fundamental concept
of caching from a single-core perspective, they will not be prepared for the reality of multi-core systems, which is the
state-of-the-art in computing. For this very reason, my teaching philosophy is to combine the state-of-the-art practice and
research tightly into the fundamental concepts such that students are prepared for making a difference in both real-world
designs and cutting-edge research.

In the broader perspective, I see a teacher as an educator notonly in the classroom but also in everyday life. The
mission of an educator should be to lay out the concepts as clearly as possible such that non-experts in a field can make
use of the provided information. Computer architecture andmulti-core computing are areas that affect every member of
our university community, directly or indirectly. Educating clearly our community members on what they can accomplish
with multi-core computing at a level they can empathize withis an important teaching responsibility that I aim to undertake
within the scope of this proposal.

Activities to Meet the Educational Goals: As outlined above, this proposal aims to achieve three majoreducational
goals. Hereby we briefly describe the concrete steps we are taking and we will take to achieve each of the goals.

I. Re-design of the Advanced Computer Architecture course (18-741): The author is currently teaching 18-741 (in Spring
2009). During the course of teaching, each lecture is being designed from scratch such that it meets the following criteria:

1. The lecture briefly introduces the fundamental concept being taught (e.g., caching, as described above) as it relatesto
single-core architectures.

2. The lecture describes how the fundamental concept has changed within the context of multi-core architectures.
Depending on the concept, this is where a significant portionof the lecture is spent.

3. The lecture describes open research and implementation challenges related to both single-core and multi-core aspects
of the concept.

Structuring each lecture as described allows us to teach both the fundamental concepts as well as their multi-core aspects
concisely. Homeworks, programming assignments, examinations in the course are also accordingly re-designed to break
the assumption of single-core systems that used to be present in the course. 18-741 also includes a major design project in
which students, in groups of two, perform a research projectin a computer architecture topic. The project topics are being
re-designed such that they are all multi-core oriented. In fact, thirteen out of the sixteen project groups are currently doing
projects that are very tightly related to multi-core systems. Our hope is that focusing on multi-core systems in 18-741
will enable graduate students to 1) quickly jump into cutting-edge research in the field or 2) quickly get used to designing
software and hardware for multi-core systems upon graduation, without going the extra step to learn about multi-core
systems on their own (or via other means).

II. Re-design of the Multiprocessor Architecture course (18-742): This course was a course focused on designing mul-
tiprocessor architectures by connecting single-core chips together. With the arrival of multi-core chips, this way ofinter-
connecting single-core systems to form a multiprocessor isno longer the mainstream way of building a parallel computer.
Having multiple cores on the same chip enables many new optimizations and software/hardware opportunities (e.g. fast
communication between cores, on-chip networks, fast scheduling of tasks) that is not possible in traditional multiprocessor
systems. However, when 18-742 was taught last time, multi-core systems were covered in only two lectures toward the end
of the semester. Our goal is to re-design 18-742 such that it assumes multiple cores are on the same chip. To accomplish
this, we aim to re-design each lecture such that:

1. the concepts are first introduced within the context of a multi-core system with an on-chip interconnection network.
2. the advantages/disadvantages of a multi-core system is clearly described in comparison to a traditional single-core

based multiprocessor system.
3. research and implementation challenges in building scalable hardware for multi-core systems are outlined.
The homeworks, programming assignments, and examinationswill also be re-designed with a fundamental emphasis

on multi-core systems. We would like to overhaul the research project in this course, which assumed extensions to tra-
ditional multiprocessors and simulation-based evaluation of such enhancements. The focus of the project will be shifted
to 1) enhancing multi-core architectures in which studentswill propose changes to the state-of-the-art, 2) evaluating the
enhancements using hardware-based prototyping of multi-core architectures, especially the hardware-based modeling of
shared caches and on-chip multi-core interconnection networks. The former will enable the students to work on state-of-
the-art and the latter will lead to more accurate evaluationresults.

III. Development of a focused graduate-level course on hardware/software (co-)design of multi-core systems: Multi-
core revolution has enabled the possibility of optimizing the computing system hardware and software at the same time
because neither traditional single-core hardware nor traditional single-core software can work in a multi-core context.
Therefore, a major opportunity exists to re-think the fundamentals of computing such that hardware and software are co-
designed in a general purpose system to enable higher performance [6]. In fact, as many researchers have noted [2, 6],
traditional solutions that optimize only the software or only the hardware can no longer deliver large benefits in computing
performance and efficiency. The previous courses describedabove are focused mainly on the hardware architecture of
multi-core systems. Extending them to include software formulti-core systems would stretch the material too much
and will likely make each course shallow. To provide a deeperunderstanding of both hardware and software issues in
multi-core systems to the students, we are planning to develop a next-level course that is solely focused on multi-core
systems, assuming that the student has taken both 18-741 and18-742. The course will take a strong interdisciplinary
approach: it will focus on the interactions between software and hardware in especially the memory system and on-chip
interconnection networks of multi-core systems in each lecture. The purpose is not to develop a yet-another seminar course:
there will be regular lectures that discuss both recent research and existing implementations, and how they can be adapted
to a hardware/software co-design. Students will propose and perform interdisciplinary projects involving changes toboth
hardware and software. The end goal is to produce versatile and focused computer architecture PhD students who can think
out of the box and are capable in advancing the state-of-the-art by enabling cooperation between hardware and software.

IV. Synergistic activities for university-wide multi-core education and awareness: These activities are described in detail
above. We believe incorporating multi-core concepts to other courses and educating the university community on multi-
core are longer-term activities we will start within the context of this proposal, but they will last for years. The author has
already started some of these activities: he has been holding conversations with faculty members and has given an ECE
Seminar on one possible security problem that arises with the arrival of multi-core systems [3].

Expected Outcomes: The longer-term (4+ years) outcomes this proposal is intended to serve are 1) the establishment
Carnegie Mellon as a major center in parallel computing education and research and 2) the attraction and formation of large
industry-supported parallel computing education/research centers, similar to the Universal Parallel Computing Research
Centers formed at UC-Berkeley and University of Illinois byMicrosoft and Intel, and the Multi-Core Center at UPC-
Barcelona, supported by Microsoft. The medium-term (1-2+ years) outcomes are 1) the education of students that are
highly-seeked for employment in parallel computing, 2) theproduction of cutting-edge and top-quality research in multi-
core systems, 3) the enabling of effective use of multi-coretechnology in other departments and on campus. The short-term
and immediate outcomes are 1) a revised and modernized computer architecture curriculum that is adapted to trends in
industry and technology and 2) attraction of high-quality students who are interested in making a difference in parallel
computing hardware/software.

Evaluation: The ultimate evaluation of the proposed activities will come from the success of students who are educated
with the revised curriculum. Measuring this success is a long-term process, which cannot be evaluated within the timeline
of this proposal. Instead, we intend to collect immediate feedback from faculty, students, and industrial partners to evaluate
our success. In particular, we will use the perceived amountof learning (as described by students and faculty) and the
perceived level of competence (as described by industrial partners and colleagues who recruit our graduates) in multi-core
systems as measures for evaluation. In addition, we will measure the quality and number of published research articles that
stemmed from the revised curriculum (and course projects) as a measure of evaluation of the success of the program.

Timeline: Figure 2 shows the timeline of major milestones. Activitiescolored in green have already been started.

Re−design of 18−741
Evaluation of 18−741 lectures and projects

Re−design of 18−742
Design of hardware/software multi−core course

Accessible seminars on multi−core systems

Adjustments to 18−741 re−design

Adjustment of other courses (w/ other faculty)

Spring 2009 Summer 2009 Fall 2009

 Jan Mar Apr Jun Jul Sep Feb

Figure 2. Major milestones and expected completion dates
References
[1] S. Borkar. Thousand core chips: A technology perspective. InDesign Automation Conference, 2007.
[2] W. W. Hwu et al. Implicitly parallel programming models for thousand-core microprocessors. InDesign Automation Conference, 2007.
[3] O. Mutlu. Preventing Memory Performance Attacks in Multi-Core Systems. CMU ECE Seminar, Feb. 2009.
[4] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both performance and fairness of sharedDRAM systems. In35th

International Symposium on Computer Architecture, 2008.
[5] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for MLP-aware cache replacement. In33rd International Symposium on Computer

Architecture, 2006.
[6] B. Smith.Reinventing Computing. Microsoft Technical Fellow. Keynote at the 2006 International Supercomputing Conference.

